一类具有年龄结构的概周期捕食-食饵模型的阈值动力学
Threshold Dynamics of a Class of AlmostPeriodic Predator-Prey Models withAge Structure
DOI: 10.12677/PM.2024.146231, PDF, 下载: 31  浏览: 55 
作者: 刘丹丹:西北师范大学数学与统计学院,甘肃 兰州
关键词: 年龄结构捕食-食饵模型基本再生数概周期Age Structure Predator-Prey Model Basic Reproduction Number Almost Periodicity
摘要: 本文提出并研究了一类具有年龄结构和季节性波动的捕食-食饵模型。为了研究其阈值动力学,引入了该模型的基本再生数R0,并利用比较原理,斜积半流,单调动力系统和持久性理论建立了该模型的阈值型结果。结果表明,当R0 <1时,捕食者种群将趋于灭绝,且无捕食者概周期解全局吸引:而当R0 >1时,捕食者与食饵将会共存。
Abstract: In this paper, we propose and study a predator-prey model with age structure and seasonal uctuations. To study its threshold dynamics, the basic reproduction number R0 for this model is introduced, and a threshold-type result of this model is established by the comparison arguments, skew-product semi ows, monotone dynamical system and persistence theory. The result shows that when R0 < 1, the predator population will tend towards extinction and the predator-free almost periodic solution is globally attractive, while the predators and prey will coexist, when R0 > 1.
文章引用:刘丹丹. 一类具有年龄结构的概周期捕食-食饵模型的阈值动力学[J]. 理论数学, 2024, 14(6): 97-112. https://doi.org/10.12677/PM.2024.146231

参考文献

[1] Lotka, A.J. (1926) Elements of Physical Bology. American Journal of Public Health, 82, 341- 341.
[2] Volterra, V. (1928) Variations and Fluctuations of the Number of Individuals in Animal Species Living Together. Journal of Conservation, 3, 3-51.
https://doi.org/10.1093/icesjms/3.1.3
[3] Novrianti, Sawada, O. and Tsuge, N. (2024) Positive Solutions to the Prey-Predator Equations with Dormancy of Predators. European Journal of Applied Mathematics, 35, 96-108.
https://doi.org/10.1017/S0956792523000104
[4] Arditi, R. and Ginzburg, L. (1989) Coupling in Predator-Prey Dynamics Ratio-Dependence. Journal of Theoretical Biology, 139, 311-326.
https://doi.org/10.1016/S0022-5193(89)80211-5
[5] Service, M.W. (1993) Mosquito Ecology. Field Sampling Methods. 2nd Edition, Elsevier.
https://doi.org/10.1007/978-94-015-8113-4
[6] Aiello, W.G. and Freedman, H.I. (1990) A Time-Delay Model of Single-Species Growth with Stage Structure. Mathematical Biosciences, 101, 139-153.
https://doi.org/10.1016/0025-5564(90)90019-U
[7] Brauer, F. and Castillo-Chavez, C. (2012) Mathematical Models in Population Biology and Epidemiology. In: Texts in Applied Mathematics, Vol. 40, Springer.
https://doi.org/10.1007/978-1-4614-1686-9
[8] Cooke, K., van den Driessche, P. and Zou, X. (1999) Interaction of Maturation Delay and Nonlinear Birth in Population and Epidemic Models. Journal of Mathematical Biology, 39, 332-352.
https://doi.org/10.1007/s002850050194
[9] 陈凤德,陈晓星,张惠英.捕食者具有阶段结构Holling I类功能性反应的捕食模型正周期解的存在性以及全局吸引性[J].数学物理学报,2006,26(1):93-103.
