自噬作为多种疾病治疗的靶点
Autophagy as a Therapeutic Target for Multiple Diseases
DOI: 10.12677/bp.2024.142013, PDF, HTML, XML, 下载: 27  浏览: 53 
作者: 宋明慧:中国药科大学,生命科学与技术学院,江苏 南京;邱小波*:中国药科大学,生命科学与技术学院,江苏 南京;北京师范大学,生命科学学院,细胞增殖与调控生物学教育部重点实验室,北京
关键词: 自噬癌症神经退行性疾病自噬抑制剂Autophagy Cancer Neurodegenerative Disease Autophagy Inhibitor
摘要: 自噬是一种溶酶体降解途径,可降解错误折叠的蛋白质、清除不必要或损伤的细胞器并消除感染的病毒或细菌等病原体,从而维持真核细胞的稳态。自噬对于细胞生存、生物能稳态、机体发育至关重要,与许多人类疾病的发生发展密切相关。本综述总结了自噬在癌症和神经退行性疾病中作用的研究进展,并讨论了靶向自噬的潜在疾病治疗方法。
Abstract: Autophagy is a lysosomal degradation pathway, which degrades misfolded proteins, removes unnecessary or damaged organelles and eliminates intracellular pathogens, such as viruses and bacteria, to maintain cellular homeostasis. Autophagy is critical for cell survival, bioenergetic homeostasis and organismal development, and is closely associated with many human diseases. This review summarizes current advances in the role of autophagy in cancer and neurodegenerative diseases, and discusses potential therapeutic approaches to target autophagy.
文章引用:宋明慧, 邱小波. 自噬作为多种疾病治疗的靶点[J]. 生物过程, 2024, 14(2): 98-104. https://doi.org/10.12677/bp.2024.142013

1. 引言

自噬对细胞、组织和生物体的稳态起着重要的作用,由进化保守的自噬相关基因(Autophagy-related gene, ATG)介导[1],在能量或营养短缺的情况下防止细胞损伤,促进生存,并对各种细胞毒性损伤做出反应。自噬主要具有细胞保护功能,需要严格调控,才能对细胞所受到的不同刺激做出正确的反应,从而适应不断变化的环境[2]。自噬对于人类健康发挥重要作用。当自噬相关基因发生突变或外源物质如致病微生物等进入宿主破坏自噬状态时,都会引起一系列生理病理反应,导致疾病发生[3]。因此,通过调节自噬状态从而干预疾病的发生发展对于疾病治疗具有重大意义。

2. 自噬

自噬是吞噬自身细胞质蛋白或细胞器,与溶酶体融合形成自噬溶酶体,降解其所包裹的内容物的过程,借此完成细胞本身的代谢需要和某些细胞器的更新[4]。自噬对于维持细胞稳态至关重要,其失调与多种疾病的发病机制有关[5]。根据细胞物质转运至溶酶体的途径不同,将自噬分为以下几种:巨自噬(Macroautophagy)、微自噬(Microautophagy)和分子伴侣介导自噬(Chaperone-mediated autophagy, CMA)。在巨自噬过程中,在饥饿等刺激诱导下,由内质网、高尔基体或细胞质膜等来源的膜包绕待降解物形成自噬体,然后与溶酶体融合并降解其内容物;在微自噬时,溶酶体膜直接包裹待降解物质,并在溶酶体内降解;而在分子伴侣介导的自噬过程中,胞质内蛋白结合到分子伴侣后被转运到溶酶体腔中,然后被溶酶体酶降解[6] [7] [8]。其中,巨自噬最常见,除非单独说明,下文中自噬即指巨自噬。自噬过程可以分为:自噬起始、成核、延伸、融合及降解[2] [9] [10]。当细胞受到压力(如饥饿,药物刺激等),自噬起始复合物ULK1被激活,诱导自噬起始,高尔基体线粒体等细胞器提供双层膜形成前自噬体,用来包裹待降解的物质,这个双层膜结构的前自噬体进一步延伸,将待降解物质包裹住形成一个囊泡,即自噬体,然后与溶酶体结合,降解蛋白及淘汰的细胞器等,整个自噬过程就此完成[2]。在这个过程中,LC3和GABARAP蛋白家族的成员与脂质磷脂酰乙醇胺(PE)偶联并募集到膜上[11]。ATG4B与ATG7结合LC3-I和PE形成LC3-II (也称为MAP1LC3B-II) [12]。这种脂质偶联形式的LC3通常用作自噬体标志物。p62靶向自噬体的特定底物[13] [14],它与LC3-II及其它货物蛋白一起降解,可用作自噬通量的量度。

