调节性T细胞介导的免疫逃逸在癌症中研究进展
Research Progress of Regulatory T Cell-Mediated Immune Escape in Cancer
DOI: 10.12677/acm.2024.1461847, PDF, HTML, XML, 下载: 15  浏览: 33 
作者: 尹少宏:内蒙古医科大学附属医院血管外科,内蒙古 呼和浩特
关键词: 调节性T细胞免疫逃逸抗肿瘤免疫应答Regulatory T Cells Immune Escape Anti-Tumor Immune Response
摘要: 多项研究显示调节性T (Treg)细胞在肿瘤细胞中的高浸润与癌症患者生存率低有关。所以确定Treg细胞中特异性表达并且影响Treg细胞稳态和功能的因子是非常重要的,这样可以了解癌症发病机制和确定治疗的靶点。因此,在肿瘤免疫治疗领域中,找到可以消耗Treg细胞并且控制Treg细胞功能从而去增强抗肿瘤免疫应答的方法是非常重要的。本文将回顾Treg细胞是怎样抑制抗肿瘤免疫应答,并讨论这些机制如何共同允许Treg细胞抑制抗肿瘤免疫应答。
Abstract: Multiple studies have shown that high infiltration of regulatory T (Treg) cells in tumor cells is associated with low survival in cancer patients. Therefore, it is very important to identify the factors that are specifically expressed in Treg cells and affect the homeostasis and function of Treg cells, so as to understand the pathogenesis of cancer and identify therapeutic targets. Therefore, in the field of tumor immunotherapy, it is very important to find ways to consume Treg cells and control Treg cell function to enhance anti-tumor immune response. This article reviews how Treg cells suppress the anti-tumor immune response and discusses how these mechanisms together allow Treg cells to suppress the anti-tumor immune response.
文章引用:尹少宏. 调节性T细胞介导的免疫逃逸在癌症中研究进展[J]. 临床医学进展, 2024, 14(6): 817-823. https://doi.org/10.12677/acm.2024.1461847

1. 调节性T细胞的概述

1.1. Treg细胞的来源

Treg细胞根据其发育位置可分为两种亚型。在胸腺中发育的Treg细胞称为胸腺源性Treg细胞,胸腺Treg细胞发育过程包括两个步骤。第一步是由强T细胞受体(TCR)刺激驱动CD4单阳性胸腺细胞发育,这导致高亲和白细胞介素2受体(Interleukin-2 receptor, IL-2R)、CD25以及肿瘤坏死因子(tumor necrosis factor receptor, TNFR)超家族(tumor necrosis factor superfamily, TNFRSF)成员糖皮质激素诱导的肿瘤坏死因子受体(glucocorticoid-induced tumor necrosis factorreceptor, GITR)、肿瘤坏死因子受体超家族成员4 (tumor necrosis factor receptor superfamily, member 4, OX40)和肿瘤坏死因子受体2 (TNFR2)的上调,从而产生CD25+ FOXP3 Treg细胞祖细胞(TregP),第二步是由细胞因子依赖的TregP通过上调FOXP3转化为成熟的Treg细胞[1]。产生Treg细胞的途径还有外周血CD4+ T细胞在接受抗原刺激和细胞因子组合(包括IL-2和转化生长因子(TGF-β)后从初始T细胞分化而来,以这种方式产生的Foxp3+ Treg细胞在体外生成时称为诱导Treg (iTreg)细胞[2],在体内生成时称为外周诱导Treg (pTreg)细胞[3]。同时也有学者根据幼稚T细胞标志物CD45RA、CD25和FOXP3的表达水平对人类Treg细胞进行另一种分类[4],分为:① FOXP3loCD45RA+ CD25lo细胞(Fraction I或Fr. I),即为初始或静息Treg细胞。② FOXP3hiCD45RA CD25hi细胞(Fr. II),即为效应或活化的Treg细胞,在抗原刺激下与Fr. I细胞最终分化,并且对机体免疫应答进行负调控。③ FOXP3loCD45RA CD25lo非Treg细胞(Fr. III),它们不具有抑制活性,但可以分泌促炎细胞因子[5]

