COVID-19胃肠道症状机制的研究进展
Research Progress on the Mechanism of COVID-19 Gastrointestinal Symptoms
DOI: 10.12677/acm.2024.1461844, PDF, HTML, XML, 下载: 11  浏览: 22 
作者: 白延雪:青海大学附属医院呼吸内科,青海 西宁
关键词: COVID-19SARS-CoV-2肠道菌群肠肺轴免疫系统ACE2COVID-19 SARS-CoV-2 Intestinal Flora Intestinal-Lung Axis Immune System ACE2
摘要: COVID-19自2020年初大流行至今,已然成为长新冠现象,与人类长期存在,目前全球依旧散发。COVID-19常常可累及多个系统,呼吸系统最常见的就是发热、咳嗽等不适,许多患者也经常出现消化道症状,例如腹泻、恶心、呕吐等。目前大量的证据可证实COVID-19已发生多次变异,虽然COVID-19感染的患者症状越来越轻,但探究其致病机制及与呼吸系统的关系仍具有重要意义。COVID-19的治疗应根据患者的年龄、合并症和可用的治疗方案进行个体化治疗,用来预防和治疗并发症和后遗症的出现。本文就COVID-19引起消化道症状的机制及益生菌作为辅助治疗的潜在机制进行论述。
Abstract: COVID-19 has been a pandemic since the early 2020’s and has become a long new crown phenomenon, persisting in humans and still circulating globally. COVID-19 often involves multiple systems, with the respiratory system most commonly affected by fever and coughing, and many patients often present with gastrointestinal symptoms, such as diarrhoea, nausea, and vomiting. A large body of evidence confirms that COVID-19 has undergone multiple mutations, and although patients with COVID-19 infections are becoming less symptomatic, it is still important to investigate its pathogenesis and relationship with the respiratory system. The treatment of COVID-19 should be individualised according to the age of the patient, comorbidities, and available therapeutic regimens, and should be used to prevent and treat the emergence of complications and sequelae. This article discusses the mechanisms by which COVID-19 causes GI symptoms and the potential mechanisms by which probiotics can be used as adjunctive therapy.
文章引用:白延雪. COVID-19胃肠道症状机制的研究进展[J]. 临床医学进展, 2024, 14(6): 794-802. https://doi.org/10.12677/acm.2024.1461844

1. 引言

2019年的COVID-19与2002年的SARS-CoV和2012年MERS-CoV引起的疾病大流行并列成为三大严重的冠状病毒疫情[1]。而COVID-19是由SARS-CoV-2引起的呼吸系统疾病,主要通过呼吸道在人与人之间传播,大多数患者表现出典型的呼吸道症状。事实上,COVID-19可累及多个肺外器官,COVID-19患者中持续胃肠道症状的报告日益增多,甚至有些患者在感染后长达六个月内可能经历胃灼热、便秘、腹泻和腹痛[2]。目前认为,这些症状可能与病毒在肠道内的复制有关,尽管COVID胃肠道症状的确切原因尚未明确,潜在的原因可能包括SARS-CoV-2病毒对胃肠道的直接影响,以及伴随的肠道微生物组变化、肠道黏膜屏障损伤和严重的全身性炎症反应。正确认识COVID-19与胃肠道的关系具有积极的意义,在管理COVID-19患者时,应密切监测他们的胃肠道症状。

2. COVID-19在胃肠道中的症状

越来越多的证据表明,胃肠道(GIT),包括胃、小肠、大肠、肝脏和胰腺,也可能受到SARS-CoV-2的影响。美国确诊的首例COVID-19感染病例表现为恶心和呕吐症状,随后出现腹部不适和腹泻[3]。一项研究纳入了25,210例患者,其胃肠道特征包括厌食(26.1%)、腹泻(13.5%)、呕吐(6.0%)和恶心(7.5%),发病率为18.6% [4]。其他消化系统症状,如胃肠道穿孔、上消化道出血、味觉和食欲丧失,也见于部分病例[5]-[7],约10%的感染患者实际上仅表现为胃肠道表现,无呼吸道症状[8]。除了非特异性胃肠道症状外,COVID-19在疾病进展过程中主要导致多种胃肠道相关并发症,包括消化和吸收功能障碍、胃肠道动力障碍、急性肠缺血、胃肠道出血、艰难梭菌(C. difficile)感染和胰腺损伤。COVID-19中的其他胃肠道并发症,如肠梗阻或穿孔,很少见报道[9]。胃肠道症状具有一定的家族性聚集性[10]。孟加拉国的一项研究表明,如果患者有胃肠道症状,他们的家庭成员感染风险增加,更有可能出现胃肠道症状[10]。胃肠道症状的特征比呼吸道症状更隐匿,因此很容易被忽视。感染SARS-CoV-2时出现没有呼吸道特征的胃肠道症状。这些患者更有可能延迟诊断,从而给自己和与他们接触的个人带来潜在的问题。并且有大量研究表明SARS-CoV-2可以通过粪便传播,因此有胃肠道症状的COVID-19患者的临床特征和潜在机制分析对于防止疾病传播具有重要意义。

3. COVID-19导致胃肠道症状的机制

COVID-19是由SARS-CoV-2引起的呼吸系统疾病,SARS-CoV-2引起新冠患者胃肠道症状的机制可能与ACE2进入细胞直接诱导的细胞病变效应,肠道黏膜屏障损伤以及炎症因子的产生息息相关。

