HER2阳性乳腺癌新辅助化疗联合双靶疗效的列线图预测模型建立
Establishment of a Nomogram Prediction Model for Neoadjuvant Chemotherapy Combined with Dual-Target Efficacy in HER2-Positive Breast Cancer
DOI: 10.12677/acm.2024.1461819, PDF, HTML, XML, 下载: 6  浏览: 30 
作者: 陈东旭, 李金洋, 丰竹慧, 吴 琍*:青岛大学附属医院乳腺病诊疗中心,山东 青岛
关键词: 乳腺癌HER2新辅助治疗pCR预测模型Breast Cancer HER2 Neoadjuvant Therapy pCR Prediction Model
摘要: 目的:研究HER2阳性乳腺癌接受新辅助化疗联合双靶治疗疗效的相关影响因素,同时建立预测模型,旨在提高患者新辅助治疗疗效预测的有效性和准确性,从而为临床诊疗方案的选择提供参考。方法:回顾性分析2021年1月1日~2022年12月31日接受新辅助化疗联合双靶并完成手术的146例HER2阳性乳腺癌患者的临床病理资料,根据MP分级系统和RCB系统分为pCR组和非pCR组。采用单因素Logistic回归,将有统计学意义和可能有临床意义的指标纳入LASSO回归。根据LASSO回归筛选出的变量以列线图形式构建预测模型,然后采用受试者工作特性曲线(receiver operating characteristic curve, ROC)评价模型的预测效能,使用校准曲线评价模型的准确性。采用DCA评价模型的临床应用价值。最后在验证集中对模型进行内部验证。结果:采用单因素Logistic筛选出了ER状态、PR状态、中性粒细胞与淋巴细胞比值(NLR)及四周期后RECIST1.1四个预测变量,将单因素分析中具有统计学意义的4个特征因素纳入到LASSO回归,根据LASSO分析结果,将具有统计学意义的自变量构建模型及列线图,训练集和验证集的ROC曲线下面积(area under curve, AUC)分别为0.853和0.741,内部验证显示列线图具有较好的预测能力。结论:ER状态、PR状态、NLR及四周期后RECIST1.1是影响HER2阳性乳腺癌患者接受新辅助治疗后达到pCR的独立预测因素。基于以上因素构建的列线图模型对新辅助治疗后pCR有较好的预测效能。
Abstract: Purpose: To study the factors influencing the efficacy of neoadjuvant chemotherapy combined with dual-target therapy for HER2-positive breast cancer, and to establish a prediction model, aiming to improve the effectiveness and accuracy of predicting the efficacy of neoadjuvant therapy in patients, thereby providing information for the selection of clinical diagnosis and treatment plans. Methods: Retrospectively analyzed the clinicopathological data of 146 HER2-positive breast cancer patients who received neoadjuvant chemotherapy combined with dual target and completed surgery from January 1, 2021 to December 31, 2022, and were divided into pCR group and non-pCR group according to the MP grading system and RCB system. Single-factor logistic regression was used, and indicators with statistical significance and possible clinical significance were included in LASSO regression. A prediction model was constructed in the form of a nomogram based on the variables selected by LASSO regression, and then the receiver operating characteristic curve (ROC) was used to evaluate the prediction performance of the model, and the calibration curve was used to evaluate the accuracy of the model. DCA was used to evaluate the clinical application value of the model. Finally, the model is internally validated in the validation set. Result: Single-factor Logistic regression was initially used to identify four predictive variables: ER status, PR status, neutrophil-to-lymphocyte ratio (NLR), and RECIST1.1 after four cycles. The four significant factors from the single-factor analysis were then incorporated into LASSO regression. Based on the results of the LASSO analysis, statistically significant independent variables were used to construct predictive models and nomograms. The areas under the ROC curve (AUC) for the training set and validation set were 0.853 and 0.741, respectively. Internal validation demonstrated the nomogram’s strong predictive ability. Conclusion: ER, PR, NLR and RECIST1.1 after four cycles are independent predictive factors for patients with HER2-positive breast cancer to achieve pCR after neoadjuvant therapy. The nomogram model constructed based on the above factors has good predictive performance for pCR after neoadjuvant treatment.
文章引用:陈东旭, 李金洋, 丰竹慧, 吴琍. HER2阳性乳腺癌新辅助化疗联合双靶疗效的列线图预测模型建立[J]. 临床医学进展, 2024, 14(6): 623-636. https://doi.org/10.12677/acm.2024.1461819

