老龄化影响下NF-κB通路对骨质疏松的双向调控研究
Bidirectional Regulation of Osteoporosis by the NF-κB Pathway under the Influence of Aging
DOI: 10.12677/ar.2024.113110, PDF, HTML, XML, 下载: 12  浏览: 29 
作者: 郑苗苗:上海理工大学健康科学与工程学院,上海
关键词: 骨质疏松NF-κB通路成骨细胞破骨细胞Osteoporosis NF-κB Pathway Osteoblast Osteoclast
摘要: 随着世界人口的老龄化,骨质疏松症对健康的影响越来越大,给患者和社会造成了巨大的医疗、经济和家庭负担。该疾病以骨密度下降和骨骼微观结构退化为特征,极大地增加了老年群体骨折的危险性。核因子κB (NF-κB)信号通路在调控骨吸收与骨形成的过程中扮演了重要的角色,本文综述了NF-κB信号通路在骨质疏松症中的作用机制和调控路径,指出深入理解NF-κB通路的调节机制对于揭示骨质疏松症的发病机理、发展治疗策略和预防措施具有重要的意义。通过综合当前研究进展,本文旨在为骨质疏松症的治疗提供新的靶点和策略,促进相关疾病的预防和治疗研究。
Abstract: As the global population ages, the impact of osteoporosis on health is becoming increasingly significant, imposing substantial medical, economic, and familial burdens on patients and society. Characterized by a decline in bone density and deterioration of bone microarchitecture, this disease significantly raises the risk of fractures among the elderly. The nuclear factor κB (NF-κB) signaling pathway plays a crucial role in the regulation of bone resorption and formation. This paper reviews the mechanisms and regulatory pathways of the NF-κB signaling pathway in osteoporosis, highlighting the importance of understanding the regulatory mechanisms of the NF-κB pathway in uncovering the pathogenesis of osteoporosis, and in developing treatment strategies and preventive measures. By synthesizing current research progress, this paper aims to provide new targets and strategies for the treatment of osteoporosis, thereby advancing the research on prevention and treatment of related diseases.
文章引用:郑苗苗. 老龄化影响下NF-κB通路对骨质疏松的双向调控研究[J]. 老龄化研究, 2024, 11(3): 823-828. https://doi.org/10.12677/ar.2024.113110

1. 引言

随着全球老年人口的持续增加,骨质疏松症患病率迅速上升,目前全球估计有超过两亿人受此疾病影响[1],骨质疏松的高危人群,主要包括绝经后妇女、老年男性等[2]。骨质疏松症最严重的并发症是骨折,50岁以上的女性中有三分之一患有骨质疏松性骨折,50岁以上的男性中有五分之一患有骨质疏松性骨折[3]。该疾病的主要病理机制是骨吸收与骨生成之间的不平衡[4],通常表现为破骨细胞与成骨细胞比例的增加[5]。因为在正常情况下,成骨细胞负责的骨形成和破骨细胞负责的骨吸收在调节骨重塑过程中保持相对稳定的平衡状态[6]