1.2. Treg细胞通过三大机制抑制抗肿瘤免疫应答

Treg细胞因其调节多种免疫细胞(包括淋巴细胞、树突状细胞和巨噬细胞)功能的能力而被广泛研究[6]。Treg细胞是通过抑制抗肿瘤免疫应答来促进肿瘤生长的关键免疫抑制细胞,并且通过多种机制对机体免疫应答进行负调控,如蛋白细胞毒性T淋巴细胞抗原4 (CTLA-4)介导的抗原呈递细胞(APCs)功能抑制、IL-2的消耗、免疫抑制细胞因子的产生和免疫抑制代谢物的产生[7]

1.2.1. Treg细胞通过CTLA-4抑制抗肿瘤免疫应答

在Treg细胞表达的各种细胞表面分子中,CD25和CTLA-4是Treg细胞功能的关键分子。在小鼠和人类的肿瘤中,浸润性Treg细胞高度表达CD25和CTLA-4,这似乎有助于Treg细胞抑制抗肿瘤免疫应答[7]。Treg细胞表达的CTLA-4的一个关键功能是下调APCs中CD80/86的表达,从而抑制Tconv细胞的活化[8]。在机制上,CTLA-4与APCs上的B7分子B7-1和B7-2 (分别称为CD80和CD86)结合的亲和力高于CD28,从而与该共刺激分子竞争配体结合,并诱导APCs的抑制性信号传导,而且与CTLA-4结合的B7分子可以通过胞啃作用从APCs物理转移到Treg细胞的表面或细胞质[9] [10]。而APCs的成熟依赖于B7分子在Tconv细胞上与CD28结合时传递的共刺激信号[11],CTLA-4的这些作用严重破坏了APCs的成熟。通过这种机制,Treg细胞可以通过抑制呈递抗原的APCs的成熟以抗原特异性的方式抑制Tconv细胞[4]。所以,Treg细胞表达的CTLA-4对Treg细胞抑制抗肿瘤免疫应答至关重要。

1.2.2. Treg细胞通过细胞因子抑制抗肿瘤免疫应答

由于Treg细胞本身并不产生IL-2,因此它们需要高亲和力IL-2受体(CD25作为受体的一个组成部分)捕获的外源IL-2才能存活;而邻近Tconv细胞则可能因为摄取不到足够的IL-2,将会被进一步限制激活和增殖[12] [13]。此外,Treg细胞产生的细胞毒性物质,如穿孔素和颗粒酶,也可以杀死效应T细胞[14]

1.2.3. Treg细胞通过TCR抑制抗肿瘤免疫应答

Treg细胞需要TCR刺激才能发挥抑制活性[15];如果没有抗原刺激,它们则无法发挥抑制抗肿瘤免疫应答的作用。在TCR刺激下Treg细胞会进一步上调CTLA-4和其他辅助分子,特别是粘附分子如I型白细胞功能相关抗原(Leukocyte Function-associated Antigen 1, LFA1),其缺乏会损害Treg细胞的抑制活性[5]。而且当Treg细胞和Tconv细胞对TCR亲和力相同时,Treg细胞可以在比Tconv细胞低得多的抗原浓度下被激活并发挥抑制作用[16]。这意味着,在TCR刺激之前,高表达的LFA-1和其他辅助分子可能有助于为TCR诱导的Treg细胞设定较低的阈值,从而更容易激活[17]。综上所述,Treg细胞可以通过CTLA-4的组成表达,IL-2的非生产和TCR刺激(上调各种T细胞附属分子包括CD25和粘附分子)的组合去抑制Tconv细胞的活性。这些依赖体液和细胞接触的抑制机制,连同Treg细胞分泌的抑制性细胞因子以及抑制性分子的形成,这些都有助于treg细胞抑制抗肿瘤免疫应答。