1. 引言

乳腺癌是一种异质性疾病,涉及多种遗传因素和环境因素。根据HER2、ER、PR的表达以及Ki-67的增殖情况,分为多个亚型,其中HER2阳性乳腺癌和三阴性乳腺癌是最具侵袭性的两种亚型[1]。乳腺癌的治疗是一种综合性治疗,除了手术联合放疗、化疗,术前治疗越来越多的被提及,又称为新辅助治疗(neoadjuvant therapy),包括化疗、靶向治疗以及内分泌治疗,能够极大地提高手术的成功率和保乳率,为后续治疗提供依据,改善病人预后[2]。HER2阳性乳腺癌是最常见的乳腺癌类型之一,现已证明HER2阳性乳腺癌对HER2抑制剂(如帕妥珠单抗、曲妥珠单抗和恩美曲妥珠单抗)表现出敏感性[3]。新辅助化疗(neoadjuvant chemotherapy, NAC)的保乳率和有效率在HER2阳性乳腺癌中最高[4],并且在HER2阳性早中期乳腺癌中的疗效受到认可,与曲妥珠单抗单靶治疗相比,使用帕妥珠单抗和曲妥珠单抗的双靶治疗更能使患者受益[5],明显改善了HER2阳性乳腺癌的预后并优化手术管理,显示出较高的pCR率[6] [7]。pCR是指经过新辅助治疗后,乳腺没有残余的浸润性肿瘤细胞,无腋窝淋巴结转移,是一个具有高度临床意义的终点[8]。我国的CSBrS-015研究表示,新辅助化疗联合双靶治疗的pCR率为57.9% (324/560) [9],另一项多中心研究显示,46.8% (88/188)的HER2阳性乳腺癌患者达到pCR [10],因此,尽管由于靶向药物的应用提高了HER2阳性乳腺癌患者的pCR率,但仍有部分患者对新辅助治疗不敏感,甚至新辅助治疗不仅未能达成预期效果,反而造成不可逆的毒副反应。因此寻找新辅助治疗后pCR的相关因素可以指导临床医师的精准化治疗。本研究将临床因素与病理因素相结合,深入探究HER2阳性乳腺癌新辅助治疗疗效相关影响因素,同时建立预测模型,旨在提高患者新辅助治疗疗效预测的有效性和准确性,从而为临床诊疗方案的选择提供参考。

2. 材料与方法

2.1. 研究对象

回顾性分析2021年1月1日~2022年12月31日在青岛大学附属医院乳腺病诊疗中心初治的接受新辅助化疗联合双靶治疗并完成手术的HER2阳性乳腺癌患者的临床病理资料,按照纳入和排除标准,将符合标准的146例患者按6:4比例随机划分为训练集(87例)和测试集(59例)。纳入标准:1) 在新辅助治疗前于我院行肿物穿刺活检病理确诊为乳腺癌;2) 已行免疫组化染色或荧光原位杂交技术确定为HER2阳性;3) 在新辅助治疗前未行放疗、化疗等抗肿瘤相关治疗;4) 至少接受4个周期的新辅助化疗联合双靶治疗;5) 治疗期间均行乳腺彩超、乳腺MRI检查,临床病理资料完整;6) 新辅助治疗结束后于我院行根治性手术治疗且术后行疗效评估;7) 新辅助治疗期间未接受相关内分泌治疗。排除标准:1) 伴远处转移者;2) 合并其他相关系统疾病不能耐受新辅助治疗者;3) 妊娠期乳腺癌、男性乳腺癌、隐匿性乳腺癌、炎性乳腺癌、双侧乳腺癌、炎性乳腺癌;4) 临床资料不完善。