3.1. ACE2与SARS-CoV-2的相互作用

肾素–血管紧张素–醛固酮系统(renin-angiotensin-aldosterone system, RAAS)在控制血压和维持电解质平衡方面起着重要作用[11],而肾脏分泌的肾素可以将肝脏产生和分泌的血管紧张素原转化为血管紧张素I (AngI)。血管紧张素转换酶(ACE)将AngI转化为血管紧张素II (AngII) [12]。血管紧张素II具有血管收缩、钠重吸收和肾脏钾排泄、醛固酮合成、血压升高和促炎途径的诱导的作用。ACE2可以将AngII转化为Ang (1~9),随后在ACE的作用下形成Ang (1~7)。ACE2被认为是ACE的同源物,但它们在体内具有相反的作用。ACE2参与的通路被认为是抗炎和抗纤维化的,而ACE参与的通路是促炎和促纤维化的,可以说,ACE2具有抗炎和发挥抗重塑作用[13]。血管紧张素转换酶2 (ACE2)是SARS-CoV-2的受体。ACE2在人肺和肠上皮细胞中表达,其在肠道中的表达是其他组织的4倍以上。此外,ACE2在近端和远端小肠细胞中高表达[14]。已有研究证明,SARS-CoV-2进入上皮细胞是通过病毒刺突(S)蛋白与细胞上表达的ACE2受体的结合介导的。S蛋白具有S1和S2功能亚基。S1促进病毒附着在靶细胞表面,S2允许病毒和细胞膜融合。S蛋白由丝氨酸蛋白酶TMPRSS2启动,丝氨酸蛋白酶对SARS-CoV-2进入细胞至关重要。TMPRSS2在S1/S2和S2位点切割S蛋白[15],最终导致ACE2下调。ACE2缺失会导致ANGII积累[16]。尽管ACE2降低会导致小鼠结肠中ANGII水平升高,但ACE2主要不是通过肠道中的RAS系统发挥其功能,而是直接调节肠道氨基酸的稳态、抗菌肽的表达和肠道微生物组的生态[17]。因此,我们推测SARS-CoV-2与胃肠道中ACE2的结合会降低可用受体的水平,影响色氨酸的吸收,并最终破坏肠道菌群的稳定状态,这是腹泻等胃肠道症状的原因之一。通过表面等离子体共振,Daniel等人[18]也发现ACE2与SARS-CoV-2外域的结合亲和力比SARS-CoV高10~20倍。据报道,COVID-19患者血管紧张素II (ANGII)水平的积累显着增加,并且升高程度与疾病的严重程度有关。这可能是因为SARS-CoV-2附着在ACE2上触发ACE2病毒复合物内化到靶细胞中,导致其下调相关。然后将SARS-CoV-2RNA释放到细胞质中,并开始病毒复制,引起一系列的胃肠道症状。

3.2. SARS-CoV-2与肠道屏障功能损伤

Giron等人[19]证明,严重的COVID-19与血浆中较高的连蛋白水平相关,表明紧密连接稳态严重破坏,以及脂多糖(LPS)结合蛋白(LBP)和β葡聚糖水平升高,它们分别是细菌和真菌易位的可靠标志物。重要的是,紧密连接通透性和微生物易位的血清标志物与循环促炎介质(如IL-6)显著相关,表明全身炎症在一定程度上是由肠道屏障破坏引发的。此外,在283名因COVID-19住院的患者的尿液中测量了肠道脂肪酸结合蛋白(I-FABP),这是一种由负责脂肪酸周转的成熟肠细胞合成的蛋白质,用作肠道损伤的生物标志物[20] [21]。SARS-CoV-2主要通过ACE2受体进入靶细胞,从而通过改变TJ相关蛋白的表达和功能对肠道造成原发性损伤,导致细胞旁屏障功能的破坏[22]-[25]。研究还表明,ZO-1与以下因素相互作用:1) Occludin、claudins和JAM;2) 细胞内TJ斑块的分子成分,如ZO-2、ZO-3和扣带蛋白;3) 肌动蛋白细胞骨架[26]。因此,ZO-1在细胞旁屏障的结构和功能完整性中起着关键作用[27]。此外,细胞骨架和屏障生物标志物KRT19和ZO1分别富集在COVID-19患者的粪便和血液样本中,表明肠道旁细胞通透性和损伤增加[27]-[29]。此外,COVID-19患者肠上皮细胞的凋亡是影响胃肠道机械屏障完整性的另一个重要因素。Lehmann等[26]的一项研究表明,通过使用免疫组化检测裂解的半胱天冬酶-3,COVID-19患者的凋亡上皮细胞数量显着增加。他们还检查了上皮细胞的组织形态学变化,发现COVID-19患者小肠中上皮细胞的凋亡和随后的再生增殖[26]

3.3. SARS-CoV-2与免疫系统

宿主能够在病毒感染时产生免疫反应,并控制这些病原体在体内的传播。然而,一些病毒株能够逃避免疫攻击并在体内增殖,并引起严重的炎症反应。例如:流感病毒、水疱性口炎病毒等[30]。更重要的是,在易感个体中,病毒会引起强烈的全身炎症反应,称为“细胞因子风暴”,导致严重的病理后果[31]。He等人[32]对死于SARS-CoV的患者进行了尸检。病理结果显示,在表达ACE2的细胞中,单核细胞趋化因子-1 (MCP-1)、肿瘤生长因子-β1 (TGF-β1)、肿瘤坏死因子-α (TNF-α)、白细胞介素(IL)-1β和IL-6等促炎细胞因子(PIC)表达高,而不表达ACE2的细胞中未发生PIC表达。大量的PIC会引起细胞因子风暴,进而导致多器官损伤。

