循环浆细胞在多发性骨髓瘤中的临床价值及其形成机制
The Clinical Value and Mechanism of Circulating Plasma Cells in Multiple Myeloma
DOI: 10.12677/acm.2024.1461792, PDF, HTML, XML, 下载: 23  浏览: 42  科研立项经费支持
作者: 王 鹏:西安医学院研究生工作部,陕西 西安;张丽洁*:陕西省人民医院血液病研究室,陕西 西安
关键词: 循环浆细胞多发性骨髓瘤综述Circulating Plasma Cells Multiple Myeloma Reviews
摘要: 长期以来,循环浆细胞(circulating plasma cell, CPC)的存在一直被认为是多发性骨髓瘤(multiple myeloma, MM)中有价值的预后生物标志物。多项研究表明,CPC检测可用于监测肿瘤负荷,高CPC水平可以预测治疗反应差和不良结局的高危MM。但是CPC的形成机制目前还尚未明确。本文对CPC在MM中的临床价值及CPC形成的可能机制进行综述。
Abstract: The presence of circulating plasma cells (CPC) has long been considered a valuable prognostic biomarker in multiple myeloma (MM). Multiple studies have shown that CPC detection can be used to monitor tumor burden, and high CPC levels can predict high-risk MM for poor treatment response and adverse outcomes. However, the mechanism of CPC formation is still unclear. This article reviews the clinical value of CPC in MM and the possible mechanism of CPC formation.
文章引用:王鹏, 张丽洁. 循环浆细胞在多发性骨髓瘤中的临床价值及其形成机制[J]. 临床医学进展, 2024, 14(6): 428-434. https://doi.org/10.12677/acm.2024.1461792

1. 多发性骨髓瘤(Multiplemyeloma, MM)与循环浆细胞(Circulating Plasma Cell, CPC)概述

多发性骨髓瘤(MM)是最常见的血液系统恶性肿瘤之一,其病因和特征是恶性浆细胞的克隆性增殖。患者可能出现高钙血症、肾功能不全、贫血或骨破坏等症状。克隆性浆细胞主要分布在骨髓中,也可以进入血液循环,随后进入髓内或远处组织,存在于外周血中的这些细胞被称为循环浆细胞(CPC) [1]。CPC代表了克隆骨髓MM细胞的一个特定子集,具有特定的转录谱,整合素和粘附分子的表达减少,因此对骨髓微环境的依赖性较低,并且增加了进入外周血的能力[2] [3] [4]。CPC在一天中有明显的波动,在凌晨4点到中午12点之间达到峰值[3]。在过去十多年,CPC的存在一直被认为是MM中有价值的预后生物标志物[5] [6]

2. CPC的检测方法

CPC可以通过外周血涂片的形态学或使用更灵敏的技术(如流式细胞术)来检测。外周血涂片上CPC的形态学评价是一种廉价而简单的技术。但是,该技术存在一些问题,包括低灵敏度、观察者之间的差异、无法评估克隆性,以及在某些情况下,由于非典型形态而难以识别CPC。多参数流式细胞术的兴起为MM的诊断和微小残留病监测以及外周血中微小CPC的检测带来了可靠的方法[7] [8]。多参数流式细胞术检测CPC可以避免重复侵入性骨髓活检,并且比传统的基于载玻片的方法具有更高的灵敏度[9]。使用十色单管流式细胞术可在67%~92%的新诊断MM患者中检测到CPC,中位CPC百分比为0.016%~0.03% [2] [10]-[13]。通过使用下一代流式细胞术,可以在96%~100%的新诊断多发性骨髓瘤病例中检测到CPC [14]。研究之间的差异可能与用于评估外周血CPC的技术的敏感性有关。