2.2. 研究方法

通过分析病例资料,收集患者相关临床及病理信息:年龄、月经情况、BMI、T分期、N分期、化疗周期、化疗方案、治疗前NLR、化疗期间影像学检查结果(乳腺彩超、乳腺MRI、乳腺X线摄影等)、穿刺病理及术后病理(组织学分级、病理类型、免疫组化指标等)等内容。所有乳腺癌患者都完成了至少4周期的新辅助化疗联合双靶治疗,并于新辅助治疗结束后4周以内接受乳腺癌根治性手术治疗。乳腺癌新辅助治疗四周期之后的临床疗效评价是以实体瘤疗效评价标准(RECIST1.1) [11]作为参考实施,具体可划分成四类:完全缓解(CR):相关靶病灶全都消失,各病理性淋巴结短直径都减少到10 mm以下;部分缓解(PR):靶病灶总径和基线对比缩小程度不低于30%;疾病稳定(SD):介于PR与PD之间;疾病进展(PD):靶病灶直径之和增大水平超过20%;同时还需要满足直径和绝对值增加5 mm以上;观察到一个或者是多个新病灶。新辅助治疗后的病理评价是采用MP系统结合RCB系统,通过MP系统和RCB系统将患者分为两组(pCR组和非pCR组),比较两组患者在临床指标以及病理指标方面是否具有差异。

2.3. 统计学分析

我们选取了年龄、BMI、月经状态、NLR、HER2、ER、PR、Ki-67、T分期、N分期、组织学分期、四周期后RECIST1.1、化疗周期、化疗方案等多个临床和病理数据。将纳入标准的146患者作为研究对象,并按6:4的比例随机分组作为研究对象,其中87例作为训练集,59例作为验证集。以新辅助治疗后是否PCR为因变量,以患者的临床以及病理特征为自变量,对训练集样本进行单因素logistic回归分析,统计每个数值的P值。然后,在单因素Cox回归分析结果中,若P值小于0.05,则数据纳入LASSO回归分析,以确定影响HER2阳性乳腺癌新辅助治疗pCR的独立预测因素。在此基础上,我们建立了新辅助治疗pCR预测模型列线图。列线图是一种直观、简单且易于应用的预测模型,它可以将复杂的回归模型转化为图形化的形式,用于预测患者的pCR。列线图还可以按照比例,将逻辑回归中的每个回归系数转换为0到100分的范围,同时,我们采用校准曲线对构建的模型进行评估。用“rms”包绘制Cox比例风险回归、列线图和校准曲线。通过单因素logistic回归分析和多因素logistic分析,我们筛选出了影响HER2阳性乳腺癌新辅助治疗pCR的独立因素。随后分别在训练集与验证集中分别使用ROC曲线、DCA曲线以及校正曲线评估模型。

3. 结果

3.1. 患者临床病理特征与单因素分析

本研究共纳入146例于我院行新辅助治疗的HER2阳性乳腺癌患者,临床病理特征见表1,在训练集中采用单因素logistic确定乳腺癌新辅助治疗疗效的影响因素,在单因素回归分析结果中,四周期后RECIST1.1 (P < 0.001)、PR (P = 0.007)、ER (P = 0.001)、NLR (P = 0.012)是新辅助治疗后pCR的影响因素。而月经状态、BMI、年龄、HER2、Ki-67、T分期、N分期、组织学分级、化疗周期、化疗方案与pCR无显著相关性,见表2

Table 1. Clinical and pathological features n(%)

1. 临床病理特征n(%)

临床病理特征

非PCR组

(n = 50)

PCR组

(n = 96)

全组

(n = 146)

年龄(岁)




≤40

9 (18.0)

10 (10.4)

19 (13.0)

>40

41 (82.0)

86 (89.6)

127 (87.0)

BMI (kg/m2)




≤24

23 (46.0)

44 (45.8)

67 (45.9)

>24

27 (54.0)

52 (54.2)

79 (54.1)

月经状态




未绝经

20 (40.0)

38 (39.6)

58 (39.7)

已绝经

30 (60.0)

58 (60.4)

88 (60.3)

NLR




≤2.07

27 (54.0)

72 (75.0)

99 (67.8)

>2.07

23 (46.0)

24 (25.0)

47 (32.2)

HER2




2+

6 (12.0)

4 (4.2)

10 (6.8)

3+

44 (88.0)

92 (95.8)

136 (93.2)

ER




14 (28.0)

60 (62.5)

74 (50.7)

36 (72.0)

36 (37.5)

72 (49.3)

PR




15 (30.0)

62 (64.6)

77 (52.7)

35 (70.0)

34 (35.4)

