镁改性生物炭/海藻酸钇杂化气凝胶对直接蓝86的超高效吸附
Super-Efficient Adsorption of Direct Blue 86 on Mg-Modified Biochar/Yttrium Alginate Hybrid Aerogel
DOI: 10.12677/ms.2024.146092, PDF, HTML, XML, 下载: 10  浏览: 20  科研立项经费支持
作者: 赵倩格, 李北罡*:内蒙古师范大学化学与环境科学学院,内蒙古 呼和浩特;内蒙古自治区环境化学重点实验室,内蒙古 呼和浩特
关键词: 吸附生物炭稀土离子染料气凝胶Adsorption Biochar Rare Earth Ions Dye Aerogel
摘要: 由农业秸秆生物炭(BC)为基质,并经MgCl2改性为Mg-BC,再以海藻酸钠(SA)与Y(III)离子交联聚合形成的海藻酸盐凝胶球为骨架,制得了可持续、可分离、易回收利用的镁改性生物炭/海藻酸钇杂化气凝胶(Mg-BC/SA-Y),对其进行SEM表征。以染料废水中的直接蓝86 (DB 86)作为吸附对象,探究了染料溶液初始pH值及吸附时间和温度对吸附性能的影响。研究结果显示,在pH 2.0和298 K条件下,Mg-BC/SA-Y气凝胶对DB 86的吸附去除率可达99.3%,且在pH 2.0~10.0范围内,去除率仍能保持在90%以上。Mg-BC/SA-Y气凝胶对DB 86的吸附过程遵循拟二级速率模型,等温吸附行为符合Langmuir模型,最大吸附容量可达1572 mg/g。Mg-BC/SA-Y气凝胶是一种在染料废水处理方面极具前景的吸附材料。
Abstract: The sustainable, separable and easily recyclable Mg-modified biochar/yttrium alginate hybrid aerogel (Mg-BC/SA-Y) was prepared from agricultural straw biochar (BC) as matrix and modified to Mg-BC by MgCl2, and then crosslinked polymerization of sodium alginate (SA) with Y(III) ions to form alginate gel sphere as skeleton, and it was characterized by SEM. Direct Blue 86 (DB 86) from dye wastewater was used as the adsorption target, and the effects of the initial pH of the dye solution and the adsorption time and temperature on the adsorption performance were investigated. The results showed that the adsorption removal of DB 86 by Mg-BC/SA-Y aerogel could reach 99.3% at pH 2.0 and 298 K, and the removal rate could still be maintained above 90% in the pH 2.0-10.0 range. The adsorption process of DB 86 by Mg-BC/SA-Y aerogel followed the Pseudo-second-order rate model, and the isothermal adsorption behavior was consistent with the Langmuir model, and the maximum adsorption capacity up to 1572 mg/g. Mg-BC/SA-Y aerogel is a promising adsorbent material for dye wastewater treatment.
文章引用:赵倩格, 李北罡. 镁改性生物炭/海藻酸钇杂化气凝胶对直接蓝86的超高效吸附[J]. 材料科学, 2024, 14(6): 830-836. https://doi.org/10.12677/ms.2024.146092

1. 引言

在染料行业的广泛应用中,直接染料因其简便的合成工艺、相对较低的成本以及鲜艳的色彩而备受青睐。然而,这类染料因其复杂的化学结构及难以生物降解,在排放前必须经过净化处理[1]。目前,针对直接染料废水的净化,吸附法因其操作简便、材料选择灵活多样得到了广泛应用。然而,传统吸附剂在应用中存在吸附效果差、难以从水体中有效分离而导致二次污染等问题[2]。因此,制备具有高吸附容量、环境友好且易于回收再利用的新型材料受到了广泛关注[3]-[8]