3. 自噬与肿瘤

在肿瘤的发生发展的不同过程中,自噬具有相反的作用[15]。自噬可以消除致癌因素、未折叠或聚集的蛋白质和受损的细胞器,从而抑制肿瘤发生[16]。然而,在肿瘤形成后,自噬可以通过促进代谢物循环来支持肿瘤代谢和细胞存活而促进肿瘤生长,并作为肿瘤细胞抵抗药物治疗的保护机制[17]

3.1. 自噬抑制肿瘤发生

作为一种肿瘤发生抑制机制,自噬可维持基因组稳定性、根除活性氧(Reactive oxygen species, ROS)的内源性来源、消除致癌蛋白和诱导免疫反应[18]BECN1是第一个在癌症中发现具有复发性遗传改变的ATG基因[19]BECN1在75%的卵巢癌和50%的乳腺癌患者中单等位基因缺失[20]。同样,编码核心机制成分的其他几个ATG基因(即参与自噬体形成的蛋白质)的遗传调节也与人类癌症有关,并导致小鼠的肿瘤发生。超过25%的胃癌和结直肠癌患者存在ATG2BATG5、ATG9BATG12移码突变[21]。已鉴定的ATG突变通常表现为功能丧失,因为它们中的大多数会导致ATG蛋白合成提前停止。最近的一项研究表明,在多种肿瘤类型中,ATG5体细胞突变通过破坏ATG5-ATG16L1相互作用来阻止ATG12偶联,从而导致ATG12和ATG16L1的蛋白酶体降解,进而抑制自噬。此外,ATG16L2在这些肿瘤细胞中过表达,并通过与ATG16L1竞争ATG5相互作用而作为自噬的内源性显性阴性抑制剂[22]。有趣的是,在人类癌症中尚未发现双等位基因BECN1突变,Becn1的双等位基因缺失在小鼠中是致命的。这可能反映了这样一个事实,即自噬是一个必不可少的过程,完全消除自噬功能将导致胚胎致死[23],如果在发育后期发生,将导致严重的生理缺陷。因此,由BECN1/Becn1的异等位基因缺失引起的部分自噬活性足以发挥自噬的关键作用,从而使生物体存活。

3.2. 自噬促进肿瘤生长

在肿瘤发展过程中,自噬在肿瘤微环境中的严重生存压力下(例如代谢、缺氧、遗传毒性和氧化应激)提供有益的代谢物帮助肿瘤存活和转移级联反应[24]。许多研究已经证明了自噬在促进肿瘤生长方面的重要作用。例如,小鼠中的Rb1cc1缺失抑制了乳腺癌的发展,这表明自噬在体内癌基因诱导的肿瘤生长中的重要性[25]。此外,人体研究发现BECN1或ATG7沉默在体外消除了人类ALDH乳腺癌中癌症干细胞(CSC)的自我更新能力和增殖[26] [27]。自噬在肿瘤进展和转移中的支持作用大多利用CSCs [28]。与其他干细胞相比,CSCs具有更高的基础自噬水平,并且经常在自噬调节下表现出不同的特性[29]。例如,CSC中的自噬阻断导致慢性粒细胞白血病CD34祖细胞的细胞死亡,但会导致造血干细胞(hematopoietic stem cells, HSC)中急性髓系白血病祖细胞的扩增,这表明自噬可能在干细胞起源、维持和分化方面以更复杂的方式影响CSCs [30]。虽然目前尚不清楚赋予CSCs独特自噬特征的机制,根除CSCs的策略是癌症治疗的一个新焦点。