69 (47.3)

Ki-67




低表达

3 (6.0)

6 (6.3)

9 (6.2)

高表达

47 (94.0)

90 (93.8)

137 (93.8)

T分期




1

5 (10.0)

6 (6.3)

11 (7.5)

2

30 (60.0)

63 (65.6)

93 (63.7)

3

14 (28.0)

22 (22.9)

36 (24.7)

4

1 (2.0)

5 (5.2)

6 (4.1)

N分期




淋巴结阴性

9 (18.0)

18 (18.8)

27 (18.5)

淋巴结阳性

41 (82.0)

78 (81.3)

119 (81.5)

组织学分期




2

39 (76.0)

69 (71.9)

108 (74.0)

3

11 (22.0)

27 (28.1)

38 (26.0)

四周期后RECIST1.1




CR

2 (4.0)

13 (13.5)

15 (10.3)

PR

27 (54.0)

82 (85.4)

109 (74.7)

SD

21 (42.0)

1 (1.0)

22 (15.1)

化疗周期




≤6

41 (82.0)

80 (83.3)

121 (82.9)

=7~8

8 (16.0)

15 (15.6)

23 (15.8)

≥9

1 (2.0)

1 (1.0)

2 (1.4)

化疗方案




紫杉类 + 卡铂

36 (72.0)

76 (79.2)

112 (76.7)

紫杉类

6 (12.0)

12 (8.3)

18 (12.3)

紫杉类 + 蒽环类

8 (16.0)

8 (12.5)

16 (11.0)

Table 2. Univariate analysis of predictive factors

2. 预测因素的单因素分析

变量

OR

95%CI

P

年龄

1.03

0.23~4.65

P = 0.965

BMI

0.85

0.36~2.04

P = 0.717

月经状态

0.47

0.18~1.20

P = 0.113

NLR

0.44

0.23~0.84

P = 0.012

HER2

3.79

0.65~21.96

P = 0.138

ER

0.21

0.08~0.54

P = 0.001

PR

0.28

0.11~0.71

P = 0.007

Ki~67

0.85

0.15~4. 92

P = 0.856

T分期

1.64

0.76~3.54

P = 0.206

N分期

1.04

0.34~3.19

P = 0.947

组织学分期

1.95

0.57~6.67

P = 0.285

四周期后RECIST1.1

0.07

0.02~0.25

P<0.001

化疗周期

1.17

0.39~3.50

P = 0.778

化疗方案

0.99

0.50~1.98

P = 0.981

3.2. 研究因素的LASSO回归分析

将训练集中单因素logistic分析中具有统计学意义的4个特征因素纳入到LASSO回归分析中,以新辅助治疗是否pCR为因变量,以患者的临床病理特征为自变量,使用R软件的glmnet包进行回归分析,通过10折交叉验证选择最佳λ值,见图1。此时选入的非零系数变量有NLR、ER、PR以及四周期后RECIST1.1。其中四周期后RECIST1.1 LASSO相关系数最大为−2.269,PR最小为−0.245,见图2表3

Table 3. Correlation coefficient results of LASSO regression

3. LASSO回归的相关系数结果

变量

LASSO相关系数

NLR

−0.505969646

ER

−1.107293561

PR

−0.24494889

四周期后RECIST1.1

−2.269117483

Figure 1. LASSO regression cross validation plot

1. LASSO回归交叉验证图

Figure 2. LASSO regression coefficient distribution plot

2. LASSO回归系数分布图

3.3. 预测模型的构建

列线图模型是一种直观、简单易用的预测工具,能够将复杂的回归模型转化为图形化形式,通过可视化呈现每个影响因素的得分,从而直接预测患者的疗效。基于单因素Cox回归分析,LASSO回归分析筛选得到的相关预后因素,我们建立了基于NLR、ER、PR以及四周期后RECIST1.1这些临床病理特征的列线图。列线图结果表明,NLR以及四周期后RECIST1.1不仅是pCR的独立预测因子,而且还是单项得分最高的前两名,见图3