生物炭(BC)由秸秆、木屑和稻壳等生物质在高温、厌氧或限氧条件下碳化生成,具有成本低、表面积大、孔隙率高等优点,因此被广泛应用于废水处理中[9],但粉末状BC存在吸附能力不足、难以从水介质中分离等局限性[10]。Diwakar [11]等利用黄秋葵种子合成新型生物炭用于直接蓝86染料去除,最大吸附量为277.04 mg/g。海藻酸钠(SA)是从褐藻中提取的一种天然有机多糖,易与多价金属离交联形成不溶于水的凝胶球,在废水处理方面具有广泛的用途[12]。Kanwal [13]等人利用海藻酸钠和铁涂层活性氧化铝制备的SA@GG@ICAA复合材料用于去除直接蓝86最大吸附量为238 mg/g。然而,单一金属离子交联的SA凝胶球稳定性差、机械性能弱,所以常将SA和金属离子交联后与其他物质结合起来制备复合材料,从而提高吸附剂的性能和吸附效率[14]

基于上述分析,本研究采用MgCl2先对BC进行改性,以Mg-BC为基质,使用液滴聚合法以Y(III)离子作为交联剂,与SA通过交联聚合反应来制备镁改性生物炭/海藻酸钇杂化气凝胶(Mg-BC/SA-Y),并直接用于水体中直接蓝86的吸附,并探讨其吸附性能与机理。

2. 材料与方法

2.1. 原料与试剂

海藻酸钠(Sodium Alginate, SA):AR,山东西亚化学工业有限公司;生物炭(Biochar, BC):600℃高温下热解向日葵秸秆,经冷却、粉碎并通过250目筛网筛分而获得;硝酸钇(Y(NO3)3·6H2O):AR,山东西亚化学工业有限公司;氯化镁(MgCl2·6H2O):AR,天津福晨化学试剂有限公司;直接蓝86 (DB 86):CP,Mr = 780.16,λmax = 622 nm,上海嘉英化工有限公司。

2.2. 气凝胶的制备

将一定量SA粉末加入一定体积的蒸馏水中,25℃下持续搅拌1 h,再将一定质量的Mg-BC粉末加入溶液中,继续搅拌1 h至分散均匀,将所得混合液均匀滴入一定质量浓度的Y(III)离子溶液中,形成大小均匀的大颗粒球,充分反应后,固化一定时间,将得到的小球取出并用蒸馏水不断洗涤至中性,干燥后即得到目标产物Mg-BC/SA-Y杂化气凝胶。

2.3. 吸附实验

在25 mL含有特定浓度的DB 86溶液中加入一定质量的气凝胶后,在298K水浴振荡器中振荡,直到达到吸附平衡。测定溶液在最大吸收波长处的吸光度,并计算气凝胶对DB 86的吸附量qe (mg/g)和去除率R (%)。

q e =( C 0 C e )×V/m (1)

R= ( C 0 C e )/ C 0 ×100% (2)

式中,C0Ce则代表吸附前后染料的浓度(mg/L);V表示染料溶液的体积(L);m代表投入的气凝胶质量(g)。

3. 结果与讨论

3.1. 气凝胶的形貌分析

利用日立S-4800型扫描电镜(SEM)对Mg-BC/SA-Y气凝胶的表面微结构进行了表征。由图1(a)可以观察到所制备气凝胶表现为大小一致的直径为1.5 mm的球形。进一步地,通过图1(b)展示的Mg-BC/SA-Y气凝胶放大10,000倍的SEM图看到其表面具有由深浅不一的沟槽和网状褶皱,这种表面形态有助于增强污染物与吸附剂之间的接触面积,从而提高吸附效率及对污染物的吸附容量[15]

Figure 1. SEM image of Mg-BC/SA-Y aerogel

1. Mg-BC/SA-Y气凝胶的SEM图

3.2. 染料溶液初始pH对吸附的影响

图2为不同染料溶液初始pH对Mg-BC/SA-Y杂化气凝胶的吸附性能影响。当染料pH值为2.0时,Mg-BC/SA-Y对DB 86的吸附量和去除率达到894 mg/g和99.29%,随着pH增加到10.0,气凝胶对DB 86的吸附量变化不大且去除率保持在90%以上。但当pH继续增加到10.0以上时,吸附量和去除率急剧下降,这是由于气凝胶表面含氧基团的质子化作用随酸度升高而增强,同时气凝胶表面未饱和的Mg(II)和Y(III)也使表面正电荷密度明显增大,对DB 86的静电吸附作用显著增强,吸附量和去除率相应增大。实验测得Mg-BC/SA-Y气凝胶的零电荷点5.6,当pH < 5.6时,Mg-BC/SA-Y气凝胶上丰富的含氧基团在酸性溶液中发生质子化作用,与以阴离子形式存在的染料分子之间存在静电吸引。当pH > 5.6时,气凝胶与染料之间发生静电斥力作用,吸附量和去除率应显著降低。但当pH小于等于10.0,吸附量和去除率并没有显著降低,这是由于具有丰富的含氧基团的气凝胶与染料阴离子之间的氢键作用,以及气凝胶表面上的不饱和的Mg(II)和Y(III)与染料阴离子之间存在络合作用[16]