3. CPC在MM中的临床价值

1) 使用多参数流式细胞术检测CPC可能为鉴别MM高危人群并监测MM肿瘤负荷提供一种侵入性更小、更可靠的方法。为了探讨CPC对肿瘤负荷的影响及其对疗效和预后的预测价值,Yuan Xia [15]等人开展了301例患者的临床研究,研究证明,CPC量化可以有效地反映肿瘤负荷。他们还发现较高的CPC与较低的血红蛋白、较高的β2微球蛋白和乳酸脱氢酶相关。β2微球蛋白、乳酸脱氢酶和血红蛋白是MM中肿瘤负荷的生物标志物[15],这表明CPC的存在是高肿瘤负荷的结果。在过去,骨髓浆细胞是诊断和监测MM最成熟的参数之一,但是使用该参数检测MM需要反复进行骨髓活检,对患者有一定的创伤。Korthals等人[16]报道,通过高分子量聚合酶链反应检测外周血微小残留病灶水平比骨髓低40倍。在另一项使用多参数流式细胞术的研究中,发现绝对CPC计数与骨髓浆细胞百分比之间存在非线性相关[17]。此外,Leena Gupta等人研究中也有同样结论[18]。因此,CPC检测可用于监测肿瘤负荷,而无需反复骨髓活检。

2) CPC在MM的预后中具有重要意义。Cowan等人在他们的骨髓瘤患者队列中显示,与没有CPC的患者相比,存在CPC的患者的无进展生存期较低[19]。Galieni P等人在168名MM患者队列中显示,无CPC亚组的R-ISS II期患者的总生存期(OS)和无进展生存期(PFS)率高于CPC亚组(OS: 44.7% vs. 16.3%, P = 0.0089; PFS: 27.8% vs. 8.1%, p = 0.0118) [20]。Han W等报道,CPC水平 ≥ 0.105%是不良结局的独立危险因素(p < 0.001) [21]。Garces JJ等人的研究报道,未检测到CPC的患者无论完全缓解和最小残留病(MRD)状态如何,都有异常的PFS [11]。Bertamini L [12]等人对401例MFC患者的CPC进行了前瞻性评估,中位随访时间为50个月。他们发现CPC百分比和骨髓PC之间存在一定的相关性(r = 0.38)。他们进一步确定了最佳的CPC截止值为0.07%。在多变量分析中,CPC高组与CPC低组相比,PFS显著缩短(p < 0.001,4年PFS 38% vs. 69%)和OS (p < 0.001,4年OS 68% vs. 92%)。综合以上各项研究结果可以得出结论,在诊断时或诱导治疗后的高CPC水平可以预测治疗反应差和不良结局的高危MM。因此,建议在诊断时纳入CPC计数,以更好地预测患者。

3) 原发性浆细胞白血病(plasma cell leukemia, PCL)在恶性单克隆γ病谱系中是独特的,其特点是预后差,生存期最短,一些遗传异常(即缺失17p、次二倍体和t(11; 14))的频率升高,并具有一些独特的分子和表观遗传学特征[22]-[26]。一些典型的临床特征,骨髓储备减少、髓外受累和LDH升高,比“标准”MM患者更常见[22] [23] [27]-[29]。PCL在大约50年前被Kyle等人提出作为一种独立的临床实体[30],其定义为:通过PB涂片上的形态学评估,CPC的存在率 ≥ 20%或绝对值 ≥2 × 109/L。2021年,国际骨髓瘤工作组发表了一份立场文件,根据美国和西班牙的两项回顾性研究,改变了PCL的诊断标准,其新的定义为:在诊断为症状性MM的患者外周血涂片中存在5%或更多的循环浆细胞[22]。然而,在2022年,Tomas Jelinek [13]等人建立了2% CPC的阈值,该阈值确定了与PCL患者预后几乎相同的超高危骨髓瘤患者。Tomas Jelinek他们证明,在不适合移植的情况下(3.1 vs. 15.6个月,14.6 vs. 3.6个月)和适合移植的情况下(15.4 vs. 25.3个月,43.1 vs. 79.7个月),2%~20% ctc患者的PFS和OS均明显短于2% ctc患者,具有临床高度相关的差异。重要的是,他们成功地在GEMCLARIDEX试验中治疗的不适合移植的NDMM患者的独立队列中验证了这一截止点。最后,在揭示了流式细胞术和形态学之间CPC数量的中位数差异后,发现2%~5% CPC的患者与5%~20% CPC的患者具有相当的结果。此外,2%~20%的CPC患者的结果与Hofste Op Bruinink等人开发的转录组分类器鉴定的结果相似[2]。通过这项研究,Tomas Jelinek等人认为PCL不是一种独特的临床实体,而是一种超高风险MM的代表。目前,PCL患者几乎总是被排除在商业和学术临床试验之外。此外,在世界上许多国家,PCL患者需要最现代和最强化的治疗,但对于新型和昂贵的药物,存在报销问题[7] [13] [22]。在CPC的2%临界值下,能够识别出一小部分新诊断的多发性骨髓瘤患者(约占所有患者的4%~7%)具有类似PCL特征的超高风险疾病。这部分MM患者可能受益于更强化的一线治疗,或通过纳入针对超高风险MM和PCL设计的特定临床试验。因此,检测CPC应当成为所有新诊断多发性骨髓瘤患者诊断工作的重要组成部分。