Figure 3. Nomogram was constructed according to predictive factors

3. 基于预测因素建立列线图

3.4. 预测模型的评价

为了进一步了解列线图的敏感性和准确性等预测性能,我们通过观察训练集与验证集的ROC曲线得分。结果表明在训练集和验证集的ROC曲线下面积(AUC)分别为0.853,0.741,见图4图5。AUC数值均大于0.7,表现出很好的准确性,证明该模型具有较好的辨别能力。按照预测概率和实际结果之间呈现的关系完成模型二校正曲线绘制,可以评估其预测准确性。校正曲线的结果显示,无论是训练集还是验证集,显示模型的表观曲线都与偏差矫正后曲线拟合良好,预测的pCR结果与数据集中统计的实际结果基本一致,见图6图7

3.5. 临床应用

为了评估列线图模型的性能,我们绘制了决策曲线分析(DCA)图表(见图8图9)。DCA是一种常用的方法,用于评估预测模型在临床决策中的实用性。通过DCA,我们能够比较模型的预测效果与两种极端情况(对所有患者进行干预或对所有患者不进行干预)之间的差异,从而确定模型的临床应用价值。研究结果发现列线图模型的校准曲线与理想曲线的拟合情况较好。说明该模型在临床决策中具有一定的实用性。

Figure 4. ROC curve of training group

4. 训练集ROC曲线

Figure 5. ROC curve of testing group

5. 验证集ROC曲线

Figure 6. Calibration curve of training group

6. 训练集校正曲线

Figure 7. Calibration curve of testing group

7. 验证集校正曲线

Figure 8. DCA curve of training group

8. 训练集DCA曲线

Figure 9. DCA curve of testing group

9. 验证集DCA曲线

4. 讨论

早期疗效的评估在新辅助治疗过程中极为关键。通过早期疗效评估,可以及时发现对新辅助治疗不敏感、疗效欠佳的患者,从而今早针对性调整相应的治疗方案,这样有利于患者的长期预后。目前来说,评估新辅助治疗疗效的方法主要有临床评估和病理评估。病理评估是金标准,但是其缺陷在于不能早期反映新辅助治疗疗效,必须通过术后获取。而临床评估可以帮助我们在术前预测病理评估结果国际通用的临床评估标准是2002年提出的实体瘤疗效评价标准(RECIST),通过不断修订得到了目前广泛应用的RECIST1.1 [11],它是用肿瘤最大径变化来反映疗效。精确的肿瘤直径一般通过乳腺影像学检查获取,包括乳腺彩超、乳腺X线摄影、核磁共振成像(MRI)、正电子发射计算机断层显像(PET/CT)等。对于肿瘤范围的测量,MRI的准确性要优于乳腺彩超和乳腺X线摄影[12]。有研究表明,弥散加权成像(DWI)可以用来预测新辅助治疗的反应,通过分析表观弥散系数(ADC值)和磁共振体素不相(IVIM)影像能获取HER2阳性乳腺癌的预后信息,有助于帮助我们指定个体化的抗HER2靶向治疗方案[13]。MRI在测量新辅助治疗后的残余肿瘤大小上有明显优势,对后续手术切除范围的确定有指导意义,但目前即使MRI提示完全缓解(CR)仍无法豁免手术[14]。同时,通过MRI评估新辅助治疗后pCR的准确性还与分子亚型相关[15],其中在三阴性、HER2阳性、Luminal B高Ki67%亚型中的准确性较高。本研究临床疗效评估以乳腺MRI结果为主。本研究通过对纳入的146例HER2阳性乳腺癌患者的新辅助治疗疗效进行分析,在单因素分析结果中,四周期后RECIST1.1评估与新辅助治疗后pCR相关,P < 0.001,具有统计学意义,在LASSO回归分析中,其中四周期后RECIST1.1评估LASSO相关系数最大为−2.269,能作为预测新辅助化疗后pCR的独立预测因子。有研究表明,HER2阳性乳腺癌患者的HR状态在新辅助治疗中对pCR结局的影响不同,接受H + P或H治疗的患者在HR阴性中的获益(pCR率范围,0.69~0.85;绝对率 = 0.77;95%CI,0.67~0.87;P < 0.001)比HR阳性(pCR率范围,0.26~0.68;绝对率 = 0.46;95%CI,0.21~0.70;P < 0.001)中更明显[16]。Gianni L等人的研究也表明,与HR+/HER2+乳腺癌相比,双靶治疗在HR−/HER2+乳腺癌中的pCR率更高(分别为63.2%和26.0%) [17]。在本研究中,用单因素logistic分析结果后显示PR (P = 0.007)、ER (P = 0.001)与pCR具有显著相关性,LASSO回归分析显示ER状态和PR状态均是pCR的有效预测因素,结果与上述相关研究基本一致。在许多肿瘤中,NLR升高已被视为预后不良的高危因素[18]。对于乳腺癌患者,不同的分子亚型也影响了NLR的预后效应[19]。有人研究了NLR在HER2阳性乳腺癌中的作用,在HER2阳性并接受曲妥珠单抗治疗的乳腺癌患者中,治疗前低NLR值与更好的DFS相关,可能有助于区分曲妥珠单抗治疗的潜在受益者[20]。在另一项研究中,通过长期随访,在接受治疗前高NLR的曲妥珠单抗辅助治疗的HER2阳性早期乳腺癌患者中,DFS较短[21]。CLEOPATRA试验研究了NLR在接受靶向治疗的HER2阳性转移性乳腺癌(MBC)患者中的预后作用,多因素分析显示,低NLR是TH (多西他赛 + 曲妥珠单抗)组PFS和OS的预测因子,也是THP (多西他赛 + 曲妥珠单抗 + 帕妥珠单抗)组PFS的预测因子[22]。在本研究中,在单因素回归分析结果中,NLR (P = 0.012)与乳腺癌pCR具有相关,在经LASSO回归分析筛选后建立的列线图中,NLR不仅是HER2阳性乳腺癌患者pCR的独立预测因子,而且处在单项得分最高的前两名中。通过本研究我们可以得出治疗前NLR值较低的HER 2阳性患者可以从新辅助化疗联合靶向治疗中获益。目前也有研究表明BMI、HER2、Ki-67、组织学分级等指标是新辅助治疗后pCR的预测因素[23]-[27],但是在本次研究中,均无统计学意义,分析原因可能是本研究为单中心研究,且纳入样本量相对较少。