鉴于NF-κB通路在调节这一平衡中起着重要作用,因此深入了解NF-κB通路对骨质疏松中成骨细胞、破骨细胞的作用和调控机制对于相关疾病的治疗和预防具有重要意义。

2. 骨质疏松

骨质疏松症是一种全球范围内普遍存在的骨退行性疾病,其特征是骨密度(BMD)显著降低和骨微观结构恶化,使个体易患骨折风险增加[7]。环境风险因素,如低钙摄入、维生素D缺乏、性腺功能减退、激素失调、衰老、既往疾病、其他疾病的处方药、久坐的生活方式等,都会影响骨质疏松的发病机制[8]。作为人体的核心支架,骨骼不仅提供了身体结构的支持和保护[9],同时还负责血细胞的产生和矿物质的储存等关键功能[10] [11]。骨组织是一个代谢活跃的系统,在个体的一生中不断经历着重塑和更新[10]。骨重塑是一个持续的动态过程,在生理条件下维持骨吸收与骨形成的动态平衡。这一平衡对于维持骨质的稳态至关重要[12]。这一稳态依赖于成骨细胞(负责骨形成)和破骨细胞(负责骨吸收)之间的功能平衡[13]。来自单核细胞/巨噬细胞造血谱系的破骨细胞可以吸收矿化基质,而来自间充质干细胞(MSCs)的成骨细胞可以诱导矿化沉积。这些细胞之间的耦合对于维持骨矿物质稳态至关重要[10]。在健康成人中,这一过程是稳定的,确保了骨骼结构的完整性和功能性。然而,随着年龄的增长,这种平衡往往会被打破[7]。导致骨吸收活动超过骨形成,进而引发骨量的减少和骨质结构的退化,最终发展成骨质疏松症[12]。在探索骨质疏松症的病理机制和治疗途径中,NF-κB信号通路的作用日益受到科学界的广泛关注。在骨质疏松症的发病过程中,NF-κB信号通路通过直接影响破骨细胞和成骨细胞的活性,调控骨重塑过程,从而在疾病的进展中发挥了重要作用[14]。该通路的异常激活可能加剧破骨细胞的形成和功能,增强其对骨组织的吸收能力,同时可能抑制成骨细胞的分化和活性,进而破坏了正常的骨重塑平衡,加速骨质疏松症的发展。因此,深入理解NF-κB信号通路在骨质疏松症中的作用机制,对于开发新的治疗策略具有重要的理论和实际意义。

3. NF-κB通路

NF-κB是一类二聚体转录因子,NF-κB家族有5个成员,是由p65 (RelA)、RelB、c- Rel、p105/p50 (NF-κB1)和p100/52 (NF-κB2)蛋白组成[15]。NF-κB有两种不同的通路,典型的和非典型的NF-κB通路,具有不同的激活机制[16]。当典型NF-κB通路被激活时,被激活的IKK复合物磷酸化IκB蛋白,导致IκB蛋白的泛素化和降解。降解的IκB蛋白释放出NF-κB,在细胞质内磷酸化的NF-κB被释放后形成激活的NF-κB二聚体。激活的NF-κB转移到细胞核,结合特定的DNA序列(κB位点),从而启动下游基因的转录[17]。在非经典NF-κB通路中,活化的IKKα亚基磷酸化p100蛋白,进而将其部分降解,形成p52。p52与RelB结合形成活化的二聚体。活化的RelB/p52易位到细胞核,并激活特定靶基因的转录[16]。NF-κB(核因子κB)通路不仅是一种在许多生理和病理过程中起重要作用的信号传导路径,包括调节免疫反应、炎症、细胞增殖、分化和生存,而且NF-κB的活性在衰老过程中增加[18]。在骨骼健康和疾病的背景下,近年来,大量研究聚焦于NF-κB途径在骨质疏松症中的作用,揭示了其对骨重塑过程的深刻影响。骨重塑是一个涉及骨形成和骨吸收活动的持续过程,健康成人中该过程保持平衡,以维持骨骼的结构完整性和功能。NF-κB途径的激活对于破骨细胞的形成和活化都非常重要,可以促进它们对骨组织的吸收。相反,NF-κB途径的异常激活可导致骨吸收过度,破坏了骨形成与骨吸收之间的平衡,加速了骨质疏松症的进程。值得注意的是,NF-κB通路在骨质疏松症的发展中不仅促进了破骨细胞的活性,也对成骨细胞的功能产生了影响。研究发现,在某些情况下,抑制NF-κB通路能够促进成骨细胞的分化和功能,增强骨形成活动。这表明NF-κB通路在调节骨重塑平衡中具有双向调节的作用,既可以通过调控破骨细胞抑制过度的骨吸收,也可以通过调控成骨细胞活性促进骨形成。因此,NF-κB通路的研究为开发针对骨质疏松症的新治疗策略提供了理论基础和潜在的治疗靶点。