Figure 2. Effect of initial pH of the solution on adsorption

2. 溶液初始pH值对吸附的影响

3.3. 时间和温度对吸附的影响及吸附动力学研究

实验探究了接触时间和温度对Mg-BC/SA-Y吸附DB 86染料性能的影响,结果见图3,在0~30 min内,气凝胶对直接蓝86的吸附量急剧增加至701 mg/g,然后随着时间的增加吸附量缓慢增加,至120 min吸附达到平衡,吸附量为836 mg/g。这是由于随着吸附时间的延长,气凝胶表面大量吸附位点逐渐被染料分子覆盖,最终达到动态吸附平衡。此外,在吸附平衡前气凝胶对DB 86的吸附速率随着温度的增长而增加,但吸附平衡后温度对DB 86吸附速率的影响变得很小,且达吸附平衡的时间基本保持不变。吸附量随温度升高而降低,这表明吸附反应具有放热性质,在298 K下更有利于对染料废水进行吸附。

为了进一步探讨Mg-BC/SA-Y气凝胶对DB 86的吸附过程机理,采用拟一级和拟二级吸附速率方程拟合了不同温度下的吸附动力学数据。

q t = q e ( 1 e k 1 t ) (3)

q t = k 2 q e 2 t/ ( 1+ k 2 q e t ) (4)

其中,k1 (h−1)、k2 [g/(mg·h)]分别为拟一级和拟二级的速率常数;qeqt (mg/g)分别为吸附平衡和时间t (h)时的吸附量。

所得的拟合曲线见图3,动力学拟合参数见表1。通过比较相关系数R2,发现动力学数据对拟二级的拟合效果(R2 ≥ 0.993)优于动力学数据对拟一级的拟合效果(R2 ≥ 0.980)。同时,Mg-BC/SA-Y气凝胶在不同温度下对DB 86的实际平衡吸附量qexp值与拟二级模型得到的qe,2值非常相近,这表明可能存在化学吸附。从表1中还可以看出,拟二级速率常数(k2)随着温度的升高而减小,这表明吸附过程是放热过程。

Figure 3. Nonlinear fitting of the adsorption process by the Pseudo-first-order and Pseudo-second-order kinetic models

3. 拟一级和拟二级动力学模型对吸附过程进行非线性拟合

Table 1. Results of fitting kinetic models to adsorption data for DB 86 adsorption on Mg-BC/SA-Y aerogel

1. Mg-BC/SA-Y气凝胶吸附DB 86的吸附数据对动力学模型的拟合结果


Pseudo-first-order

Pseudo-second-order

Dyes

T/K

qexp

(mg/g)

k1

(min −1)

qe,1

(mg/g)

R2

k2

g/(mg·min)

qe,2

(mg/g)

R2

DB 86

298 K

836

0.1022

814

0.981

1.71 × 104

880

0.996

313 K

818

0.0933

801

0.980

1.55 × 104

870

0.993

328 K

817

0.0777

806

0.987

1.23 × 104

884

0.993

3.4. 吸附等温线

Mg-BC/SA-Y气凝胶在不同温度下对DB 86的吸附等温线示于图4。随着温度的升高,吸附容量略有下降,这与温度对吸附性能的影响相一致。为了更好地描述Mg-BC/SA-Y对DB 86的吸附行为,采用Langmuir和Freundlich等温吸附模型对等温吸附数据进行拟合。Langmuir和Freundlich的非线性表达式见方程(5)和(6):

q e = q m K L C e / ( 1+ K L C e ) (5)

q e = K F C e 1/n (6)