在HER2阳性乳腺癌中,影响新辅助治疗后pCR的相关因素可能有很多,基于本研究的146例患者,通过分析临床资料,我们筛选出了四个有临床意义的相关因素,分别是四周期后RECIST1.1、ER、PR、NLR。基于这些因素的临床资料,我们建立了新辅助治疗后pCR的预测模型,并且进行了验证与分析。从预测模型的ROC曲线和校正曲线可以看出该模型预测能力较好,可以有效指导临床医师进行精准化治疗,从而帮助改善患者预后。但是要想获取更加可靠的结论,需要后续多中心、前瞻性的研究。

NOTES

*通讯作者。

参考文献

[1] Barzaman, K., Karami, J., Zarei, Z., Hosseinzadeh, A., Kazemi, M.H., Moradi-Kalbolandi, S., et al. (2020) Breast Cancer: Biology, Biomarkers, and Treatments. International Immunopharmacology, 84, Article 106535.
https://doi.org/10.1016/j.intimp.2020.106535
[2] Shien, T. and Iwata, H. (2020) Adjuvant and Neoadjuvant Therapy for Breast Cancer. Japanese Journal of Clinical Oncology, 50, 225-229.
https://doi.org/10.1093/jjco/hyz213
[3] Zhang, J., Wu, Y., Li, Y., Li, S., Liu, J., Yang, X., et al. (2024) Natural Products and Derivatives for Breast Cancer Treatment: From Drug Discovery to Molecular Mechanism. Phytomedicine, 129, Article 155600.
https://doi.org/10.1016/j.phymed.2024.155600
[4] Carey, L.A. and Sharpless, N.E. (2011) Parp and Cancer—If It’s Broke, Don’t Fix It. New England Journal of Medicine, 364, 277-279.
https://doi.org/10.1056/nejme1012546
[5] Boughey, J.C., McCall, L.M., Ballman, K.V., Mittendorf, E.A., Ahrendt, G.M., Wilke, L.G., et al. (2014) Tumor Biology Correlates with Rates of Breast-Conserving Surgery and Pathologic Complete Response after Neoadjuvant Chemotherapy for Breast Cancer. Annals of Surgery, 260, 608-616.
https://doi.org/10.1097/sla.0000000000000924
[6] Takada, M. and Toi, M. (2020) Neoadjuvant Treatment for HER2-Positive Breast Cancer. Chinese Clinical Oncology, 9, 32-32.
https://doi.org/10.21037/cco-20-123
[7] Morrow, M. (2018) Management of the Node-Positive Axilla in Breast Cancer in 2017. JAMA Oncology, 4, 250-251.
https://doi.org/10.1001/jamaoncol.2017.3625
[8] Villacampa, G., Tung, N.M., Pernas, S., Paré, L., Bueno-Muiño, C., Echavarría, I., et al. (2023) Association of HER2DX with Pathological Complete Response and Survival Outcomes in HER2-Positive Breast Cancer. Annals of Oncology, 34, 783-795.
https://doi.org/10.1016/j.annonc.2023.05.012
[9] Cheng, Y., Xiang, H., Xin, L., Duan, X. and Liu, Y. (2022) Neoadjuvant Therapy for Early Human Epidermal Growth Factor Receptor 2 Positive Breast Cancer in China: A Multicenter Real-World Study (CSBrS-015). Chinese Medical Journal, 135, 2311-2318.
https://doi.org/10.1097/cm9.0000000000002197
[10] Zhou, M., Wang, S., Wan, N., Yuan, S., Hu, X., Zhou, W., et al. (2022) Efficacy and Safety of Neoadjuvant Pertuzumab Plus Trastuzumab in Combination with Chemotherapy Regimen in Chinese Patients with HER2-Positive Early Breast Cancer: A Real-World Retrospective Multi-Center Cohort Study. Annals of Translational Medicine, 10, 1387-1387.