4. NF-κB与破骨细胞

破骨细胞是起源于造血祖细胞的多核巨细胞,被认为是人体内唯一具有骨吸收能力的细胞类型[19]破骨细胞的生成和活性受到巨噬细胞集落刺激因子(M-CSF)和NF-κB配体受体激活因子(RANKL)的密切调控。尤其是NF-κB信号通路,在破骨细胞的分化和激活过程中起着决定性作用[20]。RANKL(破骨细胞分化因子)通过与其受体RANK相结合,能够激活典型的NF-κB通路,促进NF-κB进入细胞核,并参与NFATc1的激活[21]。NFATc1的激活促进了破骨细胞特异性基因的产生,如抗酒石酸酸性磷酸酶(TRAP)、组织蛋白酶K和基质金属蛋白酶9(MMP-9),从而推动破骨细胞的成熟并增强其骨吸收能力[22]。在探索破骨细胞调控机制的过程中,研究者们发现了多种物质能够影响这一过程。例如,传统草药五味子(Schisandra chinensis)也显示了对破骨细胞分化的调控能力。研究表明,RANKL诱导的NF-κB通路对于NFATc1和c-fos的表达及破骨细胞的早期分化至关重要[23] [24]。五味子通过抑制RANKL诱导的NFATc1和c-fos表达,减缓了破骨细胞的形成过程[25]。表明五味子可能通过NF-κB通路调控机制来阻止破骨细胞的生成。此外,阿司匹林,这种非甾体抗炎药,能有效地抑制RANKL诱发的NF-κB信号通路激活,从而干预破骨细胞的分化。阿司匹林的这一作用是通过调节RANKL与其受体RANK之间的相互作用来实现的,进而抑制了NF-κB和NFATc1的激活,有效减少了破骨细胞的形成[26]。同样值得注意的是,isoliensinine (Iso),这种具有抗氧化、抗炎和抗癌特性的生物碱,通过阻断NF-κB p65的核内转移,抑制了由RANKL引起的破骨细胞成熟、骨吸收活性以及破骨细胞相关特异性基因的表达。Iso的这些效应减轻了去卵巢小鼠模型中的骨质流失[27],展示了其在骨代谢调节中的潜在价值。甲基磺酰甲烷(MSM),一种低分子量的有机硫化合物,具有显著的抗氧化和抗炎作用,同样能够通过抑制NF-κB信号通路的激活来阻止RANKL诱导的破骨细胞生成。具体而言,MSM通过抑制IKK的磷酸化,降低了i-κB在细胞质中的降解,同时阻断了NF-κB与DNA的结合,从而抑制了NFATc1的激活从而有效减少破骨细胞的生成[28]。另外Nur77作为一种核受体,也是通过抑制NF- κB信号通路限制炎症从而阻止和破骨细胞分化来预防骨质疏松[29]。以上分析强调了NF-κB信号通路在老年人骨吸收和破骨细胞分化过程中的核心作用,揭示了针对该通路进行调控以应对老龄化带来的骨质疏松挑战的巨大潜力。

5. NF-κB与成骨细胞

在维持骨骼健康与其重塑过程中,成骨细胞发挥着至关重要的作用,主要负责新骨的生成与骨组织的修复。然而,NF-κB信号通路的异常激活会对成骨细胞的功能产生负面影响,抑制其分化和活性,导致骨重塑过程的失衡,从而加速骨质疏松症的发展[30]。近年来,通过精确调控NF-κB通路以增强成骨细胞的骨形成能力,成为了一种潜在对抗骨质疏松症的治疗策略[11] [31]。例如,有研究表明,S100A4蛋白,作为钙结合S100蛋白家族的一员,能够通过激活NF-κB通路在成骨细胞中抑制骨形成[32]。这一发现揭示了通过抑制NF-κB活性,可以有效地增强成骨细胞的分化及其骨形成能力,从而有利于骨骼健康和疾病恢复。此外,RUNX2作为成骨细胞分化过程中的关键转录因子,它激活成骨细胞特异性基因的表达,如骨钙素(Osteocalcin)和I型胶原(Type I Collagen),这些基因是成骨细胞活性和骨基质产生的标志[33]。进一步的研究还发现,NF-κB通路的调节对于炎性条件下成骨细胞功能的保护具有重要意义。例如,NF-κB抑制剂S1627能够缓解由TNF-α介导的对RUNX2的抑制,从而促进骨形成[34]。这种调控机制不仅在动物模型中表现出促进骨形成的潜力,而且为我们提供了一种通过抑制NF-κB通路来促进骨形成和防止骨质疏松的治疗策略。骨形态发生蛋白(BMPs)是另一个在促进骨形成中发挥作用的重要因素,其通过Smad信号通路激活成骨细胞分化和体内骨形成[34]。研究指出,p65的缺失可以对BMP2诱导的骨形成产生抑制作用[35],所以在特定条件下抑制NF-κB (特别是p65亚单位)可能通过促进成骨细胞分化来改善骨形成结果。随着年龄的增长,成骨细胞分化的速度会逐渐减缓,骨形成减少,导致老年人更容易发生骨质疏松[36]。因此,通过调节NF-κB通路抑制其过度激活,能够直接作用于成骨细胞的生物学过程,增强成骨细胞的分化和骨形成能力,从而根本上改善骨重塑过程的平衡,从而改善因年龄增长而骨质疏松症发展至关重要的分化与活性。

