乙型病毒性肝炎的诊断技术与药物治疗研究进展
Advances in Diagnostic Technique and Pharmacological Therapy of Hepatitis B
DOI: 10.12677/acm.2024.1461821, PDF, HTML, XML, 下载: 9  浏览: 23 
作者: 何 菁:首都医科大学第六临床医学院,北京;薛同贺:天津医科大学第一临床医学院,天津;赵佳晖*:首都医科大学附属北京安贞医院泌尿外科,北京
关键词: 乙型肝炎病毒诊断技术乙型病毒性肝炎药物治疗HBV Diagnostic Technology HB Pharmacological Therapy
摘要: 乙型病毒性肝炎(HB)是临床上常见的疾病,由乙型肝炎病毒(HBV)感染而引起,在我国发病率较高。HB会造成不同程度的肝功能损害,严重者将造成肝功能衰竭、肝硬化甚至肝细胞癌,威胁患者的生命。因此,HB患者的早期诊断和治疗,在避免肝功能损害、提高生存期和改善预后方面具有重要的意义。目前HB的治疗以聚乙二醇干扰素(Peg-INF)和核苷酸类似物(NUC)为代表的抗病毒药物为主。虽然这些传统药物可以抑制HBV复制,延缓肝功能受损,但无法彻底清除病毒。随着医疗技术的发展,越来越多的检测技术和新型药物应用于HB患者的诊断与治疗,并取得了良好的临床效果。本文就近年来HB诊断技术与药物治疗的进展进行综述,旨在为HB的临床诊治及未来研究提供参考。
Abstract: Hepatitis B (HB) is a prevalent disease in clinical practice with highly incidence in China, which is caused by hepatitis B virus (HBV) infection. HB could leads to liver damage progressing as liver cirrhosis, liver failure or even hepatocellular carcinoma (HCC) and threats to life in HB patients. Thus, early detection, diagnosis and treatment play a vital part in improving the prognosis and enhancing the survival of HB patients. In recent years, treatment of HB is dominated by two groups of agents: Pegylated interferons (IFN) and nucleostide analogs (NUC). Though these traditional medicines could improve liver function and inhibit HBV replication, they fail to establish a functional cure. Due to the development of medical technology, more and more advanced techniques and drugs has been developing, some of which were launched for clinical use and sachieved brilliant results. Therefore, this review focus on the recent progress in our understanding of diagnostic techniques and therapeutic agents for HB, which intends to provide references for clinical management and further scientific research.
文章引用:何菁, 薛同贺, 赵佳晖. 乙型病毒性肝炎的诊断技术与药物治疗研究进展[J]. 临床医学进展, 2024, 14(6): 643-652. https://doi.org/10.12677/acm.2024.1461821

1. 引言

乙型肝炎病毒(HBV)是一个复制机制类似逆转录病毒的DNA病毒,属于原肝病毒科家族。全球有约3.5亿人受到乙型肝炎(HB)的影响,估计有超过2.92亿人处于慢性乙型肝炎(CHB)感染状态,每年由于HBV及相关疾病死亡的病例约有887,000例[1],在非洲、拉丁美洲和亚太地区较密集[1]。我国是HB的高发地区,约有9000万慢性乙肝患者,每年约有300,000例死亡与HBV感染相关[2]。HBV感染会引起急性或慢性肝脏炎症,造成肝脏不可逆的损伤,严重者还会引起肝硬化或肝细胞癌[3],HBV的共价闭合环状DNA (cccDNA)和免疫耐受是引起HBV持续繁殖,导致慢性肝脏炎症和纤维化的主要原因。

临床上早期诊断HB、评估病毒活跃度很重要,早期诊断有助于及时阻断感染者与未感染者之间的传播,也有助于及时控制感染者体内病毒的繁殖以及其造成的靶器官损害,提高其生存期及生活质量。血清学及生化检测是目前HB诊断与疗效判断的主要指标,但这些传统的检测方法并不能准确的反应肝细胞内HBV转录水平,对指导药物治疗,病情进展和远期预后的评估仍然存在不足。随着技术发展,病毒复制水平、特定变异检测、病毒库的信息比对等方法,可用于识别HBV感染者、跟踪疾病进展和治疗反应以及评估临床新药物的疗效等[4]。HB的治疗主要采用药物治疗,目前的治疗目标是功能性治愈或完全治愈[3],前者定义为乙肝表面抗原(HBsAg)伴乙肝表面抗体(HBsAb)血清学转换,HBsAg检测下限为0.05 IU/mL;后者定义为cccDNA清除、HBsAg水平持续下降、血清HBV DNA阴性[5]α干扰素(INF-α)和核苷酸类似物(NUC)是HB患者最常用的治疗药物,但这些传统的药物只能抑制病毒复制,无法彻底清除患者体内的HBV [3] [6],达到治愈HB的目的。近年来随着一些新型HBV检测方法和治疗药物的不断研发,为HB患者的临床诊断和治疗提供了全新的选择,未来有望让乙肝治愈成为可能,现拟重点对HB的诊断技术与药物治疗的研究进展进行阐述,以供临床研究、选用参考。

2. 乙肝的检测技术

() 血清学检测

感染HBV后,机体会产生各种不同模式的血清学免疫应答反应,通过检测HBV特异性抗原和抗体等血清学标志物,可以诊断是否感染HBV,判断HB患者的病情进展和预后[7]。近年来,常用的血清学检测方法包括快速诊断测试和实验室免疫学检测等。其中免疫学检测在临床中应用最为广泛,比如酶免疫测定、化学发光免疫测定、电化学发光免疫测定等,这些方法和全血以及唾液标本中抗原/抗体检测联用有助于提高HBV病毒检测的灵敏度、特异度和准确性[8]。乙型肝炎常用的血清学检测指标包括HBsAg、乙肝核心抗原(HBcAg)、HBeAg、乙肝表面抗体(HBsAb)、乙肝e抗体(HBeAb)和乙肝核心抗体(HBcAb)。