4) 随着高灵敏度多参数流式细胞术的出现,不仅可以检测非常低数量的CPC,而且可以基于其标记物谱将其分类为循环肿瘤浆细胞(CTPC)和循环正常浆细胞(CNPC)。然而,大多数以前的研究没有分别分析循环中的正常和肿瘤浆细胞。Leena Gupta等人使用十色单管流式细胞术分析了21例新诊断MM患者基线(诊断时)外周血样本中的CPC,研究了CTPC和CNPC负荷与各种临床和实验室参数之间的关系。他们的研究发现,女性患者中CNPC的平均百分比明显更高。相比之下,血小板减少症和低白蛋白血症患者的CNPC负荷较低。非受累免疫球蛋白的减少或免疫轻瘫在MM患者[31]中很常见,并且已知对PFS有不良影响[32]。MM患者中剩余的正常浆细胞的数量,除了B淋巴细胞外,可能有助于非受累(正常)免疫球蛋白的产生。因此,保留的正常浆细胞负荷可能具有预后相关性。也可以假设,MM的治疗反应可能会导致正常浆细胞的比例逐渐增加,从而产生更多的非相关免疫球蛋白,并使患者的整体免疫功能更好。在整个治疗过程中对CNPC的连续监测也可以深入了解MM中免疫麻痹的动态,并可能有助于疾病的预后。此外,Leena Gupta等人研究还发现,存在溶骨性病变、浆细胞瘤、光学显微镜检查外周血膜上存在PC、存在Chr 1 p32缺失、CTPC上CD 56和CD 81表达的患者以及不存在VGPR的患者中,一个或多个指示CTPC负荷的变量(即百分比、每微升的绝对计数和CTPC占所有CPC的比例)较高。相反,CTPC的负荷(百分比,绝对计数和CTPC的比例)在伴有淀粉样变性的患者中显著较低[18]。在存在溶解性病变和浆细胞瘤的病例中,以及在伴有淀粉样变性的病例中CTPC的显著较低负荷尚未报道。上述关联可能与疾病的病理生物学有关,需要进一步探索和理解。类似地,注意到CD 56和CD 81的细胞表面表达的存在与较高载量的CTPC相关。这一发现似乎与以下事实相反,即CD 56和CD 81的丢失更常见于从骨髓中排出并存在于外周血循环中的MM细胞[33]。CD 56的丢失通常与浆细胞白血病相关,实际上已被认为是其标志[34]。另一方面,骨髓MM细胞上表达CD 81的缺失与更好的PFS相关[35]。他们发现在显示CD 56和CD 81表达的患者中CTPC负荷更高,需要在更大的MM患者队列中进行确认需要在肿瘤生物学的背景下进行分析。

4. CPC的形成机制

1) 克隆型IGH重排的存在和程度与CPC定量存在一定的相关性。任慧娟[36]等人研究结果发现,使用基于NGS的IGH FR1分析和/或IGK分析的克隆重排检测率为88.14%。克隆性IGH和/或IGK重排的检测率与其他研究的检测率相似。而且在克隆性IGH重排(−)和IGK重排(−)患者中,CPC比例也明显偏低。IgH易位可能导致IgH组装所需的IGHV基因缺失或沉默[37],由此可以推测,在CPC-高的MM中,更高的IgH易位发生率可能导致重链合成受损。这或许是高水平CPC的MM患者伴有高危遗传特征的可能原因之一。