干扰素(IFN)是细胞因子的一个子集,对应于对病毒感染的先天免疫反应的核心部分[33],SARS-CoV-2能够通过破坏干扰素信号传导来逃避先天免疫反应。SARS-CoV-2膜蛋白介导的,该膜蛋白抑制负责磷酸化和随后激活IFN调节因子(IRF) 3的多蛋白复合体的形成[34]。IRF3激活是IFN转录和合成的先决条件。SARS-CoV-2辅助蛋白ORF9b是阻断IRF3激活通路的另一种分子[35]。ORF9b还通过与IFN基因刺激因子(STING)相互作用来抑制IFN基因表达;STING可以募集TANK结合激酶1 (TBK1),TBK1是IRF3磷酸化因子之一[35]。此外,ORF9b靶向线粒体外膜70 (TOMM70)的转位酶,该转位酶位于线粒体膜上,可作为线粒体抗病毒信号蛋白(MAVS)的受体发挥作用。MAVS还参与IRF3磷酸化途径。因此,ORF9b通过干扰TOMM70和MAVS之间的相互作用来下调I型IFN的产生[36] [37]。然而,TOMM70的过表达可以克服ORF9b介导的抑制并恢复IFN-β表达[36],干扰素反应失调会导致SARS-CoV-2侵入肠道细胞导致I型和III型IFN和其他促炎细胞因子(如IL-8和IL-12)的表达增加[38] [39]。所有类型的IFN都可以激活JAK/STAT通路。I型IFN可由多种细胞类型分泌,尤其是浆细胞样DC。SARS-CoV-2已开发出多种策略,通过减弱I型和III型IFN反应来逃避免疫监视[34]

T细胞可以通过控制过度的先天免疫反应来拯救器官免受严重损害。COVID-19患者T细胞的减少可能是因为SARS-CoV-2蛋白的C末端胞质结构域中存在BH3样区域,这可以促进病毒蛋白与T细胞中的Bcl-xL结合并诱导T细胞凋亡[40]。最近的一项研究指出,SARS-CoV-2诱导巨噬细胞和肥大细胞(MC)产生IL-1,从而诱导基因表达并激活其他促炎细胞因子。由于IL-1是有毒的,由无处不在的MC和SARS-CoV-2激活的巨噬细胞产生的IL-1也会导致胃肠道疾病。此外,IL-1还促进一氧化氮的释放和炎性花生四烯酸产物(如前列腺素和血栓素A2)的释放[41]。所有这些影响都会促进细胞因子风暴的产生和发展,并导致继发性肠道损伤。

3.4. SARS-CoV-2与肠肺轴

肠肺轴是指肠道和肺之间错综复杂的相互作用,由各种免疫、神经和微生物介质调节。肠道微生物组已成为肠肺轴的关键调节因子。特定微生物及其代谢物对肺免疫应答和炎症有深远影响[42],肠肺轴似乎与COVID-19的发病机制有关,临床观察表明,出现胃肠道症状的COVID-19患者更可能出现严重的呼吸道表现,包括急性呼吸窘迫综合征、肝损伤和休克[43] [44]一项研究发现,有胃肠道症状的COVID-19患者的粪便中并不总是检测到SARS-CoV-2,因此我们推测某些患者的胃肠道症状可能不是由病毒感染造成的直接损害引起的。进入肠粘膜的效应CD4+ T细胞是粘膜免疫和慢性肠炎的关键。C-C趋化因子受体9型(CCR9)是CD4+ T细胞进入小肠的必需趋化因子受体[45]。Jian Wang等[45]发现病毒感染后肺源性CCR9 CD4+ T细胞增加。小肠上皮可表达CCL25 [46],促进CCR9 CD4+ T细胞募集到小肠[47],导致肠道免疫损伤并破坏肠道菌群的稳态。肠道菌群的紊乱会促进小肠中Th17细胞的极化,过多的IL-17A产生会导致中性粒细胞的募集[48],引起肠道免疫损伤、腹泻等胃肠道症状。