1) HBsAg是HBV感染的标志之一,其检测阳性提示机体存在HBV感染。HB的潜伏期是90天(60~150天),血清学HBsAg检测阳性大约出现在第一次接触HBV后6周(1~10周),窗口期内则完全检测不到HBsAg,此期HBc-IgM抗体阳性是HBV感染的唯一的判断标准。此外,HBsAg检测也可用于HB病程监测和疗效评估,比如HBsAg持续阳性超过6个月表明CHB进展倾向,对于HBeAg阴性的慢性乙肝患者,HBsAg定量分析可用于评估IFN-α的治疗效果[9]

2) 乙肝核心抗体(HBcAb)是HBcAg的相对应抗体,但对HB患者并没有保护性作用,HBcAb阳性提示乙肝急性感染或体内有HBV复制[10],另外,既往有过HBV感染史也表现为HBcAb阳性。HBcAb分为IgM、IgA和IgG三种亚型[11],其中HBc-IgM是机体感染HBV后在血清中最早出现的特异性抗体,大约在HBsAg出现后1个月出现,HBc-IgM与HBsAg双阳性通常表明HBV急性感染,但HBc-IgM存在的时间比较短,一般不超过感染后6个月[12]。乙肝患者治愈后及慢性HBV感染者中仍可检测到HBc-IgG。HBcAb和HBsAg双阴性表明可能存在CHB,且乙肝病毒再活化的风险较低。此外,10%~15%的乙肝患者康复后血浆中检测不到HBsAb [13],故HBcAg评估HBV既往感染更为可靠。

3) HBeAg属于HBV核心颗粒中的一种可溶性蛋白质,是人体感染HBV后跟随HBsAg出现的第2个血清学抗原标志物,HBeAg的存在表明病毒复制活跃且患者的感染性较强[4]。HBeAb是机体受HBeAg刺激而产生的相应抗体,通常在HBeAg之后出现在血液中。HBeAg由阳性转为阴性表明病毒复制处于较低水平,并且是HBV感染机体恢复的有力证据[14]

4) HBsAb是具有特异性保护功能的中和抗体,它可以和HBsAg相结合,起到清除病毒的作用。血清中,抗-HBs的存在表明机体恢复以及免疫系统对HBV感染或对HBV疫苗接种产生反应[15]。通常情况下,抗HBs效价 ≥ 10 mIU/ml时有保护作用[16]

() 生化参数和肝纤维化评估

生化参数检测主要用于评估肝细胞损伤以及纤维化的严重程度。谷丙转氨酶(ALT)和谷草转氨酶(AST)是肝细胞损伤和对疾病的反应过程中释放的酶,ALT来自细胞质,AST来自线粒体。其他生化参数有γ-谷氨酰胺转肽酶(GGT)、碱性磷酸酶(ALP)、胆红素、血清白蛋白、丙种球蛋白、全血细胞计数和凝血酶原时间(PT)等[9]。当生化参数和HBV血清学标志物无法确定时,可以采用其他方法评估肝损伤的阶段,推荐优先采用非侵入性的方法。世界卫生组织建议采用血小板比率指数(APRI)来评估肝纤维化的严重程度,可由AST和血小板计数根据公式计算得出:APRI = [AST(U/L)/AST (正常上限) × 100/血小板计数(109/L) [17]。一项针对HBV相关肝纤维化的Meta分析显示,APRI值为0.5、1.0、1.5分别对应显著纤维化、进展期纤维化和肝硬化,其灵敏度和特异度分别为70.0%和60.0%、50.0%和83.0%、36.9%和92.5%,ROC曲线下而积分别为74.0%,74.0%和73% [18]。另外,以超声为基础的瞬时弹性成像(TE)技术是另一个非侵入性评估肝脏硬度的检测方法。Wu等[19]研究表明:TE可用于慢性乙肝患者肝纤维化状态的检测。在经过有效抗病毒治疗后,肝脏硬度下降是预测肝纤维化好转的有效指标;Qi等[20]报道:TE诊断慢性乙肝患者肝硬化的敏感性和特异度分别为84%和87%,其对应的ROC曲线下面积为0.92。然而,由于TE成本相对较高、且受到患者肥胖等因素的限制。在某些情况下,APRI指数更为精确实用[21]

() 分子诊断技术

HBV的分子诊断学技术主要包括HBV DNA定量检测,HBV基因分型,HBV耐药突变和前核心/核心突变分析等[7]。HBV DNA在血清学标志物出现之前即可被检测到(暴露后1个月左右),在暴露后3个月左右达到峰值,通常大于108 IU/mL,随后在转为慢性感染的过程中逐渐下降或在感染消退时消失[7]。HBV DNA检测已成为HBV感染诊断和治疗过程中的必要检验,提高检测HBV DNA的灵敏度分子技术的高灵敏度对诊断HBeAg阴性的CHB和隐匿性乙型肝炎感染(Occult Hepatitis B Infection, OBI)很有价值,OBI是乙肝的一个亚类,OBI患者的血浆中无法检测到血清学标志物,只能检测到HBV DNA [22]

实时荧光定量聚合酶链式反应(RT-PCR)检测HBV DNA的下限为10~15 IU/mL,具有广泛的动态范围,已成为临床上检测和定量HBV DNA的标准技术,RT-PCR可以完全由自动化完成,降低了污染的可能。相比于普通PCR,RT-PCR的敏感度更高[23]。对HBV DNA进行准确的定量分析,可用于HBsAg出现之前的早期HBV感染筛查、评估病毒活跃程度、确定感染个体的传染性、判断母婴传播的感染风险、明确抗病毒治疗的起始点、监测治疗过程中的耐药情况、评估疾病预后及发展为肝硬化或肝细胞癌的风险等[24]。在HBeAg阳性患者中,血清HBVDNA水平降低与HBeAg血清学转换率增加、治疗的组织学应答率升高以及发症发生率降低有关[25] [26],研究发现,治疗过程中HBV DNA水平不到<300 IU/m时,对NUC耐药的可能性很低[27]