2) TP53突变及其涉及染色体调控和粘附的途径可能是CPC形成的潜在机制。为了阐明CPC水平与遗传特征的关系,Yuan Xia [15]等人利用NGS对肿瘤细胞进行了表征。这是NGS首次在中国人群CPC研究中被用于肿瘤细胞的分子表征。他们发现,当比较携带WT和突变基因的患者CPC水平时,突变涉及TP53、BRAF、DNMT3A、APOBEC3C、ASCC3、TENT5C等的患者CPC水平往往显著较高。据以往研究,p53的下调可以通过降低E-cadherin的表达和增加EMT (Epithelial-mesenchymal transition)调节蛋白来降低MM细胞对骨髓基质的粘附,使MM细胞从骨髓向外周血迁移,从而促进多发性骨髓瘤向浆细胞白血病的发展[38]-[40]。这些发现强调了TP53在促使MM细胞迁移到血液中的作用。为了揭示MM细胞向循环输出的潜在途径,Yuan Xia他们对具有最高CPC水平的突变基因进行了富集。结果,涉及染色体调控以及粘附和连接的途径显著丰富[15]。据报道,CPC代表了骨髓瘤细胞中整合素和粘附分子下调的一个亚群,因此倾向于成为一个不依赖骨髓微环境的亚群[3] [4]。Yuan Xia他们的研究结果在遗传水平上验证了粘附和连接在CPC形成中的作用[15]。染色体的调控涉及许多生理过程,其中染色体不稳定性在MM中被研究得最为广泛。染色体不稳定性可导致染色体拷贝数和结构的改变,是MM发生发展的关键因素[41] [42]。此研究为CPC的形成机制提供了一种可能,但是CPC与染色体不稳定性之间的关系以及涉及染色体调节的其他程序仍然需要进一步研究。

5. 总结与展望

综上所述,CPC可作为一个新的具有价值的预后生物标志物,其存在能够有效反映MM的肿瘤负荷,并且高水平CPC可以预测治疗反应差和不良结局的高危MM。此外,克隆型IGH重排,TP53突变及其涉及染色体调控和粘附的途径可能与CPC的形成相关。但是,对新诊断的多发性骨髓瘤患者进行分层的最佳CPC截止值以及有关CPC形成的机制仍然需要大样本多中心的临床研究与机制探索。