2. 调节性T细胞在癌症进展中的作用

Treg细胞在维持外周免疫耐受中起着重要作用,同时在致病性损伤期间,Treg细胞会阻止过度的免疫激活,限制组织损伤[18]。但这种机制却间接的帮助肿瘤实现了免疫逃逸。大量研究表明,在肿瘤细胞中Treg细胞与效应T细胞的比例与癌症预后不良和免疫治疗反应呈正相关[19]。同时人类癌症标本的转录组分析也显示,肿瘤浸润的Treg细胞表达各种高水平的Treg细胞激活标记物,如淋巴细胞活化基因3蛋白(Lymphocyte Activation Gene-3, LAG3),诱导型T细胞共刺激物(International Christian Online School, ICOS)、OX40,TNFR相关蛋白,这是一种表型不同于外周组织中的Treg细胞,从而支持了肿瘤微环境(TME)中被激活的Treg细胞具有很强的免疫抑制能力的观点[4] [20]。其中以表达主转录因子叉头盒蛋白p3 (Foxp3)为特征的Treg细胞为主,去阻碍机体对肿瘤的免疫监视和有效的抗肿瘤免疫反应在携带肿瘤的宿主中进行[21]。然而,也有一些例外,有研究表明,在结直肠癌(Colorectal Cancer, CRC)中,大量FoxP3+ T细胞存在时对应于较好的预后[22]。而另一些研究则没有发现任何关联,这些不一致的结果来源于CRC中免疫环境的异质性,其中抗癌免疫反应可能与促肿瘤炎症共存[23]。具体来说,在具有高水平炎症因子(如肿瘤坏死因子TGFβ和IL-12)的CRC亚群中,是TME中FOXP3+非Treg细胞的积累与良好的预后相关,而不是FOXP3+ Treg细胞[24]。出现这样的结果,是因为在评估FOXP3+CD4+ T细胞在CRC患者中的临床重要性的一些研究中,FOXP3+CD4+ T细胞仅通过免疫组织化学鉴定,故肿瘤组织中FOXP3+非Treg细胞与FOXP3+ eTreg细胞的难以区分,所以在未来的研究中,可以使用免疫组织化学结合流式细胞术和基因组分析对各种类型的免疫细胞(包括Treg细胞)进行适当的评估[4]

3. 肿瘤免疫逃逸的机制

3.1. 肿瘤免疫编辑理论

免疫逃逸是宿主免疫系统无法对感染因子作出反应的一种现象,这一过程也被称为免疫逃逸或抗原逃逸。众所周知,免疫系统在预防癌症的发生和发展中起着关键作用。而关于肿瘤发生与免疫的关系,有学者提出了“肿瘤免疫编辑”理论[25] [26]。免疫编辑是一个动态过程,通过免疫系统塑造肿瘤的进化和进展。它有三个阶段:消除、平衡和逃逸[27]。根据这一理论,免疫系统可以识别、监测并最终清除大多数恶性细胞,在消除阶段,抗肿瘤免疫是通过先天和适应性免疫反应刺激的,然而,少数恶性细胞会逃避这种监视,进入“平衡”阶段,在平衡阶段,抗肿瘤免疫不能完全根除肿瘤,同时机体也没有临床症状,最可怕的是,随着病情的进展,恶性肿瘤细胞会绕过这种平衡,从而导致癌细胞完全逃避免疫控制,最终通过对肿瘤微环境的修改而实现免疫逃逸,这在实验模型和癌症患者中得到证实[27]-[33]

3.2. 肿瘤细胞通过PD-L1与CD47实现免疫逃逸

肿瘤细胞会采取多种策略来操纵周围的微环境,以保证和支持其发展,最终促进肿瘤增殖和转移[34]。比如癌细胞会表达一些免疫检查点蛋白,如程序性死亡配体1 (Programmed Death 1, PD-L1)和CD47,从而实现免疫逃逸。在机制上,PD-L1与T细胞表面PD-1受体的相互作用会抑制机体免疫系统对癌细胞杀伤[35],而且程序性死亡配体-1/程序性死亡-1信号通路是肿瘤免疫抑制的重要组成部分,可抑制T淋巴细胞的活化,增强肿瘤细胞的免疫耐受,从而实现肿瘤免疫逃逸[30]。CD47则是与吞噬细胞表面信号调节蛋白受体(Signal regulatory protein α, SIRPα)结合抑制机体免疫系统对癌细胞的清除[36]。同时也有临床分析显示,CD47在胶质母细胞瘤、卵巢癌、乳腺癌、膀胱癌、结肠癌、肝细胞癌等多种类型的癌症患者中均高表达,并且与低生存率相关[37]