3.5. SARS-CoV-2与肠道微生物

人类微生物群由每个人携带的10~100万亿个共生微生物细胞组成,主要是细菌[49] [50]。肠道包含大约1014常驻细菌,统称为肠道微生物群。肠道菌群具有多种影响宿主新陈代谢的生化和生理功能[51],而且肠道微生物群组成及其产物对免疫系统和炎症过程有积极影响。肠道菌群不仅能够诱导抗炎反应,而且还能维持促炎和抗炎反应之间的平衡,以调节对病原体的免疫反应。因此,免疫系统和肠道微生物群之间存在协同作用,有助于预防和充分管理可能影响宿主健康的不同感染。同样,肠道微生物群衍生的代谢物也能够通过抑制病毒复制和通过增加上皮耐力和调节性T细胞产生来改善免疫反应,从而与肠道微生物群的免疫调节和抗病毒作用协同作用[52] [53]。COVID-19有可能改变患者肠道微生物群的组成,其特征是具有益生菌作用的细菌丰度降低。有趣的是,这些细菌的某些菌株产生的代谢物可以靶向其他冠状病毒的S蛋白,从而防止其传播和有害影响。同时,肠道菌群失调的存在会加剧炎症和氧化应激,造成恶性循环,使疾病永久化。病毒分子释放的干扰素可消耗专性厌氧菌双歧杆菌、乳酸杆菌和真杆菌,并促进致病菌棒状杆菌和钌杆菌[54] [55]。一项对15名患者粪便样本进行测序的初步研究表明,COVID-19感染显着改变了粪便微生物组,其特征是有益共生体减少和机会性病原体富集[56],SARS-CoV-2与肠道中ACE2受体的结合减少了可用游离受体的数量并破坏了色氨酸的吸收,导致肠道微生物群吸收不良和生态失调。在SARS-CoV-2感染患者中,瘤胃球菌与炎症标志物呈最高的正相关,其次是与COVID-19严重程度相关的Clostridium hathewayiClostridium ramosumCoprobacillus sp.的丰度;此外,观察到与抗炎细菌Faecalibacterium prausnitzii的丰度呈负相关[57],肠道中含有能够发酵氨基酸的细菌,包括精氨酸[58],肠道微生物群组成的这些改变可导致L-精氨酸发酵细菌的丰度增加,从而导致游离L-精氨酸水平进一步降低。通过增加髓源性抑制细胞数量、阻碍局部T细胞功能和增加ROS生成,肠道中的L-精氨酸耗竭可放大肠道炎症[59],肠道菌群的改变可以促进SARS-CoV-2的生长并触发炎性细胞因子的产生,从而引起“细胞因子风暴”,从而损害组织,引发感染性休克,并导致多器官衰竭[60]

4. 益生菌的辅助治疗作用

COVID-19感染可以导致肠道微生物群改变,相关研究表明益生菌在减少胃肠道症状的持续时间和严重程度方面显示出功效,同时可以显著加速病毒灭亡和症状缓解。

双歧杆菌是革兰氏阳性厌氧菌的一个属,常见于人类肠道微生物组中。这些细菌以其免疫调节特性而闻名,并已被证明对人类健康有益[61]。双歧杆菌可刺激免疫系统,其给药已被证明可促进促炎细胞因子的产生,例如干扰素-γ (IFN-γ)、肿瘤坏死因子-α (TNF-α)、白细胞介素-2 (IL-2)、白细胞介素-12 (IL-12)和白细胞介素-18 (IL-18),在小鼠模型中病毒感染之前,表明对病毒感染具有保护作用。这可能是避免SARS-CoV-2感染后宿主反应失衡以控制病毒的原因。此外,脾脏和肺部自然杀伤细胞(natural killer cell, NK)活性的增加与小鼠模型中病毒复制的减少有关[62] [63]。炎症是COVID-19的标志,过度炎症会对肺部和其他器官造成重大损害。双歧杆菌已被证明可以通过调节促炎细胞因子的产生和降低IL-6和TNF-α水平来减少炎症[62]-[64]。双歧杆菌通过分泌抗菌物质或竞争肠道中常见的粘附位点,与大肠杆菌和鼠伤寒沙门氏菌等致病菌竞争[65]。通过这种方式,双歧杆菌表现出的竞争能力可以避免其他病原体的安装,并可能有助于预防与COVID-19严重程度相关的肠道菌群失调。双歧杆菌已被证明可以降低肠道通透性[66],并促进肠道细胞中粘蛋白的产生和紧密连接蛋白的表达,这对维持肠道屏障至关重要。

乳酸杆菌可产生多种代谢物,如短链脂肪酸,这些代谢物可以调节免疫反应并促进抗炎作用[67]。这些短链脂肪酸可以影响免疫细胞功能、细胞因子的产生和呼吸道屏障的完整性。此外,某些乳酸杆菌菌株已显示出产生抗病毒化合物的能力,如细菌素和胞外多糖[68]。乳酸杆菌还可以产生抗菌肽和抑制病毒进入和复制的物质;与致病病毒竞争结合位点,限制病毒的附着和进入,一些菌株还可产生细菌素和胞外多糖,抑制病毒复制;某些乳酸杆菌菌株与肠细胞受体结合,刺激MUC-2和MUC-3的上调,抑制细菌易位和病原体粘附;乳酸杆菌释放抑制ACE的肽,可能阻止病毒进入;刺激自然杀伤(NK)细胞;与Toll样受体4 (TLR4)结合,影响免疫反应;各种乳酸杆菌菌株可增强抗病毒细胞因子(IL-12、IFN-γ),同时减少炎症因子IL-4、IL-6、TNF-α;乳酸杆菌可减轻TNF-α诱导的IL-8的产生[69]