基金项目

陕西省人民医院科技人才支持计划(2022BJ-03)。

NOTES

*通讯作者。

参考文献

[1] Ghobrial, I.M. (2012) Myeloma as a Model for the Process of Metastasis: Implications for Therapy. Blood, 120, 20-30.
https://doi.org/10.1182/blood-2012-01-379024
[2] Hofste op Bruinink, D., Kuiper, R., van Duin, M., Cupedo, T., van der Velden, V.H.J., Hoogenboezem, R., et al. (2022) Identification of High-Risk Multiple Myeloma with a Plasma Cell Leukemia-Like Transcriptomic Profile. Journal of Clinical Oncology, 40, 3132-3150.
https://doi.org/10.1200/JCO.21.01217
[3] Paiva, B., Paino, T., Sayagues, J., Garayoa, M., San-Segundo, L., Martín, M., et al. (2013) Detailed Characterization of Multiple Myeloma Circulating Tumor Cells Shows Unique Phenotypic, Cytogenetic, Functional, and Circadian Distribution Profile. Blood, 122, 3591-3598.
https://doi.org/10.1182/blood-2013-06-510453
[4] Garcés, J., Simicek, M., Vicari, M., Brozova, L., Burgos, L., Bezdekova, R., et al. (2019) Transcriptional Profiling of Circulating Tumor Cells in Multiple Myeloma: A New Model to Understand Disease Dissemination. Leukemia, 34, 589-603.
https://doi.org/10.1038/s41375-019-0588-4
[5] Gonsalves, W.I., Rajkumar, S.V., Gupta, V., Morice, W.G., Timm, M.M., Singh, P.P., et al. (2014) Quantification of Clonal Circulating Plasma Cells in Newly Diagnosed Multiple Myeloma: Implications for Redefining High-Risk Myeloma. Leukemia, 28, 2060-2065.
https://doi.org/10.1038/leu.2014.98
[6] Nowakowski, G.S., Witzig, T.E., Dingli, D., Tracz, M.J., Gertz, M.A., Lacy, M.Q., et al. (2005) Circulating Plasma Cells Detected by Flow Cytometry as a Predictor of Survival in 302 Patients with Newly Diagnosed Multiple Myeloma. Blood, 106, 2276-2279.
https://doi.org/10.1182/blood-2005-05-1858
[7] Caers, J., Garderet, L., Kortüm, K.M., O’Dwyer, M.E., van de Donk, N.W.C.J., Binder, M., et al. (2018) European Myeloma Network Recommendations on Tools for the Diagnosis and Monitoring of Multiple Myeloma: What to Use and When. Haematologica, 103, 1772-1784.
https://doi.org/10.3324/haematol.2018.189159
[8] Riebl, V., Dold, S.M., Wider, D., Follo, M., Ihorst, G., Waldschmidt, J.M., et al. (2021) Ten Color Multiparameter Flow Cytometry in Bone Marrow and Apheresis Products for Assessment and Outcome Prediction in Multiple Myeloma Patients. Frontiers in Oncology, 11, Article 708231.
https://doi.org/10.3389/fonc.2021.708231
[9] Morice, W.G., Hanson, C.A., Kumar, S., Frederick, L.A., Lesnick, C.E. and Greipp, P.R. (2007) Novel Multi-Parameter Flow Cytometry Sensitively Detects Phenotypically Distinct Plasma Cell Subsets in Plasma Cell Proliferative Disorders. Leukemia, 21, 2043-2046.
https://doi.org/10.1038/sj.leu.2404712
[10] Evans, L.A., Jevremovic, D., Nandakumar, B., Dispenzieri, A., Buadi, F.K., Dingli, D., et al. (2020) Utilizing Multiparametric Flow Cytometry in the Diagnosis of Patients with Primary Plasma Cell Leukemia. American Journal of Hematology, 95, 637-642.
https://doi.org/10.1002/ajh.25773
[11] Garcés, J., Cedena, M., Puig, N., Burgos, L., Perez, J.J., Cordon, L., et al. (2022) Circulating Tumor Cells for the Staging of Patients with Newly Diagnosed Transplant-Eligible Multiple Myeloma. Journal of Clinical Oncology, 40, 3151-3161.
https://doi.org/10.1200/jco.21.01365
[12] Bertamini, L., Oliva, S., Rota-Scalabrini, D., Paris, L., Morè, S., Corradini, P., et al. (2022) High Levels of Circulating Tumor Plasma Cells as a Key Hallmark of Aggressive Disease in Transplant-Eligible Patients with Newly Diagnosed Multiple Myeloma. Journal of Clinical Oncology, 40, 3120-3131.
https://doi.org/10.1200/jco.21.01393
[13] Jelinek, T., Bezdekova, R., Zihala, D., Sevcikova, T., Anilkumar Sithara, A., Pospisilova, L., et al. (2023) More than 2% of Circulating Tumor Plasma Cells Defines Plasma Cell Leukemia-Like Multiple Myeloma. Journal of Clinical Oncology, 41, 1383-1392.
https://doi.org/10.1200/jco.22.01226