共价闭合环状DNA (cccDNA)位于被感染细胞的细胞核内,作为HBV转录模板,其存在是HBV免疫抑制治疗后病毒再激活、肝移植后HBV复发和导致肝细胞癌的重要因素[28]。cccDNA可用于评估治疗终点,清除ccc DNA是实现HBV治愈的主要目标。慢性HBV感染过程中,cccDNA水平与肝内及循环HBV DNA水平相关[29],OBI患者的血清中也可检测到低水平cccDNA。但目前缺乏如PCR或原位杂交这类适用的定量方法,Southern blot分析对低浓度ccc DNA敏感度较差,且复杂耗时,无法普及[4]

目前,已经发现A~J十个基因型的HBV,以及40多个亚型,亚洲地区主要为B和C基因型[30]。基因分型有许多方法,包括反向杂交、限制片段多态性、多重嵌套PCR和实时PCR、寡核苷酸微阵列芯片、反向点污点等[31]。通常感染早期不需要检测HBV的基因分型,但探明HBV的基因型对评估患者耐药性突变及罹患肝癌的风险有一定帮助。AASLD和EASL则推荐在使用聚乙二醇干扰素(Peg-INF)治疗时常规检测HBV基因型,根据HBV基因型选择适合使用Peg-INF治疗的患者。不同的基因型和亚型具有不同的流行病学特征与致病性、不同的肝硬化风险和不同的抗病毒治疗反应等特点[32]。一项荟萃分析显示,与感染HBV A、B、D型相比,HBV基因型为C的患者发生HCC的风险更高;HBVB型的患者发生无肝硬化HCC的年龄较早(<35岁),HBV基因型为A或B56的患者HBsAg自发清除率较高[33]。一项临床试验数据表明,Peg-INF治疗过程中,HBeAg阳性的HBVA或B型患者发生HBeAg血清学转换的概率较高,而HBVC或D型患者HBsAg清除率较高[10]

乙肝病毒前基因组RNA(pgRNA)和总RNA位于病毒体中,感染时被释放到肝细胞胞浆,可以在血清中检测到。目前检测pgRNA的手段主要有cDNA末端快速扩增(RACE)技术和RT-PCR [34]。血清pg RNA由ccc DNA转录而来,通过检测血清中pgRNA的表达水平可以评估ccc DNA的转录活性[35]。另外,在未治疗的HB患者中,血清pgRNA水平与HBV DNA、HBsAg、ALT、HBV基因型以及核心启动子突变密切相关。在HBV感染的不同阶段,血清pgRNA的水平也存在差异:整体上,pgRNA水平与HBeAg和HBV DNA水平相关,在免疫耐受期pgRNA表达最高,在非活动期表达最低[36]。pgRNA病毒粒子是监测NUC治疗安全停药的潜在生物标志物,阻断HBV DNA聚合酶的反转录活性后,乙肝病毒前基因组RNA病毒粒子水平升高;阻断pg RNA的衣壳化后,乙肝病毒前基因组RNA病毒粒子水平降低。pgRNA病毒粒子的存在也与慢性乙肝患者停用NUC治疗后病毒反弹的风险相关[37]。有研究表明,血清HBV RNA水平可预测NUC治疗高病毒载量慢性乙肝患者HBeAg血清学转换和病毒学应答情况(12周时的血清HBV RNA水平可预测96周时HBeAg血清学转换(P = 0.008)和病毒学应答(P = 0.018)情况) [38],NUC治疗时血清HBV RNA水平显著降低的HBeAg阳性患者更容易实现HBeAg血清学转换。

3. 乙肝的药物治疗

() α-干扰素

IFN-α是乙肝病毒感染时,刺激机体免疫防御反应产生的一种具有非特异性抗病毒功能的小分子,可通过人工合成,其与靶细胞受体结合,协调多种免疫细胞,并调节肝细胞基因表达和蛋白质翻译,诱导肝细胞合成多种抗病毒蛋白,阻断HBV生命周期的几个阶段从而发挥非细胞毒性抗病毒作用,是现阶段应用较多的抗病毒药物之一[39]。IFN-α血药浓度不稳定,半衰期较短,需要隔天给药。聚乙二醇Peg-IFN-α是由40KD的聚乙二醇和IFN-α结合形成,Peg-IFN的肾小球滤过率更低,具有更长的半衰期,血药浓度更加稳定,能减少注射次数,提高患者的依从性和机体的应答率,临床更常用。标准Peg-IFN-α采用皮下注射,每周一次,持续48周。一项包含844例HBeAg阳性HBV患者和872例HBeAg阴性HBV患者的前瞻性队列研究中,随访3年时HBeAg阳性组和HBeAg阴性组的HBsAg清除率分别为2% (16/844)和5% (41/872),有完整数据的分别为5% (16/328)和10% (41/394) [40]。IFN-α对年轻、病毒载量低的乙肝患者治疗效果较好,但由于HBV基因型、患者个体差异等因素,IFN-α的治疗仍然存在应答率低、不良反应高以及不适于肝功能失代偿患者等问题[41]

病毒载量和抗原载量是IFN疗效的预测指标,HBV影响机体固有免疫和适应性免疫系统,降低IFN治疗的应答水平。有研究表明,与未感染HBV的对照组相比,未治疗的CHB患者的肝内基因表达谱显示出抗病毒相关基因、干扰素刺激基因和病原体识别受体基因明显下调[42]。目前正在寻找方法提高INF类药物疗效,ccc DNA的持续转录可抑制IFN诱导的免疫反应,治疗前降低病毒载量(HBV DNA载量和抗原量)可能是一种有效途径。一项回顾性配对研究发现,对于NUC单药治疗2年后HBeAg仍为阳性的患者,Peg-IFN联合NA治疗48周比继续NUC单药治疗有更高的HBeAg血清学转换率,HBsAg清除可能性也更高[43]。此外,提高IFN-α与IFN受体之间的结合亲和力也是一个可行的方法,Patten等构建了由包含15个突变的IFN-B9X系列,与IFN-α相比具有更强的抗病毒活性[44]。对于HBeAg阴性的CHB患者,Peg-IFN-α联合NUC治疗48周的效果优于NUC单药治疗[45],使用恩替卡韦(ETV)治疗9~36个月(平均20个月)、达到病毒学抑制(HBeAg < 100 PEIU/ml, HBV DNA ≤ 1000 copies/ml)的患者,改用Peg-IFN-α治疗一段时间后(总疗程48周),血清学转阴率比单用ETV治疗的患者高(14.9% vs. 6.1%),且Peg-IFN-α组HBsAg的清除率为8.5% [46]