3.3. 肿瘤细胞通过缺氧实现免疫逃逸

缺氧是各种类型癌症肿瘤微环境的共同特征,缺氧可以削弱细胞毒性T细胞的功能,也可以引起调节性T细胞的募集,从而降低肿瘤的免疫原性[38]。在此过程,缺氧诱导因子(HIF) 1和2α (HIF1A和HIF2A)过表达,去促进肿瘤发生[39] [40]。在机制上,HIF-1结合CD47启动子并增加其表达[41],之后CD47与吞噬细胞表面SIRPα受体的结合抑制机体免疫系统对癌细胞的清除[36]。同时HIFs及其下游信号通路的激活也会调节肿瘤特异性免疫反应,产生免疫抑制细胞因子和生长因子,允许免疫逃逸并促进肿瘤进展[42]

4. 以Treg细胞为靶点的肿瘤免疫治疗策略

免疫逃逸机制的发展是肿瘤发生的关键过程,这涉及免疫抑制细胞的诱导和募集,如Treg细胞、髓源性抑制细胞(myeloid-derived suppressor cells, MDSCs)和肿瘤相关巨噬细胞(tumor-associated Macrophages, TAMs),以及各种免疫抑制分子的上调,包括免疫检查点CTLA-4、PD-1和PD-L1 [27]。阻断Tregs向TME的迁移是肿瘤免疫治疗的一个有希望的策略,这样可以减少Tregs的浸润。比如结直肠癌细胞分泌的趋化因子配体20 (CCL20)可通过FOXO1/CEBPB/NF-κB信号通路募集Treg细胞从而促进耐药性,这提示FOXO1/CEBPB/NF-κB/CCL20轴可能为结直肠癌治疗提供一个有希望的靶点,因此,CCL20将成为免疫治疗潜在的靶点[21] [43]。值得注意的是,与来自健康组织的Tregs相比,肿瘤浸润性调节性T细胞(TI-Tregs)更显著地下调FOXO1靶基因,相对低水平的FOXO1突变表达可以消耗TI-Tregs,激活效应CD8+ T细胞,抑制肿瘤生长而不诱导自身免疫[21]。因此,FOXO1失活对于适应性调节性T细胞(aTregs)的迁移非常重要。靶向Tregs免疫检查点(IC)也是一种治疗策略,将CTLA-4、TIGIT、PD-1、GITR等IC分子靶向Tregs可能有效治疗癌症。从上文得知CTLA-4可以通过与APC上的配体CD80和CD86的高亲和力结合,限制了效应细胞的进一步活化,因此,抗CTLA-4抗体可以去除Tregs的抑制功能,释放效应细胞的细胞毒性功能。ipilimumab (IgG1)和tremelimumab (IgG2)这两种单克隆抗体可以阻断CTLA-4的功能,通过增强效应T细胞介导的免疫反应,在晚期实体恶性肿瘤患者中显示出持久的临床活性[21]。GITR蛋白也可以作为Treg细胞耗竭和功能操作的候选分子,其也是一种共刺激分子,在静止的CD4+和CD8+ T细胞中低水平表达,但是在FoxP3+CD4+ Treg细胞中高水平表达[22]。故可使用抗GITR单抗可以抑制FoxP3+ CD4+ Treg细胞的抑制活性,并使效应T细胞抵抗FoxP3+ CD4+ Treg介导的抑制。

5. 结论与展望

自从发现Treg细胞是维持自身耐受的免疫稳态的关键组成部分以来,Treg细胞在自身免疫和抗肿瘤免疫背景下的免疫学应用已被广泛探索,但大多数疗法不能选择性地消耗或抑制Treg细胞,因为Treg细胞的全身性耗竭可能增加患者发生免疫相关不良反应(immune related adverse event, irAE)的风险,所以目前需要克服的一个障碍是缺乏针对Treg细胞的消耗和功能损伤的特异性靶点,特别是肿瘤浸润性Treg细胞,或者尝试着探索控制Tregs获得特定效应特性的信号通路。因此,Tregs的作用和功能有待进一步研究,以充分发挥Tregs作为免疫治疗靶点的潜力,为肿瘤免疫治疗提供新的策略。