5. 结论与展望

SARS-CoV-2可以通过多种机制引起肠道菌群失调,进而导致胃肠道症状。这些机制包括通过肠肺轴传播、与ACE2受体结合对肠道造成直接损害,以及引发细胞因子风暴。众所周知,老年患者或患有糖尿病、高血压、哮喘和癌症的人群,其肠道微生物群多样性通常较低,这使得他们在感染COVID-19时发病率和死亡率较健康人群更高。因此,对于这些具有基础疾病的人来说,早期及时采取干预措施显得尤为重要。老年人和慢性病患者可能会从改善肠道微生物群中显著受益。肠道微生物群可以通过摄入益生菌、益生元和合生元等措施来优化。通过这些方法改善肠道微生物群的组成,不仅能够预防严重COVID-19病情,还可能为治疗策略提供新的方向。在高风险和重症患者,以及一线卫生工作者中补充益生菌,可能有助于限制COVID-19的感染。尽管如此,目前尚无随机对照试验提供确凿的证据来支持这一做法。然而,间接证据确实支持了补充益生菌可以降低COVID-19病情严重程度(包括死亡率)的假设。全球范围内,许多临床试验正在进行中,旨在描述益生菌在预防和治疗COVID-19方面的潜在作用。

参考文献

[1] Wang, C., Horby, P.W., Hayden, F.G. and Gao, G.F. (2020) A Novel Coronavirus Outbreak of Global Health Concern. Lancet, 395, 470-473.
[2] Chen, F., Dai, Z., Huang, C., Chen, H., Wang, X. and Li, X. (2021) Gastrointestinal Disease and COVID-19: A Review of Current Evidence. Digestive Diseases, 40, 506-514.
https://doi.org/10.1159/000519412
[3] Holshue, M.L., DeBolt, C., Lindquist, S., et al. (2020) First Case of 2019 Novel Coronavirus in the United States. The New England Journal of Medicine, 382, 929-936.
[4] Zhao, Y.C.Y., Wang, S.C.K. and Xu, K. (2020) COVID-19 and Gastrointestinal Symptoms. British Journal of Surgery, 107, e382-e383.
[5] De Nardi, P., Parolini, D.C., Ripa, M., Racca, S. and Rosati, R. (2020) Bowel Perforation in a Covid-19 Patient: Case Report. International Journal of Colorectal Disease, 35, 1797-1800.
https://doi.org/10.1007/s00384-020-03627-6
[6] Pérez Roldán, F., Malik Javed, Z., Yagüe Compadre, J.L., Navarro López, M.d.C., Rodríguez Bobada-Caraballo, D., Fernández Visier, I., et al. (2021) Gastric Ulcers with Upper Gastrointestinal Bleeding in Patients with Severe Sars-cov-2. Revista Española de Enfermedades Digestivas, 113, 122-124.
https://doi.org/10.17235/reed.2021.7759/2020
[7] Ferm, S., Fisher, C., Pakala, T., et al. (2020) Analysis of Gastrointestinal and Hepatic Manifestations of SARS-CoV-2 Infection in 892 Patients in Queens, NY. Clinical Gastroenterology and Hepatology, 18, 2378-2379.e1.
[8] Mao, R., Qiu, Y., He, J., Tan, J., Li, X., Liang, J., et al. (2020) Manifestations and Prognosis of Gastrointestinal and Liver Involvement in Patients with COVID-19: A Systematic Review and Meta-Analysis. The Lancet Gastroenterology & Hepatology, 5, 667-678.
https://doi.org/10.1016/s2468-1253(20)30126-6
[9] Zhang, M.M., Chen, L.N. and Qian, J.M. (2021) Gastrointestinal Manifestations and Possible Mechanisms of COVID-19 in Different Periods. Journal of Digestive Diseases, 22, 683-694.
https://doi.org/10.1111/1751-2980.13065
[10] Khalil, M.M., Gain, G., Mahbub-Uz-Zaman, K., et al. (2020) Gastrointestinal Manifestations among COVID-19 Patients in Bangladesh: A Cross Sectional Study. Mymensingh Medical Journal, 29, 956-963.
[11] Muñoz-Durango, N., Fuentes, C., Castillo, A., González-Gómez, L., Vecchiola, A., Fardella, C., et al. (2016) Role of the Renin-Angiotensin-Aldosterone System beyond Blood Pressure Regulation: Molecular and Cellular Mechanisms Involved in End-Organ Damage during Arterial Hypertension. International Journal of Molecular Sciences, 17, Article 797.
https://doi.org/10.3390/ijms17070797
[12] Voors, A.A., Pinto, Y.M., Buikema, H., Urata, H., Oosterga, M., Rooks, G., et al. (1998) Dual Pathway for Angiotensin II Formation in Human Internal Mammary Arteries. British Journal of Pharmacology, 125, 1028-1032.
https://doi.org/10.1038/sj.bjp.0702150
[13] Meng, Y., Yu, C., Li, W., Li, T., Luo, W., Huang, S., et al. (2014) Angiotensin-Converting Enzyme 2/Angiotensin-(1-7)/Mas Axis Protects against Lung Fibrosis by Inhibiting the Mapk/nf-Κb Pathway. American Journal of Respiratory Cell and Molecular Biology, 50, 723-736.
https://doi.org/10.1165/rcmb.2012-0451oc
[14] Zhang, H., Shao, B., Dang, Q., et al. (2021) Pathogenesis and Mechanism of Gastrointestinal Infection with COVID-19. Frontiers in Immunology, 12, Article 674074.
[15] Hoffmann, M., Kleine-Weber, H., Schroeder, S., et al. (2020) SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181, 271-280.e8.
[16] Imai, Y., Kuba, K., Rao, S., Huan, Y., Guo, F., Guan, B., et al. (2005) Angiotensin-Converting Enzyme 2 Protects from Severe Acute Lung Failure. Nature, 436, 112-116.
https://doi.org/10.1038/nature03712
[17] Hashimoto, T., Perlot, T., Rehman, A., Trichereau, J., Ishiguro, H., Paolino, M., et al. (2012) ACE2 Links Amino Acid Malnutrition to Microbial Ecology and Intestinal Inflammation. Nature, 487, 477-481.