() 核苷酸类似物

NUC主要通过抑制RNA逆转录为HBV-DNA,从而达到阻断DNA链延长的目的。因此,同IFN-α相比,NUC在抑制HBV-DNA复制方面更有优势,常见的NUC有拉米夫定(LAM)、恩替卡韦(ETV)、阿德福韦(ADV)和泰诺福韦(TDF)等[47]。研究显示:LAM可有效抑制HB患者的HBV-DNA复制、降低血清HBV DNA,提高HBeAg血清学转换率,还可以降低丙氨酸转氨酶(ALT)水平,减少向肝硬化的进展,保护正常肝脏细胞,改善患者肝功能和血清学指标,对大多数慢性HB患者有效且耐受良好。但由于HBV的YMDD位点聚合酶突变率较高,长期应用LAM容易产生耐药突变株[48],其发生率随着治疗时间的延长而增加,在一项临床试验中,连续使用LAM治疗4年耐药突变的发生率高达67% [49]。且达到有效剂量时具有一定副作用,包括皮疹、咽喉肿胀、唇舌部肿胀、面部肿胀、呼吸困难和近端肾小管功能障碍等[50]。新一代NUCs药物ETV属鸟嘌呤核苷类似物,通过干扰HBV多聚酶的活性,进而抑制HBV-DNA的复制。同ETV一样,TDF也是一种新型NUC药物,其在药物动力学上表现为线性和剂量依赖性。研究表明,TDF耐受较良好且相对安全,不足之处就是该药物也存在一些副作用,包括头痛、恶心、疲劳、咳嗽和便秘等[51]

长期NUC治疗也已被证明可改善肝硬化、肝纤维化等疾病进展[52],但由于其作用机制,NUC很难实现HB的功能性治愈,需要长期给药,有诱发感染、突变产生耐药的风险[50]。另外,NUC只能抑制HBV复制,不能根除患者肝细胞内的cccDNA,因此停药后容易出现HBV复发。基于以上原因,一些研究正致力于寻找新的治疗靶点和药物分子。

() 新型抗病毒药物

cccDNA是在HBV感染患者肝细胞内形成的质粒样游离基因,它的主要功能是作为所有病毒RNA的模板,形成新的病毒体。由于传统的抗病毒药物本身并不直接靶向作用于cccDNA,所以在停用抗病毒药物后,HBV非常容易复发,即使长期进行抗病毒治疗(5年内HBsAg减低 < 10%),也很少能够实现血清HBsAg完全转阴[28]。目前正在寻找潜在的治疗策略和新的药物,以达到治愈HBV感染的目的。

1) 小干扰RNA:RNA干扰(RNA Interference, RNAi)是一种高度特异、高效的转录后基因沉默方法,可直接靶向抑制HBV转录并诱导其降解。人工合成的小干扰RNA (siRNA)通过降解mRNA来干扰特定的靶基因表达,阻断了HBsAg的合成,进而破坏HBsAg的快速免疫耐受,恢复免疫应答,但RNAi药物的缺点是无法减少ccc DNA的量。ARC-520是一种RNAi类药物[53],一项研究中,高剂量组(2 mg/kg ARC-520联用NUC)的HBsAg水平与对照组相比显著降低,对HBeAg阳性和阴性患者都有效,但低剂量组无显著差异[54]

2) 核心蛋白变构调节剂(CpAMs):HBV核心蛋白是HBV前基因组RNA包装和逆转录所必需的,目前正在研究几种称为CpAMs的药物。结构上,CpAMs可以形成不稳定的异常衣壳或空衣壳,干扰HBV核衣壳的装配,从而达到抗病毒的目的。目前有两大类的CpAMs:以杂芳基二氢吡啶为代表的I类CpAMs改变了衣壳形成过程中的生物动力学,可导致衣壳组装错误,NVR3-778属于这类药物[55];Ⅱ型CpAMs以苯丙烯酰胺为代表,通过加速病毒核衣壳的组装,形成缺乏病毒pgRNA和HBV聚合酶的正常空衣壳,JNJ-6379属于这类药物[56]

3) 核酸聚合物:一些核酸聚合物,可以阻断感染肝细胞中HBsAg的释放,如REP2139。循环中HBsAg几乎全部以非感染性HBV亚病毒颗粒(SVPs)的形式存在[57]。REP2139进入肝细胞中阻止SVP的组装,降低肝细胞以及血清中HBsAg水平,还可以促进机体清除HBsAg,减轻或消除由病毒抗原引起的免疫抑制。一项针对HBeAg阴性CHB患者的开放性Ⅱ期临床研究,富马酸替诺福韦富酯(TDF)和Peg IFN常规治疗联合REP 2139-Mg或REP 2165-Mg治疗48周后,60%的患者HBsAg水平 ≤ 0.05 IU/mL,随后48周的物治疗随访中,达到功能性治愈的占35% [58],但研究样本量较低(40例),有待进一步考证。目前的研究来看,REP 2139制剂(REP2139-Mg)几乎没有副作用,用药方法为与其他抗病毒药物联合静脉滴注,每周一次,连续使用48周[59]