参考文献

[1] Owen, D.L., Sjaastad, L.E. and Farrar, M.A. (2019) Regulatory T Cell Development in the Thymus. The Journal of Immunology, 203, 2031-2041.
https://doi.org/10.4049/jimmunol.1900662
[2] Kaljanac, M. and Abken, H. (2023) Do Treg Speed Up with CARs? Chimeric Antigen Receptor Treg Engineered to Induce Transplant Tolerance. Transplantation, 107, 74-85.
https://doi.org/10.1097/TP.0000000000004316
[3] Kanamori, M., Nakatsukasa, H., Okada, M., Lu, Q. and Yoshimura, A. (2016) Induced Regulatory T Cells: Their Development, Stability, and Applications. Trends in Immunology, 37, 803-811.
https://doi.org/10.1016/j.it.2016.08.012
[4] Togashi, Y., Shitara, K. and Nishikawa, H. (2019) Regulatory T Cells in Cancer Immunosuppression—Implications for Anticancer Therapy. Nature Reviews Clinical Oncology, 16, 356-371.
https://doi.org/10.1038/s41571-019-0175-7
[5] Tanaka, A. and Sakaguchi, S. (2017) Regulatory T Cells in Cancer Immunotherapy. Cell Research, 27, 109-118.
https://doi.org/10.1038/cr.2016.151
[6] Okeke, E.B. and Uzonna, J.E. (2019) The Pivotal Role of Regulatory T Cells in the Regulation of Innate Immune Cells. Frontiers in Immunology, 10, Article 680.
https://doi.org/10.3389/fimmu.2019.00680
[7] Tanaka, A. and Sakaguchi, S. (2019) Targeting Treg Cells in Cancer Immunotherapy. European Journal of Immunology, 49, 1140-1146.
https://doi.org/10.1002/eji.201847659
[8] Kim, G.R. and Choi, J.M. (2022) Current Understanding of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) Signaling in T-Cell Biology and Disease Therapy. Molecular Cell, 45, 513-521.
https://doi.org/10.14348/molcells.2022.2056
[9] Liu, Y. and Zheng, P. (2020) Preserving the CTLA-4 Checkpoint for Safer and More Effective Cancer Immunotherapy. Trends in Pharmacological Sciences, 41, 4-12.
https://doi.org/10.1016/j.tips.2019.11.003
[10] Guo, X.J., Lu, J.C., Zeng, H.Y., et al. (2021) CTLA-4 Synergizes with PD1/PD-L1 in the Inhibitory Tumor Microenvironment of Intrahepatic Cholangiocarcinoma. Frontiers in Immunology, 12, Article 705378.
[11] Rastogi, I., Jeon, D., Moseman, J.E., Muralidhar, A., Potluri, H.K. and McNeel, D.G. (2022) Role of B Cells as Antigen Presenting Cells. Frontiers in Immunology, 13, Article 954936.
https://doi.org/10.3389/fimmu.2022.954936
[12] Harris, F., Berdugo, Y.A. and Tree, T. (2023) IL-2-Based Approaches to Treg Enhancement. Clinical and Experimental Immunology, 211, 149-163.
https://doi.org/10.1093/cei/uxac105
[13] Śledzińska, A., Vila de Mucha, M., Bergerhoff, K., et al. (2020) Regulatory T Cells Restrain Interleukin-2-and Blimp-1-Dependent Acquisition of Cytotoxic Function by CD4+ T Cells. Immunity, 52, 151-166.e6.
[14] Kuan, R., Agrawal, D.K. and Thankam, F.G. (2021) Treg Cells in Atherosclerosis. Molecular Biology Reports, 48, 4897-4910.
https://doi.org/10.1007/s11033-021-06483-x
[15] Aran, A., Garrigós, L., Curigliano, G., Cortés, J. and Martí, M. (2022) Evaluation of the TCR Repertoire as a Predictive and Prognostic Biomarker in Cancer: Diversity or Clonality. Cancers, 14, Article 1771.
https://doi.org/10.3390/cancers14071771