https://doi.org/10.21037/atm-22-6054
[11] Eisenhauer, E.A., Therasse, P., Bogaerts, J., Schwartz, L.H., Sargent, D., Ford, R., et al. (2009) New Response Evaluation Criteria in Solid Tumours: Revised Recist Guideline (Version 1.1). European Journal of Cancer, 45, 228-247.
https://doi.org/10.1016/j.ejca.2008.10.026
[12] Choi, W.J., Kim, H.H., Cha, J.H., Shin, H.J. and Chae, E.Y. (2019) Comparison of Pathologic Response Evaluation Systems after Neoadjuvant Chemotherapy in Breast Cancers: Correlation with Computer-Aided Diagnosis of MRI Features. American Journal of Roentgenology, 213, 944-952.
https://doi.org/10.2214/ajr.18.21016
[13] You, C., Li, J., Zhi, W., Chen, Y., Yang, W., Gu, Y., et al. (2019) The Volumetric-Tumour Histogram-Based Analysis of Intravoxel Incoherent Motion and Non-Gaussian Diffusion MRI: Association with Prognostic Factors in HER2-Positive Breast Cancer. Journal of Translational Medicine, 17, Article No. 182.
https://doi.org/10.1186/s12967-019-1911-6
[14] Negrão, E.M.S., Souza, J.A., Marques, E.F. and Bitencourt, A.G.V. (2019) Breast Cancer Phenotype Influences MRI Response Evaluation after Neoadjuvant Chemotherapy. European Journal of Radiology, 120, Article 108701.
https://doi.org/10.1016/j.ejrad.2019.108701
[15] Zhang, X., Wang, D., Liu, Z., Wang, Z., Li, Q., Xu, H., et al. (2020) The Diagnostic Accuracy of Magnetic Resonance Imaging in Predicting Pathologic Complete Response after Neoadjuvant Chemotherapy in Patients with Different Molecular Subtypes of Breast Cancer. Quantitative Imaging in Medicine and Surgery, 10, 197-210.
https://doi.org/10.21037/qims.2019.11.16
[16] Chen, S., Liang, Y., Feng, Z. and Wang, M. (2019) Efficacy and Safety of HER2 Inhibitors in Combination with or without Pertuzumab for HER2-Positive Breast Cancer: A Systematic Review and Meta-Analysis. BMC Cancer, 19, Article No. 973.
https://doi.org/10.1186/s12885-019-6132-0
[17] Nahta, R., Hung, M. and Esteva, F.J. (2004) The Her-2-Targeting Antibodies Trastuzumab and Pertuzumab Synergistically Inhibit the Survival of Breast Cancer Cells. Cancer Research, 64, 2343-2346.
https://doi.org/10.1158/0008-5472.can-03-3856
[18] Guthrie, G.J.K., Charles, K.A., Roxburgh, C.S.D., Horgan, P.G., McMillan, D.C. and Clarke, S.J. (2013) The Systemic Inflammation-Based Neutrophil-Lymphocyte Ratio: Experience in Patients with Cancer. Critical Reviews in Oncology/Hematology, 88, 218-230.
https://doi.org/10.1016/j.critrevonc.2013.03.010
[19] Noh, H., Eomm, M. and Han, A. (2013) Usefulness of Pretreatment Neutrophil to Lymphocyte Ratio in Predicting Disease-Specific Survival in Breast Cancer Patients. Journal of Breast Cancer, 16, 55-59.