4) cccDNA抑制剂:cccDNA是病毒转录的模板,抑制cccDNA是治疗HBV感染的有效方法之一。目前已开发几种由特异序列的RNA小分子引导的核酸酶和蛋白质,可以在刺激细胞分裂的同时阻断cccDNA的形成、增强其分解以及抑制转录[60],包括转录激活因子样效应物核酸酶(TALENs),可以切割有特异序列的DNA靶点。或成簇规律间隔短回文重复序列(CRISPR)相关9系统(Cas9),对cccDNA进行基因编辑[61]。此外,表观遗传修饰,如组蛋白修饰和ccc DNA甲基化,可在不改变DNA本身的情况下将正在转录的DNA修饰为无活性状态[62]

5) T细胞编辑:通过编辑T细胞受体基因或利用嵌合抗原受体T细胞创建具有清除HBV感染的肝细胞的特定功能的T细胞。在体外试验和HBV转基因小鼠的动物实验中,构建的T细胞显示出选择性清除HBV感染的细胞和抑制HBV复制的能力,副反应仅发生一过性的肝损伤[63] [64]

6) Toll样受体激动剂:Toll样受体(Toll-Like Receptors, TLRs)在病毒感染初期诱导抗病毒物质的产生,抑制HB复制,恢复HBV特异性免疫。在一项双盲、随机、安慰剂对照的Ⅱ期研临床究中,患者每周口服1次维沙莫德(Vesatolimod)或安慰剂,发现2 mg、4 mg剂量的维沙莫德、女性性别与 ≥ 2倍干扰素刺激基因激活相关[65],结果显示维沙莫德诱导了对HBV的特异性免疫,在CHB患者中的安全性和耐受性良好,但患者的HBsAg无明显下降。

4. 小结与展望

本文综述了HBV感染的血清学、分子诊断技术及一些药物治疗策略。血清学主要检测HBsAg及其他HBV抗原、抗体,然后进行分子检测以验证诊断,尽管其具有许多优势,但受到高成本、人员经验、设备的局限,未来有望通过生物传感器等新技术,达到更高效、高特异度、高灵敏度和低成本的目的。在治疗方面,正在开发一些新型化合物,包括处于II期临床试验的直接抗病毒药物,如CpAMs、siRNA、HBsAg释放抑制剂、cccDNA抑制剂、T细胞编辑和Toll样受体激动剂等,但需要更多的研究证明其在HBsAg血清学转阴方面的临床益处,以及可能存在的副作用。HBV的根除可能依赖于多种药物的联合使用,需要进一步的研究加以论证。综上,改进现有技术,开发新技术,进一步探究新药物对推进慢性乙肝的诊疗发展具有重大意义。