[16] Takahashi, T., Kuniyasu, Y., Toda, M., et al. (1998) Immunologic Self-Tolerance Maintained by CD25+CD4+ Naturally Anergic and Suppressive T Cells: Induction of Autoimmune Disease by Breaking Their Anergic/Suppressive State. International Immunology, 10, 1969-1980.
https://doi.org/10.1093/intimm/10.12.1969
[17] Liu, Z., Gerner, M.Y., Van Panhuys, N., Levine, A.G., Rudensky, A.Y. and Germain, R.N. (2015) Immune Homeostasis Enforced by Co-Localized Effector and Regulatory T Cells. Nature, 528, 225-230.
https://doi.org/10.1038/nature16169
[18] Scott, E.N., Gocher, A.M., Workman, C.J. and Vignali, D. (2021) Regulatory T Cells: Barriers of Immune Infiltration into the Tumor Microenvironment. Frontiers in Immunology, 12, Article 702726.
https://doi.org/10.3389/fimmu.2021.702726
[19] Solis-Castillo, L.A., Garcia-Romo, G.S., Diaz-Rodriguez, A., et al. (2020) Tumor-Infiltrating Regulatory T Cells, CD8/Treg Ratio, and Cancer Stem Cells Are Correlated with Lymph Node Metastasis in Patients with Early Breast Cancer. Breast Cancer, 27, 837-849.
https://doi.org/10.1007/s12282-020-01079-y
[20] De Simone, M., Arrigoni, A., Rossetti, G., et al. (2016) Transcriptional Landscape of Human Tissue Lymphocytes Unveils Uniqueness of Tumor-Infiltrating T Regulatory Cells. Immunity, 45, 1135-1147.
https://doi.org/10.1016/j.immuni.2016.10.021
[21] Li, C., Jiang, P., Wei, S., Xu, X. and Wang, J. (2020) Regulatory T Cells in Tumor Microenvironment: New Mechanisms, Potential Therapeutic Strategies and Future Prospects. Molecular Cancer, 19, Article No. 116.
https://doi.org/10.1186/s12943-020-01234-1
[22] Ohue, Y. and Nishikawa, H. (2019) Regulatory T (Treg) Cells in Cancer: Can Treg Cells Be a New Therapeutic Target. Cancer Science, 110, 2080-2089.
https://doi.org/10.1111/cas.14069
[23] Fantini, M.C., Favale, A., Onali, S. and Facciotti, F. (2020) Tumor Infiltrating Regulatory T Cells in Sporadic and Colitis-Associated Colorectal Cancer: The Red Little Riding Hood and the Wolf. International Journal of Molecular Sciences, 21, Article 6744.
[24] Saito, T., Nishikawa, H., Wada, H., et al. (2016) Two FOXP3+CD4+ T Cell Subpopulations Distinctly Control the Prognosis of Colorectal Cancers. Nature Medicine, 22, 679-684.
https://doi.org/10.1038/nm.4086
[25] Bose, S., Panda, A.K., Mukherjee, S. and Sa, G. (2015) Curcumin and Tumor Immune-Editing: Resurrecting the Immune System. Cell Division, 10, Article No. 6.
[26] Lei, X., Lei, Y., Li, J.K., et al. (2020) Immune Cells within the Tumor Microenvironment: Biological Functions and Roles in Cancer Immuneotherapy. Cancer Letters, 470, 126-133.
https://doi.org/10.1016/j.canlet.2019.11.009
[27] Schreiber, R.D., Old, L.J. and Smyth, M.J. (2011) Cancer Immunoediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion. Science, 331, 1565-1570.
https://doi.org/10.1126/science.1203486
[28] Wu, Q., Wu, W., Franca, T., Jacevic, V., Wang, X. and Kuca, K. (2018) Immune Evasion, a Potential Mechanism of Trichothecenes: New Insights into Negative Immune Regulations. International Journal of Molecular Sciences, 19, Article 3307.
https://doi.org/10.3390/ijms19113307
[29] Wu, Q., Wu, W., Fu, B., Shi, L., Wang, X. and Kuca, K. (2019) JNK Signaling in Cancer Cell Survival. Medicinal Research Reviews, 39, 2082-2104.
https://doi.org/10.1002/med.21574