3.3. 自噬在癌症治疗中的应用

表达水平发生变化的基因所编码的蛋白质经常被认为是癌症的潜在预后标志物。大多数情况下,几种ATG基因的高表达水平与患者的高生存率显著相关,提示了ATG蛋白作为有利预后标志物的潜力[31]。然而,也有一些ATG蛋白被认为是诊断中不利的预后标志物。ATG基因的表达水平在不同的癌症类型中受到不同的调节。ATG16L2、CAPN2和TP63的上调,以及ATG5和其他5个与自噬相关的基因(SIRT1、RPS6KB1、PEX3、UVRAGNAF1)的下调被确定为结肠癌疾病复发风险高的标志物,而在胃癌和胰腺导管腺癌中,ULK1、BECN1、ATG3和ATG10是有利的预后因素[32]。急性自噬抑制在癌症治疗中可能具有两种有效性,包括肿瘤特异性自噬抑制和全身抑制[33]。肿瘤细胞特异性抑制自噬会破坏肿瘤代谢,导致异常代谢后果,包括氧化还原失衡、线粒体代谢缺陷、能量稳态受损和核苷酸库减少等,这些影响共同导致肿瘤细胞的生长障碍和死亡[34]。全身抑制自噬会改变肿瘤的微环境,损害肿瘤和基质细胞内的代谢串扰回路,并可能改变宿主代谢以达到意想不到的结果[35]。从药理学的角度来看,靶向自噬的药物开发涉及两个主要方向,包括(1)溶酶体抑制剂和衍生物,如氯喹(CQ)和羟氯喹(HCQ) [36],以及(2) ATG基因在全身或特定器官中的基因组改变[37]。从药物开发的角度来看,尽管CQ和HCQ在癌症中得到了广泛的测试,并取得了一些相对成功的初步结果,但一项利用KRAS驱动的癌细胞系的研究表明,在抗增殖作用方面,癌症中的ATG7敲除细胞与野生型细胞一样对CQ敏感[38]。因此,关于药物作用是否来自其抑制自噬或其它具有抗肿瘤作用的溶酶体抑制作用存在争议。尽管急性自噬抑制可能抑制肿瘤生长,但药物开发中一个未解决的主要问题是自噬抑制的副作用。自噬阻断治疗后常观察到毒性和组织损伤[39]。因此,如何根据个体患者的需求设置适当剂量的自噬抑制剂仍然是一个巨大的挑战。

4. 自噬与神经退行性疾病

神经细胞中异常的蛋白质积累是神经退行性疾病的标志,并且与受损的巨自噬和CMA有直接联系[40]。自噬有助于防止神经退行性病变,因为它能够去除受损的线粒体和有毒蛋白质或微聚集体[41]。与癌症相比,自噬在神经退行性疾病中的作用似乎更加神秘,相关临床前研究远远滞后[42]。下面主要讨论自噬与一些最常见的神经退行性疾病,包括帕金森(Parkinson disease, PD)、阿尔茨海默病(Alzheimer disease, AD)和亨廷顿病(Huntington disease, HD)之间的相关性和未解决的问题。

帕金森病是一种伴有运动缺陷的进行性脑部疾病。越来越多的证据表明,自噬在帕金森病病因中也起作用。例如,对PD患者的广泛遗传分析证实,偶联机制ATG基因表达水平异常可能导致PD,这些基因包括ATG5、ATG7、ATG12LC3B [43]。在PD患者和动物模型的脑组织中一致地发现了自噬失调,这表明自噬在PD的蛋白质聚集降解中具有重要作用[44]。最近的一项研究表明,PrknPink1缺失的小鼠在剧烈运动后的炎症可以通过STING缺失来完全挽救,STING是I型干扰素对胞质DNA反应的关键调节因子,功能失调的线粒体自噬可能通过异常的炎症信号导致神经退行性疾病[45]

阿尔茨海默病是一种进行性神经退行性疾病,主要症状为记忆障碍、认知缺陷、视觉空间缺陷和人格改变。AD患者表现为细胞外淀粉样蛋白-β (Amyloid-beta, Aβ)积累和细胞内过度磷酸化微管相关蛋白tau (microtubule-associated protein tau, MAPT) [46]。与帕金森病类似,AD的致病机制虽然不完全清楚,但有研究表明其与线粒体自噬缺陷和CMA密切相关。MAPT蛋白被鉴定为CMA和巨自噬的底物。MAPTCMA的不完全会产生淀粉样蛋白生成片段,并且受损的巨自噬无法去除MAPT聚集体[47]。在AD小鼠模型中,Aβ积累伴随着线粒体自噬相关基因的mRNA水平上调,如iSqstm1PrknDnm1lBecn1Bnip3Pink1Map1lc3 [48]。值得注意的是,尿石素A治疗增强线粒体自噬能够消除人类神经元细胞中与AD相关的MAPT过度磷酸化[49]。此外,神经元线粒体自噬的恢复也逆转了认知能力的下降,并改善了秀丽隐杆线虫和小鼠AD模型中的p-MAPT病理特征[49]。这些证据不仅促进了我们对线粒体自噬缺陷在AD发生和进展中重要作用的认识,还为AD患者提供了一种新的治疗策略。