式中:Ce (mg/L)为染料溶液的平衡浓度;qm (mg/g)为最大吸附容量;KL (L/mg)为Langmuir吸附系数;KFn代表Freundlich吸附常数。

表2中的非线性拟合结果表明,Mg-BC/SA-Y气凝胶吸附DB 86的平衡数据更符合Langmuir模型(R2 ≥ 0.994),优于Freundlich模型的拟合结果(R2 ≥ 0.974)。同时,Langmuir吸附系数(KL)随着温度的升高而逐渐减小,表明Mg-BC/SA-Y对DB 86的吸附具有放热性质。1/n小于1,这意味着气凝胶对DB 86的吸附是非常有利和容易实现的。

Figure 4. Non-linear fitting of adsorption equilibrium data by Langmuir and Freundlich isothermal adsorption models

4. Langmuir和Freundlich等温吸附模型对吸附平衡数据的非线性拟合

Table 2. Isothermal model fitting results of DB 86 on Mg-BC/SA-Y at different temperatures

2. Mg-BC/SA-Y气凝胶吸附DB 86在不同温度下等温模型拟合结果

Dyes

T/K

Langmuir方程参数

Freundlich方程参数

qmax (mg/g)

KL (L/mg)

R2

n

KF (L/mg)

R2

DB 86

298 K

1572

0.00784

0.994

3.04

159

0.987

313 K

1568

0.00735

0.994

3.01

154

0.985

328 K

1304

0.00673

0.995

3.60

189

0.974

4. 结论

采用液滴聚合法成功合成了大颗粒Mg-BC/SA-Y气凝胶,可直接用于废水中DB 86染料的有效去除。在pH 2.0和298 K时,气凝胶对DB 86的去除率可达99.3%,且能在水体pH在2.0~10.0非常宽的范围内保持基本稳定而超强的吸附能力,去除率仍能保持在90.0%以上。吸附过程符合拟二级反应速率模型,染料吸附行为能用Langmuir等温模型准确描述,最大吸附容量可达1572 mg/g。Mg-BC/SA-Y气凝胶具有高效、pH适用范围广和易于分离回收等优点,在处理废水中的DB 86染料方面具有很好的应用前景。

基金项目

国家自然科学基金项目(21167011);内蒙古自治区自然科学基金项目(2020LH02009);内蒙古自治区水环境安全协同创新中心项目(XTCX003);内蒙古师范大学基本科研业务费专项资金项目(2022JBTD009)。