[30] Jiang, X., Wang, J., Deng, X., et al. (2019) Role of the Tumor Microenvironment in PD-L1/PD-1-Mediated Tumor Immune Escape. Molecular Cancer, 18, Article No. 10.
https://doi.org/10.1186/s12943-018-0928-4
[31] Martinez-Bosch, N., Vinaixa, J. and Navarro, P. (2018) Immune Evasion in Pancreatic Cancer: From Mechanisms to Therapy. Cancers, 10, Article 6.
https://doi.org/10.3390/cancers10010006
[32] Barsoum, I.B., Koti, M., Siemens, D.R. and Graham, C.H. (2014) Mechanisms of Hypoxia-Mediated Immune Escape in Cancer. Cancer Research, 74, 7185-7190.
https://doi.org/10.1158/0008-5472.CAN-14-2598
[33] Gil Del Alcazar, C.R., Alečković, M. and Polyak, K. (2020) Immune Escape during Breast Tumor Progression. Cancer Immunology Research, 8, 422-427.
https://doi.org/10.1158/2326-6066.CIR-19-0786
[34] Raimondo, S., Pucci, M., Alessandro, R. and Fontana, S. (2020) Extracellular Vesicles and Tumor-Immune Escape: Biological Functions and Clinical Perspectives. International Journal of Molecular Sciences, 21, Article 2286.
https://doi.org/10.3390/ijms21072286
[35] Kumagai, S., Togashi, Y., Kamada, T., et al. (2020) The PD-1 Expression Balance between Effector and Regulatory T Cells Predicts the Clinical Efficacy of PD-1 Blockade Therapies. Nature Immunology, 21, 1346-1358.
https://doi.org/10.1038/s41590-020-0769-3
[36] Jia, X., Yan, B., Tian, X., et al. (2021) CD47/SIRPα Pathway Mediates Cancer Immune Escape and Immunotherapy. International Journal of Biological Sciences, 17, 3281-3287.
https://doi.org/10.7150/ijbs.60782
[37] Willingham, S.B., Volkmer, J.P., Gentles, A.J., et al. (2012) The CD47-Signal Regulatory Protein Alpha (SIRPa) Interaction is a Therapeutic Target for Human Solid Tumors. Proceedings of the National Academy of Sciences of the United States of America, 109, 6662-6667.
https://doi.org/10.1073/pnas.1121623109
[38] Wu, Q., You, L., Nepovimova, E., et al. (2022) Hypoxia-Inducible Factors: Master Regulators of Hypoxic Tumor Immune Escape. Journal of Hematology & Oncology, 15, Article No. 77.
https://doi.org/10.1186/s13045-022-01292-6
[39] Vito, A., El-Sayes, N. and Mossman, K. (2020) Hypoxia-Driven Immune Escape in the Tumor Microenvironment. Cells, 9, Article 992.
https://doi.org/10.3390/cells9040992
[40] Liikanen, I., Lauhan, C., Quon, S., et al. (2021) Hypoxia-Inducible Factor Activity Promotes Antitumor Effector Function and Tissue Residency by CD8+ T Cells. Journal of Clinical Investigation, 131, e143729.
[41] Zhang, H., Lu, H., Xiang, L., et al. (2015) HIF-1 Regulates CD47 Expression in Breast Cancer Cells to Promote Evasion of Phagocytosis and Maintenance of Cancer Stem Cells. Proceedings of the National Academy of Sciences of the United States of America, 112, E6215-E6223.
https://doi.org/10.1073/pnas.1520032112
[42] Bao, X., Zhang, J., Huang, G., et al. (2021) The Crosstalk between HIFs and Mitochondrial Dysfunctions in Cancer Development. Cell Death & Disease, 12, Article No. 215.
https://doi.org/10.1038/s41419-021-03505-1
[43] Wang, D., Yang, L., Yu, W., et al. (2019) Colorectal Cancer Cell-Derived CCL20 Recruits Regulatory T Cells to Promote Chemoresistance via FOXO1/CEBPB/NF-κB Signaling. Journal for ImmunoTherapy of Cancer, 7, Article 215.
https://doi.org/10.1186/s40425-019-0701-2