NOTES

*通讯作者。

参考文献

[1] Razavi-Shearer, D., Gamkrelidze, I., Nguyen, M.H., Chen, D., Van Damme, P., Abbas, Z., et al. (2018) Global Prevalence, Treatment, and Prevention of Hepatitis B Virus Infection in 2016: A Modelling Study. The Lancet Gastroenterology & Hepatology, 3, 383-403.
https://doi.org/10.1016/s2468-1253(18)30056-6
[2] Su, S., Wong, W.C., Zou, Z., Cheng, D.D., Ong, J.J., Chan, P., et al. (2022) Cost-Effectiveness of Universal Screening for Chronic Hepatitis B Virus Infection in China: An Economic Evaluation. The Lancet Global Health, 10, e278-e287.
https://doi.org/10.1016/s2214-109x(21)00517-9
[3] Bertoletti, A. and Le Bert, N. (2018) Immunotherapy for Chronic Hepatitis B Virus Infection. Gut and Liver, 12, 497-507.
[4] Coffin, C.S., Zhou, K. and Terrault, N.A. (2019) New and Old Biomarkers for Diagnosis and Management of Chronic Hepatitis B Virus Infection. Gastroenterology, 156, 355-368.e3.
[5] Wang, Y., Yang, S., Su, C., Wang, Y., Lee, K., Huo, T., et al. (2016) Predictors of Response to Pegylated Interferon in Chronic Hepatitis B: A Real-World Hospital-Based Analysis. Scientific Reports, 6, Article No. 29605.
https://doi.org/10.1038/srep29605
[6] Yeh, M.L., Huang, J.F., Dai, C.Y., et al. (2019) Pharmacokinetics and Pharmacodynamics of Pegylated Interferon for the Treatment of Hepatitis B. Expert Opinion on Drug Metabolism & Toxicology, 15, 779-785.
[7] Villar, L.M., Cruz, H.M., Barbosa, J.R., Bezerra, C.S., Portilho, M.M. and Scalioni, L.d.P. (2015) Update on Hepatitis B and C Virus Diagnosis. World Journal of Virology, 4, 323-342.
https://doi.org/10.5501/wjv.v4.i4.323
[8] World Health Organization (2017) WHO Guidelines on Hepatitis B and C Testing.
http://www.ncbi.nlm.nih.gov/books/NBK442272/
[9] European Association for the Study of the Liver (2017) Clinical Practice Guidelines on the Management of Hepatitis B Virus Infection. Journal of Hepatology, 67, 370-398.
[10] Terrault, N.A., Lok, A.S.F., McMahon, B.J., Chang, K., Hwang, J.P., Jonas, M.M., et al. (2018) Update on Prevention, Diagnosis, and Treatment of Chronic Hepatitis B: AASLD 2018 Hepatitis B Guidance. Hepatology, 67, 1560-1599.
https://doi.org/10.1002/hep.29800
[11] Xie, Z., Zhu, S., Peng, Y., Chen, J., Wang, X., Ma, L., et al. (2015) Postoperative Hepatitis B Virus Reactivation and Surgery-Induced Immunosuppression in Patients with Hepatitis B-Related Hepatocellular Carcinoma: PHR and Immunosuppression in HCC Patients. Journal of Surgical Oncology, 112, 634-642.
https://doi.org/10.1002/jso.24044
[12] Park, J.W. (2015) Differentiation of Acute and Chronic Hepatitis B in IgM Anti-HBc Positive Patients. World Journal of Gastroenterology, 21, 3953-3959.
https://doi.org/10.3748/wjg.v21.i13.3953
[13] Tabor, E., Hoofnagle, J.H., Barker, L.F., Pineda-Tamondong, G., Nath, N., Smallwood, L.A., et al. (1981) Antibody to Hepatitis B Core Antigen in Blood Donors with a History of Hepatitis. Transfusion, 21, 366-371.
https://doi.org/10.1046/j.1537-2995.1981.21381201816.x
[14] Vanwolleghem, T., et al. (2021) Humoral Immunity in Hepatitis B Virus Infection: Rehabilitating the B in HBV. JHEP Reports, 4, Article ID: 100398.
https://pubmed.ncbi.nlm.nih.gov/35059620/
[15] Jeng, W., Papatheodoridis, G.V. and Lok, A.S.F. (2023) Hepatitis B. The Lancet, 401, 1039-1052.
https://doi.org/10.1016/s0140-6736(22)01468-4
[16] Dini, G., Toletone, A., Barberis, I., Debarbieri, N., Massa, E., Paganino, C., et al. (2016) Persistence of Protective Anti-HBs Antibody Levels and Anamnestic Response to HBV Booster Vaccination: A Cross-Sectional Study among Healthcare Students 20 Years Following the Universal Immunization Campaign in Italy. Human Vaccines & Immunotherapeutics, 13, 440-444.
https://doi.org/10.1080/21645515.2017.1264788
[17] Li, Q., Ren, X., Lu, C., Li, W., Huang, Y. and Chen, L. (2017) Evaluation of APRI and FIB-4 for Noninvasive Assessment of Significant Fibrosis and Cirrhosis in HBeAg-Negative CHB Patients with ALT ≤ 2 ULN: A Retrospective Cohort Study. Medicine, 96, e6336.
https://doi.org/10.1097/md.0000000000006336
[18] Xiao, G., Yang, J. and Yan, L. (2014) Comparison of Diagnostic Accuracy of Aspartate Aminotransferase to Platelet Ratio Index and Fibrosis-4 Index for Detecting Liver Fibrosis in Adult Patients with Chronic Hepatitis B Virus Infection: A Systemic Review and Meta-Analysis. Hepatology, 61, 292-302.
https://doi.org/10.1002/hep.27382
[19] Wu, S., Liu, L., Cheng, J., Liu, Y., Cheng, L., Wang, S., et al. (2018) Longitudinal Monitoring of Liver Fibrosis Status by Transient Elastography in Chronic Hepatitis B Patients during Long-Term Entecavir Treatment. Clinical and Experimental Medicine, 18, 433-443.
https://doi.org/10.1007/s10238-018-0501-x
[20] Bâldea, V., Bende, F., Popescu, A., Șirli, R. and Sporea, I. (2021) Comparative Study between Two 2d-Shear Waves Elastography Techniques for the Non-Invasive Assessment of Liver Fibrosis in Patients with Chronic Hepatitis C Virus (HCV) Infection. Medical Ultrasonography, 23, 257-264.
https://doi.org/10.11152/mu-2863
[21] Huang, D., Lin, T., Wang, S., et al. (2019) The Liver Fibrosis Index Is Superior to the APRI and FIB-4 for Predicting Liver Fibrosis in Chronic Hepatitis B Patients in China. BMC Infectious Diseases, 19, Article No. 878.
[22] Malagnino, V., Fofana, D.B., Lacombe, K. and Gozlan, J. (2018) Occult Hepatitis B Virus Infection: An Old Entity with Novel Clinical Involvements. Open Forum Infectious Diseases, 5, ofy227.
https://doi.org/10.1093/ofid/ofy227