NOTES

*通讯作者。

参考文献

[1] Huang, J., Lin, C.X., Chen, R.Y., Xiong, W.Y., Wen, X.L. and Luo, X. (2020). Ionic Liquid-assisted Synthesis of Nanocellulose Adsorbent and Its Adsorption Properties. Chinese Journal of Materials Research, 34, 674-682.
http://dx.doi.org/10.11901/1005.3093.2020.017
[2] Santhanarajan, A., Rhee, C., Sul, W.J., Yoo, K., Seong, H.J., Kim, H., et al. (2022) Transcriptomic Analysis of Degradative Pathways for Azo Dye Acid Blue 113 in Sphingomonas melonis B-2 from the Dye Wastewater Treatment Process. Microorganisms, 10, Article No. 438.
https://doi.org/10.3390/microorganisms10020438
[3] Soh, E.Y.S., Lim, S.S., Chew, K.W., Phuang, X.W., Ho, V.M.V., Chu, K.Y.H., et al. (2022) Valorization of Spent Brewery Yeast Biosorbent with Sonication-Assisted Adsorption for Dye Removal in Wastewater Treatment. Environmental Research, 204, Article ID: 112385.
https://doi.org/10.1016/j.envres.2021.112385
[4] Fu, J., Chen, Z., Wang, M., Liu, S., Zhang, J., Zhang, J., et al. (2015) Adsorption of Methylene Blue by a High-Efficiency Adsorbent (Polydopamine Microspheres): Kinetics, Isotherm, Thermodynamics and Mechanism Analysis. Chemical Engineering Journal, 259, 53-61.
https://doi.org/10.1016/j.cej.2014.07.101
[5] Shen, Y., Li, B. and Zhang, Z. (2023) Super-efficient Removal and Adsorption Mechanism of Anionic Dyes from Water by Magnetic Amino Acid-Functionalized Diatomite/yttrium Alginate Hybrid Beads as an Eco-Friendly Composite. Chemosphere, 336, Article ID: 139233.
https://doi.org/10.1016/j.chemosphere.2023.139233
[6] Rivadeneira-Mendoza, B.F., Estrela Filho, O.A., Fernández-Andrade, K.J., Curbelo, F., Fred da Silva, F., Luque, R., et al. (2023) Mof@biomass Hybrids: Trends on Advanced Functional Materials for Adsorption. Environmental Research, 216, Article ID: 114424.
https://doi.org/10.1016/j.envres.2022.114424
[7] Li, B. and Yin, H. (2020) Excellent Biosorption Performance of Novel Alginate-Based Hydrogel Beads Crosslinked by Lanthanum(iii) for Anionic Azo-Dyes from Water. Journal of Dispersion Science and Technology, 42, 1830-1842.
https://doi.org/10.1080/01932691.2020.1789472
[8] 林小红, 李北罡. 镧/粉煤灰复合吸附剂的制备表征及应用[J]. 稀土, 2018, 39(5): 7-15.
https://doi.org/10.16533/J.CNKI.15-1099/TF.201805002
[9] Yi, Y., Huang, Z., Lu, B., Xian, J., Tsang, E.P., Cheng, W., et al. (2020) Magnetic Biochar for Environmental Remediation: A Review. Bioresource Technology, 298, Article ID: 122468.
https://doi.org/10.1016/j.biortech.2019.122468
[10] Jung, K., Jeong, T., Kang, H., Chang, J. and Ahn, K. (2016) Preparation of Modified-Biochar from Laminaria japonica: Simultaneous Optimization of Aluminum Electrode-Based Electro-Modification and Pyrolysis Processes and Its Application for Phosphate Removal. Bioresource Technology, 214, 548-557.
https://doi.org/10.1016/j.biortech.2016.05.005
[11] Kumar, D. and Gupta, S.K. (2023) Green Synthesis of Novel Biochar from Abelmoschus Esculentus Seeds for Direct Blue 86 Dye Removal: Characterization, RSM Optimization, Isotherms, Kinetics, and Fixed Bed Column Studies. Environmental Pollution, 337, Article ID: 122559.
https://doi.org/10.1016/j.envpol.2023.122559
[12] Guan, X., Zhang, B., Li, D., Ren, J., Zhu, Y., Sun, Z., et al. (2023) Semi-unzipping of Chitosan-Sodium Alginate Polyelectrolyte Gel for Efficient Capture of Metallic Mineral Ions from Tannery Effluent. Chemical Engineering Journal, 452, Article ID: 139532.
https://doi.org/10.1016/j.cej.2022.139532
[13] Kanwal, S., Irfan, A., Al-Hussain, S.A., Sharif, G., Mumtaz, A., Batool, F., et al. (2023) Fabrication of Composites of Sodium Alginate with Guar Gum and Iron Coated Activated Alumina for the Purification of Water from Direct Blue 86. Coatings, 13, Article No. 103.
https://doi.org/10.3390/coatings13010103
[14] Li, B. and Zhao, Y. (2023) Facile Synthesis and Ultrastrong Adsorption of a Novel Polyacrylamide-Modified Diatomite/ cerium Alginate Hybrid Aerogel for Anionic Dyes from Aqueous Environment. International Journal of Biological Macromolecules, 253, Article ID: 127114.
https://doi.org/10.1016/j.ijbiomac.2023.127114
[15] Soumia, A., Adel, M., Amina, S., Bouhadjar, B., Amal, D., Farouk, Z., et al. (2020) Fe3O4-Alginate Nanocomposite Hydrogel Beads Material: One-Pot Preparation, Release Kinetics and Antibacterial Activity. International Journal of Biological Macromolecules, 145, 466-475.
https://doi.org/10.1016/j.ijbiomac.2019.12.211
[16] Zhao, Y. and Li, B. (2022) Preparation and Superstrong Adsorption of a Novel La(III)-Crosslinked Alginate/Modified Diatomite Macroparticle Composite for Anionic Dyes Removal from Aqueous Solutions. Gels, 8, Article No. 810.
https://doi.org/10.3390/gels8120810