[14] Flores-Montero, J., Sanoja-Flores, L., Paiva, B., Puig, N., García-Sánchez, O., Böttcher, S., et al. (2017) Next Generation Flow for Highly Sensitive and Standardized Detection of Minimal Residual Disease in Multiple Myeloma. Leukemia, 31, 2094-2103.
https://doi.org/10.1038/leu.2017.29
[15] Xia, Y., Shen, N., Zhang, R., Wu, Y., Shi, Q., Li, J., et al. (2023) High-Risk Multiple Myeloma Predicted by Circulating Plasma Cells and Its Genetic Characteristics. Frontiers in Oncology, 13, Article 1083053.
https://doi.org/10.3389/fonc.2023.1083053
[16] Korthals, M., Sehnke, N., Kronenwett, R., Schroeder, T., Strapatsas, T., Kobbe, G., et al. (2013) Molecular Monitoring of Minimal Residual Disease in the Peripheral Blood of Patients with Multiple Myeloma. Biology of Blood and Marrow Transplantation, 19, 1109-1115.
https://doi.org/10.1016/j.bbmt.2013.04.025
[17] Sanoja-Flores, L., Flores-Montero, J., Garcés, J.J., Paiva, B., Puig, N., García-Mateo, A., et al. (2018) Next Generation Flow for Minimally-Invasive Blood Characterization of MGUS and Multiple Myeloma at Diagnosis Based on Circulating Tumor Plasma Cells (CTPC). Blood Cancer Journal, 8, Article No. 117.
https://doi.org/10.1038/s41408-018-0153-9
[18] Gupta, L., Suku, P., Dash, A., Bose, P., Sharma, P., Mallik, N., et al. (2024) Detection of Circulating Normal and Tumor Plasma Cells in Newly Diagnosed Patients of Multiple Myeloma and Their Associations with Clinical and Laboratory Parameters. Current Problems in Cancer, 48, Article 101025.
https://doi.org/10.1016/j.currproblcancer.2023.101025
[19] Cowan, A.J., Stevenson, P.A., Libby, E.N., Becker, P.S., Coffey, D.G., Green, D.J., et al. (2018) Circulating Plasma Cells at the Time of Collection of Autologous PBSC for Transplant in Multiple Myeloma Patients Is a Negative Prognostic Factor Even in the Age of Post-Transplant Maintenance Therapy. Biology of Blood and Marrow Transplantation, 24, 1386-1391.
https://doi.org/10.1016/j.bbmt.2018.02.017
[20] Galieni, P., Travaglini, F., Vagnoni, D., Ruggieri, M., Caraffa, P., Bigazzi, C., et al. (2021) The Detection of Circulating Plasma Cells May Improve the Revised International Staging System (R-ISS) Risk Stratification of Patients with Newly Diagnosed Multiple Myeloma. British Journal of Haematology, 193, 542-550.
https://doi.org/10.1111/bjh.17118
[21] Han, W., Jin, Y., Xu, M., Zhao, S., Shi, Q., Qu, X., et al. (2021) Prognostic Value of Circulating Clonal Plasma Cells in Newly Diagnosed Multiple Myeloma. Hematology, 26, 510-517.
https://doi.org/10.1080/16078454.2021.1948208
[22] Fernández de Larrea, C., Kyle, R., Rosiñol, L., Paiva, B., Engelhardt, M., Usmani, S., et al. (2021) Primary Plasma Cell Leukemia: Consensus Definition by the International Myeloma Working Group According to Peripheral Blood Plasma Cell Percentage. Blood Cancer Journal, 11, Article No. 192.
https://doi.org/10.1038/s41408-021-00587-0
[23] Tiedemann, R.E., Gonzalez-Paz, N., Kyle, R.A., Santana-Davila, R., Price-Troska, T., Van Wier, S.A., et al. (2008) Genetic Aberrations and Survival in Plasma Cell Leukemia. Leukemia, 22, 1044-1052.
https://doi.org/10.1038/leu.2008.4
[24] Usmani, S.Z., Nair, B., Qu, P., Hansen, E., Zhang, Q., Petty, N., et al. (2012) Primary Plasma Cell Leukemia: Clinical and Laboratory Presentation, Gene-Expression Profiling and Clinical Outcome with Total Therapy Protocols. Leukemia, 26, 2398-2405.
https://doi.org/10.1038/leu.2012.107
[25] Lionetti, M., Musto, P., Di Martino, M.T., Fabris, S., Agnelli, L., Todoerti, K., et al. (2013) Biological and Clinical Relevance of miRNA Expression Signatures in Primary Plasma Cell Leukemia. Clinical Cancer Research, 19, 3130-3142.
https://doi.org/10.1158/1078-0432.ccr-12-2043
[26] Todoerti, K., Calice, G., Trino, S., Simeon, V., Lionetti, M., Manzoni, M., et al. (2018) Global Methylation Patterns in Primary Plasma Cell Leukemia. Leukemia Research, 73, 95-102.