[23] Pawlotsky, J.M., Dusheiko, G., Hatzakis, A., et al. (2008) Virologic Monitoring of Hepatitis B Virus Therapy in Clinical Trials and Practice: Recommendations for a Standardized Approach. Gastroenterology, 134, 405-415.
[24] Mangia, A., Antonucci, F., Brunetto, M., Capobianchi, M., Fagiuoli, S., Guido, M., et al. (2008) The Use of Molecular Assays in the Management of Viral Hepatitis. Digestive and Liver Disease, 40, 395-404.
https://doi.org/10.1016/j.dld.2007.12.016
[25] Chen, R.W., Piiparinen, H., Seppänen, M., Koskela, P., Sarna, S. and Lappalainen, M. (2001) Real-Time PCR for Detection and Quantitation of Hepatitis B Virus DNA: Real-Time PCR for HBV DNA. Journal of Medical Virology, 65, 250-256.
https://doi.org/10.1002/jmv.2027
[26] Chen, H., Sun, L., Zheng, H., Zhang, Q. and Jin, X. (2012) Total Serum DNA and DNA Integrity: Diagnostic Value in Patients with Hepatitis B Virus-Related Hepatocellular Carcinoma. Pathology, 44, 318-324.
https://doi.org/10.1097/pat.0b013e328353a24c
[27] Hadziyannis, S.J., Tassopoulos, N.C., Heathcote, E.J., Chang, T., Kitis, G., Rizzetto, M., et al. (2006) Long-Term Therapy with Adefovir Dipivoxil for HBeAg-Negative Chronic Hepatitis B for up to 5 Years. Gastroenterology, 131, 1743-1751.
https://doi.org/10.1053/j.gastro.2006.09.020
[28] Kumar, R., Pérez-Del-Pulgar, S., Testoni, B., et al. (2016) Clinical Relevance of the Study of Hepatitis B Virus Covalently Closed Circular DNA. Liver International, 36, 72-77.
[29] Werle-Lapostolle, B., Bowden, S., Locarnini, S., Wursthorn, K., Petersen, J., Lau, G., et al. (2004) Persistence of cccDNA during the Natural History of Chronic Hepatitis B and Decline during Adefovir Dipivoxil Therapy. Gastroenterology, 126, 1750-1758.
[30] Al-Sadeq, D.W., Taleb, S.A., Zaied, R.E., et al. (2019) Hepatitis B Virus Molecular Epidemiology, Host-Virus Interaction, Coinfection, and Laboratory Diagnosis in the MENA Region: An Update. Pathogens (Basel, Switzerland), 8, 63.
[31] Fletcher, G.J., Eapen, C.E. and Abraham, P. (2019) Hepatitis B Genotyping: The Utility for the Clinicians. Indian Journal of Gastroenterology, 39, 315-320.
https://doi.org/10.1007/s12664-019-00995-y
[32] Wang, J., Zhang, P., Zeng, J., Du, P., Zheng, X., Ye, X., et al. (2020) Occurrence of Occult Hepatitis B Virus Infection Associated with Envelope Protein Mutations According to Anti-HBs Carriage in Blood Donors. International Journal of Infectious Diseases, 92, 38-45.
https://doi.org/10.1016/j.ijid.2019.12.026
[33] Wong, G.L.H., Chan, H.L.Y., Yiu, K.K.L., et al. (2013) Meta-Analysis: The Association of Hepatitis B Virus Genotypes and Hepatocellular Carcinoma. Alimentary Pharmacology & Therapeutics, 37, 517-526.
https://doi.org/10.1111/apt.12207
[34] Van Campenhout, M.J.H., Van Bömmel, F., Pfefferkorn, M., et al. (2018) Host and Viral Factors Associated with Serum Hepatitis B Virus RNA Levels among Patients in Need for Treatment. Hepatology (Baltimore, Md.), 68, 839-847.
[35] Giersch, K., Allweiss, L., Volz, T., Dandri, M. and Lütgehetmann, M. (2017) Serum HBV pgRNA as a Clinical Marker for Cccdna Activity. Journal of Hepatology, 66, 460-462.
https://doi.org/10.1016/j.jhep.2016.09.028
[36] Xu, L., Li, X., Lu, L., Liu, X., Song, X., Li, Y., et al. (2022) HBV pgRNA Profiles in Chinese HIV/HBV Coinfected Patients under Pre-and Post-Treatment: A Multicentre Observational Cohort Study. Journal of Viral Hepatitis, 29, 616-626.
https://doi.org/10.1111/jvh.13704
[37] Wang, J., Shen, T., Huang, X., Kumar, G.R., Chen, X., Zeng, Z., et al. (2016) Serum Hepatitis B Virus RNA Is Encapsidated Pregenome RNA That May Be Associated with Persistence of Viral Infection and Rebound. Journal of Hepatology, 65, 700-710.
https://doi.org/10.1016/j.jhep.2016.05.029
[38] Ji, X., Xia, M., Zhou, B., Liu, S., Liao, G., Cai, S., et al. (2020) Serum Hepatitis B Virus RNA Levels Predict HBeAg Seroconversion and Virological Response in Chronic Hepatitis B Patients with High Viral Load Treated with Nucleos(t)ide Analog. Infection and Drug Resistance, 13, 1881-1888.
https://doi.org/10.2147/idr.s252994
[39] Ye, J. and Chen, J. (2021) Interferon and Hepatitis B: Current and Future Perspectives. Frontiers in Immunology, 12, Article ID: 733364.
[40] Marcellin, P., Xie, Q., Woon Paik, S., et al. (2020) Final Analysis of the International Observational S-Collate Study of Peginterferon Alfa-2a in Patients with Chronic Hepatitis B. PLOS ONE, 15, e0230893.
[41] Tan, G., Song, H., Xu, F., et al. (2018) When Hepatitis B Virus Meets Interferons. Frontiers in Microbiology, 9, Article No. 1611.
[42] Lebossé, F., Testoni, B., Fresquet, J., et al. (2017) Intrahepatic Innate Immune Response Pathways Are Downregulated in Untreated Chronic Hepatitis B. Journal of Hepatology, 66, 897-909.
[43] Li, G.J., Yu, Y.Q., Chen, S.L., et al. (2015) Sequential Combination Therapy with Pegylated Interferon Leads to Loss of Hepatitis B Surface Antigen and Hepatitis B e Antigen (HBeAg) Seroconversion in HBeAg-Positive Chronic Hepatitis B Patients Receiving Long-Term Entecavir Treatment. Antimicrobial Agents and Chemotherapy, 59, 4121-4128.
[44] Brideau-Andersen, A.D., Huang, X., Sun, S.C., Chen, T.T., Stark, D., Sas, I.J., et al. (2007) Directed Evolution of Gene-Shuffled IFN-α Molecules with Activity Profiles Tailored for Treatment of Chronic Viral Diseases. Proceedings of the National Academy of Sciences, 104, 8269-8274.
https://doi.org/10.1073/pnas.0609001104