[20] Ding, N., Huang, J., Li, N., Yuan, J., Wang, S. and Xiao, Z. (2020) Roles of Neutrophil/Lymphocyte Ratio in Prognosis and in Differentiation of Potential Beneficiaries in HER2-Positive Breast Cancer with Trastuzumab Therapy. BMC Cancer, 20, Article No. 235.
https://doi.org/10.1186/s12885-020-06750-3
[21] Ulas, A., Avci, N., Kos, T., Cubukcu, E., Olmez, O.F., Bulut, N. and Degirmenci, M. (2015) Are Neutrophil/Lymphocyte Ratio and Platelet/Lymphocyte Ratio Associated with Prognosis in Patients with HER2-Positive Early Breast Cancer Receiving Adjuvant Trastuzumab? Journal of B.U.ON., 20, 714-722.
[22] Ding, N., Pang, J., Liu, X., He, X., Zhou, W., Xie, H., et al. (2024) Prognostic Value of Baseline Neutrophil/Lymphocyte Ratio in HER2-Positive Metastatic Breast Cancer: Exploratory Analysis of Data from the Cleopatra Trial. Breast Cancer Research, 26, Article No. 9.
https://doi.org/10.1186/s13058-023-01761-x
[23] Litton, J.K., Gonzalez-Angulo, A.M., Warneke, C.L., Buzdar, A.U., Kau, S., Bondy, M., et al. (2008) Relationship between Obesity and Pathologic Response to Neoadjuvant Chemotherapy among Women with Operable Breast Cancer. Journal of Clinical Oncology, 26, 4072-4077.
https://doi.org/10.1200/jco.2007.14.4527
[24] Krystel-Whittemore, M., Xu, J., Brogi, E., Ventura, K., Patil, S., Ross, D.S., et al. (2019) Pathologic Complete Response Rate According to HER2 Detection Methods in HER2-Positive Breast Cancer Treated with Neoadjuvant Systemic Therapy. Breast Cancer Research and Treatment, 177, 61-66.
https://doi.org/10.1007/s10549-019-05295-9
[25] Wang, Y., Singh, K., Dizon, D., Graves, T., Amin, A. and Yakirevich, E. (2021) Immunohistochemical HER2 Score Correlates with Response to Neoadjuvant Chemotherapy in HER2-Positive Primary Breast Cancer. Breast Cancer Research and Treatment, 186, 667-676.
https://doi.org/10.1007/s10549-021-06124-8
[26] Sánchez-Muñoz, A., Navarro-Perez, V., Plata-Fernández, Y., Santonja, A., Moreno, I., Ribelles, N., et al. (2015) Proliferation Determined by Ki-67 Defines Different Pathologic Response to Neoadjuvant Trastuzumab-Based Chemotherapy in HER2-Positive Breast Cancer. Clinical Breast Cancer, 15, 343-347.
https://doi.org/10.1016/j.clbc.2015.01.005
[27] Kurozumi, S., Inoue, K., Takei, H., Matsumoto, H., Kurosumi, M., Horiguchi, J., et al. (2015) ER, PgR, Ki67, P27kip1, and Histological Grade as Predictors of Pathological Complete Response in Patients with HER2-Positive Breast Cancer Receiving Neoadjuvant Chemotherapy Using Taxanes Followed by Fluorouracil, Epirubicin, and Cyclophosphamide Concomitant with Trastuzumab. BMC Cancer, 15, Article No. 622.
https://doi.org/10.1186/s12885-015-1641-y