6. 结语

目前,骨质疏松症的预防主要依靠补充,如钙、维生素等[2]。这些治疗方法可以有效地防止进一步的骨质流失和骨折,但它们伴随着不良的副作用和成本问题。因此,深入了解NF-κB通路为骨质疏松症提供了新的治疗角度和潜在靶点。随着对NF-κB通路在骨重塑过程中作用的进一步研究,特别是其在老龄患者中成骨和破骨细胞平衡调控的作用,提供了针对骨质疏松症的新的治疗视角。通过精确调控NF-κB通路来减缓骨质流失和促进骨质增生的潜力,有望为老龄患者提供更为安全、有效且经济的选择,从而大幅提升他们的生活质量并减轻社会医疗负担。

参考文献

[1] Huang, M., Xu, S., Liu, L., Zhang, M., Guo, J., Yuan, Y., et al. (2021) M6a Methylation Regulates Osteoblastic Differentiation and Bone Remodeling. Frontiers in Cell and Developmental Biology, 9, Article ID: 783322.
https://doi.org/10.3389/fcell.2021.783322
[2] Zhang, C., Li, H., Li, J., Hu, J., Yang, K. and Tao, L. (2023) Oxidative Stress: A Common Pathological State in a High-Risk Population for Osteoporosis. Biomedicine & Pharmacotherapy, 163, Article ID: 114834.
https://doi.org/10.1016/j.biopha.2023.114834
[3] Yang, W., Lu, X., Zhang, T., Han, W., Li, J., He, W., et al. (2021) Taz Inhibits Osteoclastogenesis by Attenuating Tak1/nf-κb Signaling. Bone Research, 9, Article No. 33.
https://doi.org/10.1038/s41413-021-00151-3
[4] Wong, S.K., Chin, K. and Ima-Nirwana, S. (2020) Quercetin as an Agent for Protecting the Bone: A Review of the Current Evidence. International Journal of Molecular Sciences, 21, 6448.
https://doi.org/10.3390/ijms21176448
[5] 张坛, 钱宇. 原发性骨质疏松症的破骨细胞靶向治疗进展[J]. 中华骨与关节外科杂志, 2018, 11(10): 783-790.
[6] Damani, J.J., De Souza, M.J., VanEvery, H.L., Strock, N.C.A. and Rogers, C.J. (2022) The Role of Prunes in Modulating Inflammatory Pathways to Improve Bone Health in Postmenopausal Women. Advances in Nutrition, 13, 1476-1492.
https://doi.org/10.1093/advances/nmab162
[7] Wong, S.K., Chin, K. and Ima-Nirwana, S. (2019) The Osteoprotective Effects of Kaempferol: The Evidence from in Vivo and in Vitro Studies. Drug Design, Development and Therapy, 13, 3497-3514.
https://doi.org/10.2147/dddt.s227738
[8] Saad, F.A. (2019) Novel Insights into the Complex Architecture of Osteoporosis Molecular Genetics. Annals of the New York Academy of Sciences, 1462, 37-52.
https://doi.org/10.1111/nyas.14231
[9] Luo, W., Zhang, G., Wang, Z., Wu, Y. and Xiong, Y. (2023) Ubiquitin-Specific Proteases: Vital Regulatory Molecules in Bone and Bone-Related Diseases. International Immunopharmacology, 118, Article ID: 110075.
https://doi.org/10.1016/j.intimp.2023.110075
[10] Jin, J., Huang, R., Chang, Y. and Yi, X. (2024) Roles and Mechanisms of Optineurin in Bone Metabolism. Biomedicine & Pharmacotherapy, 172, Article ID: 116258.
https://doi.org/10.1016/j.biopha.2024.116258
[11] Huang, W., Gong, Y. and Yan, L. (2023) ER Stress, the Unfolded Protein Response and Osteoclastogenesis: A Review. Biomolecules, 13, Article No. 1050.
https://doi.org/10.3390/biom13071050
[12] Johnston, C.B. (2020) Osteoporosis in Older Adults. Medical Clinics of North America, 104, 873-884.
[13] Gao, Z., Gao, Z., Zhang, H., Hou, S., Zhou, Y. and Liu, X. (2023) Targeting Sting: From Antiviral Immunity to Treat Osteoporosis. Frontiers in Immunology, 13, Article ID: 1095577.