https://doi.org/10.1038/nature11228
[18] Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, C., Abiona, O., et al. (2020) Cryo-EM Structure of the 2019-Ncov Spike in the Prefusion Conformation. Science, 367, 1260-1263.
https://doi.org/10.1126/science.abb2507
[19] Giron, L.B., Dweep, H., Yin, X., et al. (2021) Plasma Markers of Disrupted Gut Permeability in Severe COVID-19 Patients. Frontiers in Immunology, 12, Article 686240.
[20] Saia, R.S., Giusti, H., Luis-Silva, F., et al. (2021) Clinical Investigation of Intestinal Fatty Acid-Binding Protein (I-FABP) as a Biomarker of SARS-CoV-2 Infection. International Journal of Infectious Disease, 113, 82-86.
[21] Pelsers, M.M., Namiot, Z., Kisielewski, W., et al. (2003) Intestinal-Type and Liver-Type Fatty Acid-Binding Protein in the Intestine. Tissue Distribution and Clinical Utility. Clinical Biochemistry, 36, 529-535.
[22] Zhou, P., Yang, X., Wang, X., Hu, B., Zhang, L., Zhang, W., et al. (2020) A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature, 579, 270-273.
https://doi.org/10.1038/s41586-020-2012-7
[23] Wan, Y., Shang, J., Graham, R., et al. (2020) Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. Journal of Virology, 94, e00127-e00120.
[24] Chen, L., Li, L., Han, Y., Lv, B., Zou, S. and Yu, Q. (2020) Tong-fu-li-fei Decoction Exerts a Protective Effect on Intestinal Barrier of Sepsis in Rats through Upregulating Zo-1/Occludin/Claudin-1 Expression. Journal of Pharmacological Sciences, 143, 89-96.
https://doi.org/10.1016/j.jphs.2020.02.009
[25] Fernandez-Blanco, J.A., Estevez, J., Shea-Donohue, T., Martinez, V. and Vergara, P. (2015) Changes in Epithelial Barrier Function in Response to Parasitic Infection: Implications for IBD Pathogenesis. Journal of Crohns and Colitis, 9, 463-476.
https://doi.org/10.1093/ecco-jcc/jjv056
[26] Lehmann, M., Allers, K., Heldt, C., Meinhardt, J., Schmidt, F., Rodriguez-Sillke, Y., et al. (2021) Human Small Intestinal Infection by Sars-Cov-2 Is Characterized by a Mucosal Infiltration with Activated CD8+ T Cells. Mucosal Immunology, 14, 1381-1392.
https://doi.org/10.1038/s41385-021-00437-z
[27] Assimakopoulos, S.F. (2011) Enterocytes’ Tight Junctions: From Molecules to Diseases. World Journal of Gastrointestinal Pathophysiology, 2, 123-137.
https://doi.org/10.4291/wjgp.v2.i6.123
[28] Sun, Z., Song, Z., Liu, C., Tan, S., Lin, S., Zhu, J., et al. (2022) Gut Microbiome Alterations and Gut Barrier Dysfunction Are Associated with Host Immune Homeostasis in COVID-19 Patients. BMC Medicine, 20, Article No. 24.
https://doi.org/10.1186/s12916-021-02212-0
[29] Assimakopoulos, S.F., Mastronikolis, S., DE Lastic, A., Aretha, D., Papageorgiou, D., Chalkidi, T., et al. (2021) Intestinal Barrier Biomarker ZO1 and Endotoxin Are Increased in Blood of Patients with Covid-19-Associated Pneumonia. In Vivo, 35, 2483-2488.
https://doi.org/10.21873/invivo.12528
[30] Guo, J., Zhu, Y., Ma, X., Shang, G., Liu, B. and Zhang, K. (2023) Virus Infection and Mrna Nuclear Export. International Journal of Molecular Sciences, 24, Article 12593.
https://doi.org/10.3390/ijms241612593
[31] Chang, F., Chen, H., Chen, P., Ho, M., Hsieh, S., Lin, J., et al. (2020) Immunologic Aspects of Characteristics, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19). Journal of Biomedical Science, 27, Article No. 72.
https://doi.org/10.1186/s12929-020-00663-w
[32] He, L., Ding, Y., Zhang, Q., Che, X., He, Y., Shen, H., et al. (2006) Expression of Elevated Levels of Pro-inflammatory Cytokines in SARs-CoV-Infected Ace2+ Cells in SARS Patients: Relation to the Acute Lung Injury and Pathogenesis of SARS. The Journal of Pathology, 210, 288-297.
https://doi.org/10.1002/path.2067
[33] Versteeg, G.A. and García-Sastre, A. (2010) Viral Tricks to Grid-Lock the Type I Interferon System. Current Opinion in Microbiology, 13, 508-516.
https://doi.org/10.1016/j.mib.2010.05.009
[34] Zheng, Y., Zhuang, M., Han, L., Zhang, J., Nan, M., Zhan, P., et al. (2020) Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) Membrane (M) Protein Inhibits Type I and III Interferon Production by Targeting RIG-I/MDA-5 Signaling. Signal Transduction and Targeted Therapy, 5, Article No. 299.