[45] Bahardoust, M., Mokhtare, M., Barati, M., Bagheri-Hosseinabadi, Z., Karimi Behnagh, A., Keyvani, H., et al. (2020) A Randomized Controlled Trial of Pegylated Interferon-Alpha with Tenofovir Disoproxil Fumarate for Hepatitis B E Antigen-Negative Chronic Hepatitis B: A 48-Week Follow-Up Study. Journal of Infection and Chemotherapy, 26, 1265-1271.
https://doi.org/10.1016/j.jiac.2020.07.005
[46] Ning, Q., Han, M., Sun, Y., Jiang, J., Tan, D., Hou, J., et al. (2014) Switching from Entecavir to PegIFN Alfa-2a in Patients with Hbeag-Positive Chronic Hepatitis B: A Randomised Open-Label Trial (OSST Trial). Journal of Hepatology, 61, 777-784.
https://doi.org/10.1016/j.jhep.2014.05.044
[47] Lok, A.S.F., Mcmahon, B.J., Brown, R.S., et al. (2016) Antiviral Therapy for Chronic Hepatitis B Viral Infection in Adults: A Systematic Review and Meta-Analysis. Hepatology (Baltimore, Md.), 63, 284-306.
[48] Manzoor, S., Saalim, M., Imran, M., et al. (2015) Hepatitis B Virus Therapy: What’s the Future Holding for Us? World Journal of Gastroenterology, 21, 12558-12575.
[49] Thompson, A.J.V., Ayres, A., Yuen, L., Bartholomeusz, A., Bowden, D.S., Iser, D.M., et al. (2006) Lamivudine Resistance in Patients with Chronic Hepatitis B: Role of Clinical and Virological Factors. Journal of Gastroenterology and Hepatology, 22, 1078-1085.
https://doi.org/10.1111/j.1440-1746.2006.04630.x
[50] Ho, E.Y., Yau, T., Rousseau, F., Heathcote, E.J. and Lau, G.K.K. (2015) Preemptive Adefovir versus Lamivudine for Prevention of Hepatitis B Reactivation in Chronic Hepatitis B Patients Undergoing Chemotherapy. Hepatology International, 9, 224-230.
https://doi.org/10.1007/s12072-015-9612-6
[51] Agarwal, K., Fung, S.K., Nguyen, T.T., Cheng, W., Sicard, E., Ryder, S.D., et al. (2015) Twenty-Eight Day Safety, Antiviral Activity, and Pharmacokinetics of Tenofovir Alafenamide for Treatment of Chronic Hepatitis B Infection. Journal of Hepatology, 62, 533-540.
https://doi.org/10.1016/j.jhep.2014.10.035
[52] Su, T., Hu, T., Chen, C., Huang, Y., Chuang, W., Lin, C., et al. (2016) Four-Year Entecavir Therapy Reduces Hepatocellular Carcinoma, Cirrhotic Events and Mortality in Chronic Hepatitis B Patients. Liver International, 36, 1755-1764.
https://doi.org/10.1111/liv.13253
[53] Wooddell, C.I., Gehring, A.J., Yuen, M.F., et al. (2021) RNA Interference Therapy for Chronic Hepatitis B Predicts the Importance of Addressing Viral Integration When Developing Novel Cure Strategies. Viruses, 13, 581.
[54] Yuen, M.F., Schiefke, I., Yoon, J.H., et al. (2020) RNA Interference Therapy with ARC-520 Results in Prolonged Hepatitis B Surface Antigen Response in Patients with Chronic Hepatitis B Infection. Hepatology, 72, 19-31.
[55] Yuen, M.F., Gane, E.J., Kim, D.J., et al. (2019) Antiviral Activity, Safety, and Pharmacokinetics of Capsid Assembly Modulator NVR 3-778 in Patients with Chronic HBV Infection. Gastroenterology, 156, 1392-1403.e7.
[56] Zoulim, F., Lenz, O., Vandenbossche, J.J., Talloen, W., Verbinnen, T., Moscalu, I., et al. (2020) JNJ-56136379, an HBV Capsid Assembly Modulator, Is Well-Tolerated and Has Antiviral Activity in a Phase 1 Study of Patients with Chronic Infection. Gastroenterology, 159, 521-533.e9.
https://doi.org/10.1053/j.gastro.2020.04.036
[57] Hu, J. and Liu, K. (2017) Complete and Incomplete Hepatitis B Virus Particles: Formation, Function, and Application. Viruses, 9, 56.
[58] Bazinet, M., Pântea, V., Placinta, G., Moscalu, I., Cebotarescu, V., Cojuhari, L., et al. (2020) Safety and Efficacy of 48 Weeks REP 2139 or REP 2165, Tenofovir Disoproxil, and Pegylated Interferon Alfa-2a in Patients with Chronic HBV Infection Naïve to Nucleos(t)ide Therapy. Gastroenterology, 158, 2180-2194.
https://doi.org/10.1053/j.gastro.2020.02.058
[59] Bazinet, M., Pântea, V., Cebotarescu, V., Cojuhari, L., Jimbei, P., Albrecht, J., et al. (2017) Safety and Efficacy of REP 2139 and Pegylated Interferon Alfa-2a for Treatment-Naive Patients with Chronic Hepatitis B Virus and Hepatitis D Virus Co-Infection (REP 301 and REP 301-LTF): A Non-Randomised, Open-Label, Phase 2 Trial. The Lancet Gastroenterology & Hepatology, 2, 877-889.
https://doi.org/10.1016/s2468-1253(17)30288-1
[60] Ruiz de Galarreta, M. and Lujambio, A. (2017) Therapeutic Editing of Hepatocyte Genome in Vivo. Journal of Hepatology, 67, 818-828.
https://doi.org/10.1016/j.jhep.2017.05.012
[61] Liu, X., Hao, R., Chen, S., Guo, D. and Chen, Y. (2015) Inhibition of Hepatitis B Virus by the Crispr/cas9 System via Targeting the Conserved Regions of the Viral Genome. Journal of General Virology, 96, 2252-2261.
https://doi.org/10.1099/vir.0.000159
[62] Hong, X., Kim, E.S. and Guo, H. (2017) Epigenetic Regulation of Hepatitis B Virus Covalently Closed Circular DNA: Implications for Epigenetic Therapy against Chronic Hepatitis B. Hepatology (Baltimore, Md.), 66, 2066-2077.
[63] Krebs, K., Böttinger, N., Huang, L.R., et al. (2013) T Cells Expressing a Chimeric Antigen Receptor That Binds Hepatitis B Virus Envelope Proteins Control Virus Replication in Mice. Gastroenterology, 145, 456-465.
[64] Gehring, A.J., Xue, S.A., Ho, Z.Z., et al. (2011) Engineering Virus-Specific T Cells That Target HBV Infected Hepatocytes and Hepatocellular Carcinoma Cell Lines. Journal of Hepatology, 55, 103-110.
[65] Janssen, H.L.A., Brunetto, M.R., Kim, Y.J., et al. (2018) Safety, Efficacy and Pharmacodynamics of Vesatolimod (GS-9620) in Virally Suppressed Patients with Chronic Hepatitis B. Journal of Hepatology, 68, 431-440.