亨廷顿舞蹈症是另一种进行性神经退行性疾病,其主要特征是运动异常,其次是认知功能障碍、运动缺陷和情绪问题。HD是由多聚谷氨酰胺(poly Q)扩增导致突变Huntingtin (Mutant Huntingtin, mHTT)蛋白异常产生和积累所致[50]。HD与CMA异常有关[51]。一个有趣的治疗策略是用poly Q结合肽1 (QBP1)和HSPA8结合基序的融合分子靶向mHTT,因为QBP1特异性结合到扩增的poly Q而不是正常Huntingtin (HTT)中的poly Q基序。融合分子的递送成功地改善了小鼠的疾病表型,提供了一种潜在治疗方案[52]。同样,最近一项基于小分子微阵列筛选的研究确定了mHTT和自噬关键蛋白LC3的连接化合物,该化合物通过将mHTT递送至自噬体来选择性地自噬清除mHTT,展示了一种通过使用自噬体拴系化合物降解致病蛋白的新策略[53]

5. 结语与展望

在这篇综述中,我们主要关注癌症和神经退行性疾病中的自噬。尽管大量研究强调了自噬在疾病中的重要作用,但目前的工作仅仅是了解疾病背景下这一复杂动态过程的第一步。要想将其应用于疾病治疗,必须将分子水平与临床研究有机结合起来。值得注意的是,许多情况下,通过调节自噬阻止癌症发展会逐渐导致神经变性[54],这表明它们之间可能存在拮抗关系。因此,我们应该谨慎考虑提高或抑制自噬是否为治疗疾病的可行方法。未来应深入研究自噬与这些疾病的相互作用的复杂过程,从而为通过靶向自噬通路来治疗疾病提供合理的方法。