https://doi.org/10.3389/fimmu.2022.1095577
[14] Jimi, E., Takakura, N., Hiura, F., Nakamura, I. and Hirata-Tsuchiya, S. (2019) The Role of Nf-κb in Physiological Bone Development and Inflammatory Bone Diseases: Is Nf-κb Inhibition “Killing Two Birds with One Stone”? Cells, 8, Article No. 1636.
https://doi.org/10.3390/cells8121636
[15] Luo, H., Gu, R., Ouyang, H., Wang, L., Shi, S., Ji, Y., et al. (2021) Cadmium Exposure Induces Osteoporosis through Cellular Senescence, Associated with Activation of Nf-κb Pathway and Mitochondrial Dysfunction. Environmental Pollution, 290, Article ID: 118043.
https://doi.org/10.1016/j.envpol.2021.118043
[16] Yu, H., Lin, L., Zhang, Z., Zhang, H. and Hu, H. (2020) Targeting Nf-κb Pathway for the Therapy of Diseases: Mechanism and Clinical Study. Signal Transduction and Targeted Therapy, 5, Article No. 209.
https://doi.org/10.1038/s41392-020-00312-6
[17] Khan, H. and Ullah, H. (2020) Targeting NF-κB Signaling Pathway in Cancer by Dietary Polyphenols. Critical Reviews in Food Science and Nutrition, 60, 2790-2800.
[18] Chen, H., Shen, G., Shang, Q., Zhang, P., Yu, D., Yu, X., et al. (2021) Plastrum Testudinis Extract Suppresses Osteoclast Differentiation via the Nf-κb Signaling Pathway and Ameliorates Senile Osteoporosis. Journal of Ethnopharmacology, 276, Article ID: 114195.
https://doi.org/10.1016/j.jep.2021.114195
[19] Jianwei, W., Ye, T., Hongwei, W., Dachuan, L., Fei, Z., Jianyuan, J., et al. (2022) The Role of Tak1 in Rankl-Induced Osteoclastogenesis. Calcified Tissue International, 111, 1-12.
https://doi.org/10.1007/s00223-022-00967-z
[20] Boyce, B.F. (2013) Advances in the Regulation of Osteoclasts and Osteoclast Functions. Journal of Dental Research, 92, 860-867.
https://doi.org/10.1177/0022034513500306
[21] Yang, W., Lu, X., Zhang, T., Han, W., Li, J., He, W., et al. (2021) Taz Inhibits Osteoclastogenesis by Attenuating Tak1/nf-κb Signaling. Bone Research, 9, Article No. 33.
https://doi.org/10.1038/s41413-021-00151-3
[22] Ahmad Hairi, H., Jayusman, P.A. and Shuid, A.N. (2023) Revisiting Resveratrol as an Osteoprotective Agent: Molecular Evidence from in Vivo and in Vitro Studies. Biomedicines, 11, Article No. 1453.
https://doi.org/10.3390/biomedicines11051453
[23] Boyce, B.F., Xiu, Y., Li, J., Xing, L. and Yao, Z. (2015) Nf-κb-Mediated Regulation of Osteoclastogenesis. Endocrinology and Metabolism, 30, 35-44.
https://doi.org/10.3803/enm.2015.30.1.35
[24] Tsukasaki, M. and Takayanagi, H. (2022) Osteoclast Biology in the Single-Cell Era. Inflammation and Regeneration, 42, Article No. 27.
https://doi.org/10.1186/s41232-022-00213-x
[25] Kim, E., Lee, H., Kim, M.H. and Yang, W.M. (2018) Inhibition of RANKL-Stimulated Osteoclast Differentiation by Schisandra chinensis through Down-Regulation of NFATc1 and C-Fos Expression. BMC Complementary and Alternative Medicine, 18, Article No. 270.
https://doi.org/10.1186/s12906-018-2331-5