[10] Tao, X.Y. and Zhu, L. H. (2021) Study of Periodic Diffusion and Time Delay Induced Spatiotemporal Patterns in a Predator-Prey System. Chaos, Solitons and Fractals, 150, Article 111101.
https://doi.org/10.1016/j.chaos.2021.111101
[11] Wang, X., Wang, H. and Li, M.Y. (2019) R0 and Sensitivity Analysis of a Predator-Prey Model with Seasonality and Maturation Delay. Mathematical Biosciences, 315, Article 108225.
https://doi.org/10.1016/j.mbs.2019.108225
[12] Chu, H. and Li, Q. (1994) Boundedness and Persistence of a Delayed Predator-Prey Model with Almost Periodic Carrying Capacity. Canadian Applied Mathematics Quarterly, 2, 177-188.
[13] Luo, D. and Wang, Q. (2021) Dynamic Analysis on an Almost Periodic Predator-Prey System with Impulsive Effects and Time Delays. Discrete and Continuous Dynamical Systems|Series B, 26, 3427-3453.
https://doi.org/10.3934/dcdsb.2020238
[14] Kumar, A., Malik, M. and Kang, Y. (2023) Dynamics for a Hybrid Non-Autonomous Prey- Predator System with Generalist Predator and Impulsive Conditions on Time Scales. Interna- tional Journal of Biomathematics, 16, Article 2250067.
https://doi.org/10.1142/S179352452250067X
[15] 程然然,邓诗华.哺乳动物胚胎休眠研究进展[J].生物学教学,2022,47(4):7-9.
[16] 邢鸿飞,安东尼.马丁.穴居动物的进化优势[J].世界科学,2017(10):11-16.
[17] Wang, B.-G., Qiang, L. and Wang, Z.-C. (2020) An Almost Periodic Ross-Macdonald Model with Structured Vector Population in a Patchy Environment. Journal of Mathematical Biology, 80, 835-863.
https://doi.org/10.1007/s00285-019-01443-3
[18] Hale, J.K. and Verduyn Lunel, S.M. (1993) Introduction to Functional Differential Equations. Springer-Verlag.
https://doi.org/10.1007/978-1-4612-4342-7
[19] Smith, H.L. (1995) Monotone Dynamical Systems. American Mathematical Society.
https://doi.org/10.1090/surv/041/01
[20] Zhao, X.-Q. (2017) Dynamical Systems in Population Biology. Springer.
https://doi.org/10.1007/978-3-319-56433-3
[21] Wang, B.-G. and Zhao, X.-Q. (2013) Basic Reproduction Ratios for Almost Periodic Compartmental Epidemic Models. Journal of Dynamics and Differential Equations, 25, 535-562.
https://doi.org/10.1007/s10884-013-9304-7
[22] Qiang, L., Wang, B.-G. and Zhao, X.-Q. (2020) Basic Reproduction Ratios for Almost Periodic Compartmental Models with Time Delay. Journal of Differential Equations, 269, 4440-4476.
https://doi.org/10.1016/j.jde.2020.03.027
[23] Zhao, X.-Q. (2017) Basic Reproduction Ratios for Periodic Compartmental Models with Time Delay. Journal of Dynamics and Differential Equations, 29, 67-82.
https://doi.org/10.1007/s10884-015-9425-2
[24] Smith, H.L. and Waltman, P. (1995) The Theory of the Chemostat. Cambridge University Press.
https://doi.org/10.1017/CBO9780511530043
[25] Wang, B.-G., Li, W.-T. and Qiang, L. (2016) An Almost Periodic Epidemic Model in a Patchy Environment. Discrete and Continuous Dynamical Systems|Series B, 21, 271-289.
https://doi.org/10.3934/dcdsb.2016.21.271
[26] Fink, A.M. (1974) Almost Periodic Differential Equations. Springer-Verlag.
https://doi.org/10.1007/BFb0070324
[27] Sell, G. (1971) Topological Dynamics and Ordinary Differential Equations. Van Nostrand Reinhold.
[28] Hale, J.K. (1988) Asymptotic Behavior of Dissipative Systems. American Mathematical Society.
https://doi.org/10.1090/surv/025
[29] Magal, P. and Zhao, X.-Q. (2005) Global Attractors and Steady States for Uniformly Persistent Dynamical Systems. SIAM Journal on Mathematical Analysis, 37, 251-275.
https://doi.org/10.1137/S0036141003439173