NOTES

*通讯作者。

参考文献

[1] Parada, C.A., De Oliveira, I.P., Gewehr, M.C.F., Machado-Neto, J.A., Lima, K., Eichler, R.A.S., et al. (2022) Effect of FKBP12-Derived Intracellular Peptides on Rapamycin-Induced FKBP-FRB Interaction and Autophagy. Cells, 11, Article 385.
https://doi.org/10.3390/cells11030385
[2] Dikic, I. and Elazar, Z. (2018) Mechanism and Medical Implications of Mammalian Autophagy. Nature Reviews Molecular Cell Biology, 19, 349-364.
https://doi.org/10.1038/s41580-018-0003-4
[3] Lopes, V.R., Loitto, V., Audinot, J., Bayat, N., Gutleb, A.C. and Cristobal, S. (2016) Dose-Dependent Autophagic Effect of Titanium Dioxide Nanoparticles in Human Hacat Cells at Non-Cytotoxic Levels. Journal of Nanobiotechnology, 14, Article No. 22.
https://doi.org/10.1186/s12951-016-0174-0
[4] Wang, N., Wei, L., Liu, D., Zhang, Q., Xia, X., Ding, L., et al. (2022) Identification and Validation of Autophagy-Related Genes in Diabetic Retinopathy. Frontiers in Endocrinology, 13, Article 867600.
https://doi.org/10.3389/fendo.2022.867600
[5] Levine, B. and Kroemer, G. (2008) Autophagy in the Pathogenesis of Disease. Cell, 132, 27-42.
https://doi.org/10.1016/j.cell.2007.12.018
[6] Rabinowitz, J.D. and White, E. (2010) Autophagy and Metabolism. Science, 330, 1344-1348.
https://doi.org/10.1126/science.1193497
[7] Klionsky, D.J. (2007) Autophagy: From Phenomenology to Molecular Understanding in Less than a Decade. Nature Reviews Molecular Cell Biology, 8, 931-937.
https://doi.org/10.1038/nrm2245
[8] Nakatogawa, H., Suzuki, K., Kamada, Y. and Ohsumi, Y. (2009) Dynamics and Diversity in Autophagy Mechanisms: Lessons from Yeast. Nature Reviews Molecular Cell Biology, 10, 458-467.
https://doi.org/10.1038/nrm2708
[9] Li, X., He, S. and Ma, B. (2020) Autophagy and Autophagy-Related Proteins in Cancer. Molecular Cancer, 19, Article No. 12
https://doi.org/10.1186/s12943-020-1138-4
[10] Mizushima, N. (2007) Autophagy: Process and Function. Genes & Development, 21, 2861-2873.
https://doi.org/10.1101/gad.1599207
[11] Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., et al. (2000) A Ubiquitin-Like System Mediates Protein Lipidation. Nature, 408, 488-492.
https://doi.org/10.1038/35044114
[12] Hamasaki, M., Furuta, N., Matsuda, A., Nezu, A., Yamamoto, A., Fujita, N., et al. (2013) Autophagosomes Form at ER-Mitochondria Contact Sites. Nature, 495, 389-393.
https://doi.org/10.1038/nature11910
[13] Rogov, V., Dötsch, V., Johansen, T. and Kirkin, V. (2014) Interactions between Autophagy Receptors and Ubiquitin-Like Proteins Form the Molecular Basis for Selective Autophagy. Molecular Cell, 53, 167-178.
https://doi.org/10.1016/j.molcel.2013.12.014
[14] Lu, K., Psakhye, I. and Jentsch, S. (2014) Autophagic Clearance of PolyQ Proteins Mediated by Ubiquitin-Atg8 Adaptors of the Conserved CUET Protein Family. Cell, 158, 549-563.
https://doi.org/10.1016/j.cell.2014.05.048
[15] White, E. and DiPaola, R.S. (2009) The Double-Edged Sword of Autophagy Modulation in Cancer. Clinical Cancer Research, 15, 5308-5316.
https://doi.org/10.1158/1078-0432.ccr-07-5023
[16] Jin, S. and White, E. (2007) Role of Autophagy in Cancer: Management of Metabolic Stress. Autophagy, 3, 28-31.
https://doi.org/10.4161/auto.3269
[17] White, E. (2012) Deconvoluting the Context-Dependent Role for Autophagy in Cancer. Nature Reviews Cancer, 12, 401-410.
https://doi.org/10.1038/nrc3262
[18] Galluzzi, L., Pietrocola, F., Bravo-San Pedro, J.M., Amaravadi, R.K., Baehrecke, E.H., Cecconi, F., et al. (2015) Autophagy in Malignant Transformation and Cancer Progression. The EMBO Journal, 34, 856-880.
https://doi.org/10.15252/embj.201490784
[19] Li, Z., Chen, B., Wu, Y., Jin, F., Xia, Y. and Liu, X. (2010) Genetic and Epigenetic Silencing of the Beclin 1 Gene in Sporadic Breast Tumors. BMC Cancer, 10, Article No. 98.
https://doi.org/10.1186/1471-2407-10-98