https://doi.org/10.1016/j.leukres.2018.09.007
[27] Garcı́a-Sanz, R., Orfão, A., González, M., Tabernero, M.D., Bladé, J., Moro, M.J., et al. (1999) Primary Plasma Cell Leukemia: Clinical, Immunophenotypic, Dna Ploidy, and Cytogenetic Characteristics. Blood, 93, 1032-1037.
https://doi.org/10.1182/blood.v93.3.1032.403a15_1032_1037
[28] Bladé, J. and Kyle, R.A. (1999) Nonsecretory Myeloma, Immunoglobulin D Myeloma, and Plasma Cell Leukemia. Hematology/Oncology Clinics of North America, 13, 1259-1272.
https://doi.org/10.1016/s0889-8588(05)70125-8
[29] van de Donk, N.W.C.J., Lokhorst, H.M., Anderson, K.C. and Richardson, P.G. (2012) How I Treat Plasma Cell Leukemia. Blood, 120, 2376-2389.
https://doi.org/10.1182/blood-2012-05-408682
[30] Kyle, R.A. (1974) Plasma Cell Leukemia. Report on 17 Cases. Archives of Internal Medicine, 133, 813-818.
https://doi.org/10.1001/archinte.133.5.813
[31] Sarı, M., Sarı, S. and Nalcacı, M. (2017) The Effect of Suppressed Levels of Uninvolved Immunoglobulins on the Prognosis of Symptomatic Multiple Myeloma. Turkish Journal of Hematology, 34, 131-136.
https://doi.org/10.4274/tjh.2016.0161
[32] Sørrig, R., Klausen, T.W., Salomo, M., Vangsted, A.J., Frølund, U.C., Andersen, K.T., et al. (2017) Immunoparesis in Newly Diagnosed Multiple Myeloma Patients: Effects on Overall Survival and Progression Free Survival in the Danish Population. PLOS ONE, 12, e0188988.
https://doi.org/10.1371/journal.pone.0188988
[33] Garcés, J., San-Miguel, J. and Paiva, B. (2022) Biological Characterization and Clinical Relevance of Circulating Tumor Cells: Opening the Pandora’s Box of Multiple Myeloma. Cancers, 14, Article 1430.
https://doi.org/10.3390/cancers14061430
[34] Pellat-Deceunynck, C., Barillé, S., Jego, G., Puthier, D., Robillard, N., Pineau, D., et al. (1998) The Absence of CD56 (NCAM) on Malignant Plasma Cells Is a Hallmark of Plasma Cell Leukemia and of a Special Subset of Multiple Myeloma. Leukemia, 12, 1977-1982.
https://doi.org/10.1038/sj.leu.2401211
[35] Chen, F., Hu, Y., Wang, X., Fu, S., Liu, Z. and Zhang, J. (2018) Expression of CD81 and CD117 in Plasma Cell Myeloma and the Relationship to Prognosis. Cancer Medicine, 7, 5920-5927.
https://doi.org/10.1002/cam4.1840
[36] 任慧娟, 苏晓甜, 陈秋雨, 等, 循环浆细胞与高危多发性骨髓瘤及免疫球蛋白基因重排的关系[J]. 临床肿瘤学杂志, 2023, 28(10): 887-892.
[37] Pfeifer, S., Perez-Andres, M., Ludwig, H., Sahota, S.S. and Zojer, N. (2011) Evaluating the Clonal Hierarchy in Light-Chain Multiple Myeloma: Implications against the Myeloma Stem Cell Hypothesis. Leukemia, 25, 1213-1216.
https://doi.org/10.1038/leu.2011.70
[38] Mangiacavalli, S., Pochintesta, L., Cocito, F., Pompa, A., Bernasconi, P., Cazzola, M., et al. (2013) Correlation between Burden of 17P13.1 Alteration and Rapid Escape to Plasma Cell Leukaemia in Multiple Myeloma. British Journal of Haematology, 162, 555-558.
https://doi.org/10.1111/bjh.12385
[39] Mosca, L., Musto, P., Todoerti, K., Barbieri, M., Agnelli, L., Fabris, S., et al. (2012) Genome-Wide Analysis of Primary Plasma Cell Leukemia Identifies Recurrent Imbalances Associated with Changes in Transcriptional Profiles. American Journal of Hematology, 88, 16-23.
https://doi.org/10.1002/ajh.23339
[40] Yue, Z., Zhou, Y., Zhao, P., Chen, Y., Yuan, Y., Jing, Y., et al. (2017) P53 Deletion Promotes Myeloma Cells Invasion by Upregulating miR19a/CXCR5. Leukemia Research, 60, 115-122.
https://doi.org/10.1016/j.leukres.2017.07.003
[41] Alagpulinsa, D.A., Szalat, R.E., Poznansky, M.C. and Shmookler Reis, R.J. (2020) Genomic Instability in Multiple Myeloma. Trends in Cancer, 6, 858-873.
https://doi.org/10.1016/j.trecan.2020.05.006
[42] Neuse, C.J., Lomas, O.C., Schliemann, C., Shen, Y.J., Manier, S., Bustoros, M., et al. (2020) Genome Instability in Multiple Myeloma. Leukemia, 34, 2887-2897.
https://doi.org/10.1038/s41375-020-0921-y