[26] Wu, L., Luo, Z., Liu, Y., Jia, L., Jiang, Y., Du, J., et al. (2019) Aspirin Inhibits RANKL-Induced Osteoclast Differentiation in Dendritic Cells by Suppressing Nf-κb and NFATc1 Activation. Stem Cell Research & Therapy, 10, Article No. 375.
https://doi.org/10.1186/s13287-019-1500-x
[27] Liu, H., Gu, R., Huang, Q., Liu, Y., Liu, C., Liao, S., et al. (2022) Isoliensinine Suppresses Osteoclast Formation through Nf-κb Signaling Pathways and Relieves Ovariectomy-Induced Bone Loss. Frontiers in Pharmacology, 13, Article ID: 870553.
https://doi.org/10.3389/fphar.2022.870553
[28] Joung, Y.H., Darvin, P., Kang, D.Y., Sp, N., Byun, H.J., Lee, C., et al. (2016) Methylsulfonylmethane Inhibits RANKL-Induced Osteoclastogenesis in BMMs by Suppressing NF-κb and STAT3 Activities. PLOS ONE, 11, e0159891.
https://doi.org/10.1371/journal.pone.0159891
[29] Tian, H., Chen, F., Wang, Y., Liu, Y., Ma, G., Zhao, Y., et al. (2022) Nur77 Prevents Osteoporosis by Inhibiting the NF‐κb Signalling Pathway and Osteoclast Differentiation. Journal of Cellular and Molecular Medicine, 26, 2163-2176.
https://doi.org/10.1111/jcmm.17238
[30] Chen, B., Wang, L., Li, L., Zhu, R., Liu, H., Liu, C., et al. (2017) Fructus ligustri lucidi in Osteoporosis: A Review of Its Pharmacology, Phytochemistry, Pharmacokinetics and Safety. Molecules, 22, Article No. 1469.
https://doi.org/10.3390/molecules22091469
[31] Hassanein, E.H.M., Abd El‐Maksoud, M.S., Ibrahim, I.M., Abd‐alhameed, E.K., Althagafy, H.S., Mohamed, N.M., et al. (2023) The Molecular Mechanisms Underlying Anti‐Inflammatory Effects of Galangin in Different Diseases. Phytotherapy Research, 37, 3161-3181.
https://doi.org/10.1002/ptr.7874
[32] Kim, H., Lee, Y.D., Kim, M.K., Kwon, J., Song, M., Lee, Z.H., et al. (2017) Extracellular S100a4 Negatively Regulates Osteoblast Function by Activating the NF-κb Pathway. BMB Reports, 50, 97-102.
https://doi.org/10.5483/bmbrep.2017.50.2.170
[33] Chan, W.C.W., Tan, Z., To, M.K.T. and Chan, D. (2021) Regulation and Role of Transcription Factors in Osteogenesis. International Journal of Molecular Sciences, 22, Article No. 5445.
https://doi.org/10.3390/ijms22115445
[34] Ahmadi, A., Mazloomnejad, R., Kasravi, M., Gholamine, B., Bahrami, S., Sarzaeem, M.M., et al. (2022) Recent Advances on Small Molecules in Osteogenic Differentiation of Stem Cells and the Underlying Signaling Pathways. Stem Cell Research & Therapy, 13, Article No. 518.
https://doi.org/10.1186/s13287-022-03204-4
[35] Alles, N., Soysa, N.S., Hayashi, J., Khan, M., Shimoda, A., Shimokawa, H., et al. (2010) Suppression of NF-κb Increases Bone Formation and Ameliorates Osteopenia in Ovariectomized Mice. Endocrinology, 151, 4626-4634.
https://doi.org/10.1210/en.2010-0399
[36] Cui, Z., Zhao, X., Amevor, F.K., Du, X., Wang, Y., Li, D., et al. (2022) Therapeutic Application of Quercetin in Aging-Related Diseases: SIRT1 as a Potential Mechanism. Frontiers in Immunology, 13, Article ID: 943321.
https://doi.org/10.3389/fimmu.2022.943321