[20] Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., et al. (2003) Promotion of Tumorigenesis by Heterozygous Disruption of the Beclin 1 Autophagy Gene. Journal of Clinical Investigation, 112, 1809-1820.
https://doi.org/10.1172/jci20039
[21] Kang, M.R., Kim, M.S., Oh, J.E., Kim, Y.R., Song, S.Y., Kim, S.S., et al. (2009) Frameshift Mutations of Autophag Related Genes ATG2B, ATG5, ATG9B and ATG12 in Gastric and Colorectal Cancers with Microsatellite Instability. The Journal of Pathology, 217, 702-706.
https://doi.org/10.1002/path.2509
[22] Wible, D.J., Chao, H., Tang, D.G. and Bratton, S.B. (2019) ATG5 Cancer Mutations and Alternative mRNA Splicing Reveal a Conjugation Switch That Regulates ATG12-ATG5-ATG16L1 Complex Assembly and Autophagy. Cell Discovery, 5, Article No. 42.
https://doi.org/10.1038/s41421-019-0110-1
[23] Tsukamoto, S., Kuma, A., Murakami, M., Kishi, C., Yamamoto, A. and Mizushima, N. (2008) Autophagy Is Essential for Preimplantation Development of Mouse Embryos. Science, 321, 117-120.
https://doi.org/10.1126/science.1154822
[24] Kocaturk, N.M., Akkoc, Y., Kig, C., Bayraktar, O., Gozuacik, D. and Kutlu, O. (2019) Autophagy as a Molecular Target for Cancer Treatment. European Journal of Pharmaceutical Sciences, 134, 116-137.
https://doi.org/10.1016/j.ejps.2019.04.011
[25] Wei, H., Wei, S., Gan, B., Peng, X., Zou, W. and Guan, J. (2011) Suppression of Autophagy by FIP200 Deletion Inhibits Mammary Tumorigenesis. Genes & Development, 25, 1510-1527.
https://doi.org/10.1101/gad.2051011
[26] Gong, C., Bauvy, C., Tonelli, G., Yue, W., Deloménie, C., Nicolas, V., et al. (2012) Beclin 1 and Autophagy Are Required for the Tumorigenicity of Breast Cancer Stem-Like/Progenitor Cells. Oncogene, 32, 2261-2272.
https://doi.org/10.1038/onc.2012.252
[27] Yue, W., Hamaï, A., Tonelli, G., Bauvy, C., Nicolas, V., Tharinger, H., et al. (2013) Inhibition of the Autophagic Flux by Salinomycin in Breast Cancer Stem-Like/Progenitor Cells Interferes with Their Maintenance. Autophagy, 9, 714-729.
https://doi.org/10.4161/auto.23997
[28] Jin, M., Liu, X., Wu, Y., Lou, Y., Li, X. and Huang, G. (2022) Circular RNA EPB41 Expression Predicts Unfavorable Prognoses in NSCLC by Regulating mIR-486-3p/eIF5A Axis-Mediated Stemness. Cancer Cell International, 22, Article No. 219.
https://doi.org/10.1186/s12935-022-02618-7
[29] Boya, P., Codogno, P. and Rodriguez-Muela, N. (2018) Autophagy in Stem Cells: Repair, Remodelling and Metabolic Reprogramming. Development, 145, dev146506.
https://doi.org/10.1242/dev.146506
[30] Auberger, P. and Puissant, A. (2017) Autophagy, a Key Mechanism of Oncogenesis and Resistance in Leukemia. Blood, 129, 547-552.
https://doi.org/10.1182/blood-2016-07-692707
[31] Bortnik, S. and Gorski, S.M. (2017) Clinical Applications of Autophagy Proteins in Cancer: from Potential Targets to Biomarkers. International Journal of Molecular Sciences, 18, Article 1496.
https://doi.org/10.3390/ijms18071496
[32] Mo, S., Dai, W., Xiang, W., Li, Y., Feng, Y., Zhang, L., et al. (2019) Prognostic and Predictive Value of an Autophagy-Related Signature for Early Relapse in Stages I-III Colon Cancer. Carcinogenesis, 40, 861-870.
https://doi.org/10.1093/carcin/bgz031
[33] Kimmelman, A.C. and White, E. (2017) Autophagy and Tumor Metabolism. Cell Metabolism, 25, 1037-1043.
https://doi.org/10.1016/j.cmet.2017.04.004
[34] Katheder, N.S., Khezri, R., O’Farrell, F., Schultz, S.W., Jain, A., Rahman, M.M., et al. (2017) Microenvironmental Autophagy Promotes Tumour Growth. Nature, 541, 417-420.
https://doi.org/10.1038/nature20815
[35] Katheder, N.S. and Rusten, T.E. (2017) Microenvironment and Tumors—A Nurturing Relationship. Autophagy, 13, 1241-1243.
https://doi.org/10.1080/15548627.2017.1310361
[36] Shen, Z., Qin, L., Xu, T., Xia, L., Wang, X., Zhang, X., et al. (2016) Chloroquine Enhances the Efficacy of Cisplatin by Suppressing Autophagy in Human Adrenocortical Carcinoma Treatment. Drug Design, Development and Therapy, 10, 1035-1045.