https://doi.org/10.1038/s41392-020-00438-7
[35] Han, L., Zhuang, M., Deng, J., Zheng, Y., Zhang, J., Nan, M., et al. (2021) SARs-CoV-2 Orf9b Antagonizes Type I and III Interferons by Targeting Multiple Components of the RIG-I/MDA-5-MAVS, TLR3-TRIF, and cGAS-STING Signaling Pathways. Journal of Medical Virology, 93, 5376-5389.
https://doi.org/10.1002/jmv.27050
[36] Jiang, H., Zhang, H., Meng, Q., Xie, J., Li, Y., Chen, H., et al. (2020) SARs-CoV-2 Orf9b Suppresses Type I Interferon Responses by Targeting Tom70. Cellular & Molecular Immunology, 17, 998-1000.
https://doi.org/10.1038/s41423-020-0514-8
[37] Kreimendahl, S. and Rassow, J. (2020) The Mitochondrial Outer Membrane Protein Tom70-Mediator in Protein Traffic, Membrane Contact Sites and Innate Immunity. International Journal of Molecular Sciences, 21, Article 7262.
https://doi.org/10.3390/ijms21197262
[38] Chu, H., Chan, J.F., Wang, Y., Yuen, T.T., Chai, Y., Shuai, H., et al. (2021) SARs-CoV-2 Induces a More Robust Innate Immune Response and Replicates Less Efficiently than SARs-CoV in the Human Intestines: An ex Vivo Study with Implications on Pathogenesis of Covid-19. Cellular and Molecular Gastroenterology and Hepatology, 11, 771-781.
https://doi.org/10.1016/j.jcmgh.2020.09.017
[39] Lamers, M.M., Beumer, J., van der Vaart, J., Knoops, K., Puschhof, J., Breugem, T.I., et al. (2020) SARs-CoV-2 Productively Infects Human Gut Enterocytes. Science, 369, 50-54.
https://doi.org/10.1126/science.abc1669
[40] Yang, Y., Xiong, Z., Zhang, S., et al. (2005) Bcl-xl Inhibits T-Cell Apoptosis Induced by Expression of SARS Coronavirus E Protein in the Absence of Growth Factors. Biochemical Journal, 392, 135-143.
[41] Conti, P., Caraffa, A., Gallenga, C.E., et al. (2020) Coronavirus-19 (SARS-CoV-2) Induces Acute Severe Lung Inflammation via IL-1 Causing Cytokine Storm in COVID-19: A Promising Inhibitory Strategy. Journal of Biological Regulators and Homeostatic Agents, 34, 1971-1975.
[42] Baindara, P., Chakraborty, R., Holliday, Z.M., et al. (2021) Oral Probiotics in Coronavirus Disease 2019: Connecting the Gut-Lung Axis to Viral Pathogenesis, Inflammation, Secondary Infection and Clinical Trials. New Microbes and New Infections, 40, Article ID: 100837.
[43] Jin, X., Lian, J., Hu, J., Gao, J., Zheng, L., Zhang, Y., et al. (2020) Epidemiological, Clinical and Virological Characteristics of 74 Cases of Coronavirus-Infected Disease 2019 (COVID-19) with Gastrointestinal Symptoms. Gut, 69, 1002-1009.
https://doi.org/10.1136/gutjnl-2020-320926
[44] Luo, S., Zhang, X. and Xu, H. (2020) Don’t Overlook Digestive Symptoms in Patients with 2019 Novel Coronavirus Disease (COVID-19). Clinical Gastroenterology and Hepatology, 18, 1636-1637.
https://doi.org/10.1016/j.cgh.2020.03.043
[45] Wang, J., Li, F., Wei, H., Lian, Z., Sun, R. and Tian, Z. (2014) Respiratory Influenza Virus Infection Induces Intestinal Immune Injury via Microbiota-Mediated Th17 Cell-Dependent Inflammation. Journal of Experimental Medicine, 211, 2397-2410.
https://doi.org/10.1084/jem.20140625
[46] Papadakis, K.A., Prehn, J., Nelson, V., Cheng, L., Binder, S.W., Ponath, P.D., et al. (2000) The Role of Thymus-Expressed Chemokine and Its Receptor CCR9 on Lymphocytes in the Regional Specialization of the Mucosal Immune System. The Journal of Immunology, 165, 5069-5076.
https://doi.org/10.4049/jimmunol.165.9.5069
[47] Stenstad, H., Ericsson, A., Johansson-Lindbom, B., Svensson, M., Marsal, J., Mack, M., et al. (2006) Gut-Associated Lymphoid Tissue-Primed CD4+ T Cells Display Ccr9-Dependent and-Independent Homing to the Small Intestine. Blood, 107, 3447-3454.
https://doi.org/10.1182/blood-2005-07-2860
[48] Crowe, C.R., Chen, K., Pociask, D.A., Alcorn, J.F., Krivich, C., Enelow, R.I., et al. (2009) Critical Role of IL-17RA in Immunopathology of Influenza Infection. The Journal of Immunology, 183, 5301-5310.
https://doi.org/10.4049/jimmunol.0900995
[49] Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., et al. (2010) A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature, 464, 59-65.
https://doi.org/10.1038/nature08821
[50] Sender, R., Fuchs, S. and Milo, R. (2016) Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLOS Biology, 14, e1002533.
[51] Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., et al. (2017) Gut Microbiota Functions: Metabolism of Nutrients and Other Food Components. European Journal of Nutrition, 57, 1-24.
https://doi.org/10.1007/s00394-017-1445-8
[52] Gautier, T., David-Le Gall, S., Sweidan, A., Tamanai-Shacoori, Z., Jolivet-Gougeon, A., Loréal, O., et al. (2021) Next-Generation Probiotics and Their Metabolites in Covid-19. Microorganisms, 9, Article 941.
https://doi.org/10.3390/microorganisms9050941
[53] Hong, B.S. and Kim, M. (2021) Interplays between Human Microbiota and Micrornas in COVID-19 Pathogenesis: A Literature Review. Physical Activity and Nutrition, 25, 1-7.
https://doi.org/10.20463/pan.2021.0008
[54] Van Der Lelie, D. and Taghavi, S. (2020) COVID-19 and the Gut Microbiome: More than a Gut Feeling. mSystems, 5, e00453-20.
[55] Deriu, E., Boxx, G.M., He, X., et al. (2016) Influenza Virus Affects Intestinal Microbiota and Secondary Salmonella Infection in the Gut through Type I Interferons. PLOS Pathogens, 12, e1005572.
[56] Zuo, T., Zhang, F., Lui, G., et al. (2020) Alterations in Gut Microbiota of Patients with COVID-19 during Time of Hospitalization. Gastroenterology, 159, 944-955.e8.
[57] Villapol, S. (2020) Gastrointestinal Symptoms Associated with COVID-19: Impact on the Gut Microbiome. Translational Research, 226, 57-69.
[58] Yang, J., Zhao, X., Patel, A., Potru, R., Azizi-Ghannad, S., Dolinger, M., et al. (2015) Rapamycin Inhibition of Mtor Reduces Levels of the Na+/H+ Exchanger 3 in Intestines of Mice and Humans, Leading to Diarrhea. Gastroenterology, 149, 151-162.
https://doi.org/10.1053/j.gastro.2015.03.046
[59] Dean, M.J., Ochoa, J.B., Sanchez-Pino, M.D., et al. (2021) Severe COVID-19 Is Characterized by an Impaired Type I Interferon Response and Elevated Levels of Arginase Producing Granulocytic Myeloid Derived Suppressor Cells. Frontiers in Immunology, 12, Article 695972.
[60] Ye, Q., Wang, B., Zhang, T., et al. (2020) The Mechanism and Treatment of Gastrointestinal Symptoms in Patients with COVID-19. The American Journal of Physiology-Gastrointestinal and Liver Physiology, 319, G245-G252.
[61] Hidalgo-Cantabrana, C., Delgado, S., Ruiz, L., et al. (2017) Bifidobacteria and Their Health-Promoting Effects. Microbiology Spectrum, 5, 3.
[62] Kawahara, T., Takahashi, T., Oishi, K., Tanaka, H., Masuda, M., Takahashi, S., et al. (2015) Consecutive Oral Administration of bifidobacterium Longum MM-2 Improves the Defense System against Influenza Virus Infection by Enhancing Natural Killer Cell Activity in a Murine Model. Microbiology and Immunology, 59, 1-12.
https://doi.org/10.1111/1348-0421.12210
[63] Mahooti, M., Abdolalipour, E., Salehzadeh, A., Mohebbi, S.R., Gorji, A. and Ghaemi, A. (2019) Immunomodulatory and Prophylactic Effects of Bifidobacterium Bifidum Probiotic Strain on Influenza Infection in Mice. World Journal of Microbiology and Biotechnology, 35, Article No. 91.
https://doi.org/10.1007/s11274-019-2667-0
[64] Yao, S., Zhao, Z., Wang, W., et al. (2021) Bifidobacterium Longum: Protection against Inflammatory Bowel Disease. Journal of Immunology Research, 2021, Article ID: 8030297.
[65] Gopal, P.K., Prasad, J., Smart, J. and Gill, H.S. (2001) In Vitro Adherence Properties of Lactobacillus Rhamnosus DR20 and Bifidobacterium Lactis DR10 Strains and Their Antagonistic Activity against an Enterotoxigenic Escherichia Coli. International Journal of Food Microbiology, 67, 207-216.
https://doi.org/10.1016/s0168-1605(01)00440-8
[66] Wang, Z., Xiao, G., Yao, Y., Guo, S., Lu, K. and Sheng, Z. (2006) The Role of Bifidobacteria in Gut Barrier Function after Thermal Injury in Rats. The Journal of Trauma: Injury, Infection, and Critical Care, 61, 650-657.
https://doi.org/10.1097/01.ta.0000196574.70614.27
[67] Wells, J.M. (2011) Immunomodulatory Mechanisms of Lactobacilli. Microbial Cell Factories, 10, S17.
[68] Wang, Y., Moon, A., Huang, J., et al. (2022) Antiviral Effects and Underlying Mechanisms of Probiotics as Promising Antivirals. Frontiers in Cellular and Infection Microbiology, 12, Article 928050.
[69] Taufer, C.R. and Rampelotto, P.H. (2024) Lactobacilli in COVID-19: A Systematic Review Based on Next-Generation Sequencing Studies. Microorganisms, 12, Article 284.
https://doi.org/10.3390/microorganisms12020284