https://doi.org/10.2147/dddt.s101701
[37] Gong, C., Hu, C., Gu, F., Xia, Q., Yao, C., Zhang, L., et al. (2017) Co-Delivery of Autophagy Inhibitor ATG7 siRNA and Docetaxel for Breast Cancer Treatment. Journal of Controlled Release, 266, 272-286.
https://doi.org/10.1016/j.jconrel.2017.09.042
[38] Eng, C.H., Wang, Z., Tkach, D., Toral-Barza, L., Ugwonali, S., Liu, S., et al. (2015) Macroautophagy Is Dispensable for Growth of KRAS Mutant Tumors and Chloroquine Efficacy. Proceedings of the National Academy of Sciences, 113, 182-187.
https://doi.org/10.1073/pnas.1515617113
[39] Karsli-Uzunbas, G., Guo, J.Y., Price, S., Teng, X., Laddha, S.V., Khor, S., et al. (2014) Autophagy Is Required for Glucose Homeostasis and Lung Tumor Maintenance. Cancer Discovery, 4, 914-927.
https://doi.org/10.1158/2159-8290.cd-14-0363
[40] Napolitano, G., Johnson, J.L., He, J., Rocca, C.J., Monfregola, J., Pestonjamasp, K., et al. (2015) Impairment of Chaperone-Mediated Autophagy Leads to Selective Lysosomal Degradation Defects in the Lysosomal Storage Disease Cystinosis. EMBO Molecular Medicine, 7, 158-174.
https://doi.org/10.15252/emmm.201404223
[41] Degenhardt, K., Mathew, R., Beaudoin, B., Bray, K., Anderson, D., Chen, G., et al. (2006) Autophagy Promotes Tumor Cell Survival and Restricts Necrosis, Inflammation, and Tumorigenesis. Cancer Cell, 10, 51-64.
https://doi.org/10.1016/j.ccr.2006.06.001
[42] Choi, A.M.K., Ryter, S.W. and Levine, B. (2013) Autophagy in Human Health and Disease. New England Journal of Medicine, 368, 651-662.
https://doi.org/10.1056/nejmra1205406
[43] Li, Y., Huang, J., Pang, S., Wang, H., Zhang, A., Hawley, R.G., et al. (2017) Novel and Functional ATG12 Gene Variants in Sporadic Parkinson’s Disease. Neuroscience Letters, 643, 22-26.
https://doi.org/10.1016/j.neulet.2017.02.028
[44] Friedman, L.G., Lachenmayer, M.L., Wang, J., He, L., Poulose, S.M., Komatsu, M., et al. (2012) Disrupted Autophagy Leads to Dopaminergic Axon and Dendrite Degeneration and Promotes Presynaptic Accumulation of α-Synuclein and LRRK2 in the Brain. The Journal of Neuroscience, 32, 7585-7593.
https://doi.org/10.1523/jneurosci.5809-11.2012
[45] Sliter, D.A., Martinez, J., Hao, L., Chen, X., Sun, N., Fischer, T.D., et al. (2018) Parkin and Pink1 Mitigate Sting-Induced Inflammation. Nature, 561, 258-262.
https://doi.org/10.1038/s41586-018-0448-9
[46] Huang, J. and Klionsky, D.J. (2007) Autophagy and Human Disease. Cell Cycle, 6, 1837-1849.
https://doi.org/10.4161/cc.6.15.4511
[47] Wang, Y., Martinez-Vicente, M., Krüger, U., Kaushik, S., Wong, E., Mandelkow, E., et al. (2010) Synergy and Antagonism of Macroautophagy and Chaperone-Mediated Autophagy in a Cell Model of Pathological Tau Aggregation. Autophagy, 6, 182-183.
https://doi.org/10.4161/auto.6.1.10815
[48] Sorrentino, V., Romani, M., Mouchiroud, L., Beck, J.S., Zhang, H., D’Amico, D., et al. (2017) Enhancing Mitochondrial Proteostasis Reduces Amyloid-β Proteotoxicity. Nature, 552, 187-193.
https://doi.org/10.1038/nature25143
[49] Fang, E.F., Hou, Y., Palikaras, K., Adriaanse, B.A., Kerr, J.S., Yang, B., et al. (2019) Mitophagy Inhibits Amyloid-β and Tau Pathology and Reverses Cognitive Deficits in Models of Alzheimer’s Disease. Nature Neuroscience, 22, 401-412.
https://doi.org/10.1038/s41593-018-0332-9
[50] Wild, E.J. and Tabrizi, S.J. (2014) Targets for Future Clinical Trials in Huntington’s Disease: What’s in the Pipeline? Movement Disorders, 29, 1434-1445.
https://doi.org/10.1002/mds.26007
[51] Qi, L., Zhang, X., Wu, J., Lin, F., Wang, J., DiFiglia, M., et al. (2012) The Role of Chaperone-Mediated Autophagy in Huntingtin Degradation. PLOS ONE, 7, e46834.
https://doi.org/10.1371/journal.pone.0046834
[52] Bauer, P.O., Goswami, A., Wong, H.K., Okuno, M., Kurosawa, M., Yamada, M., et al. (2010) Harnessing Chaperone-Mediated Autophagy for the Selective Degradation of Mutant Huntingtin Protein. Nature Biotechnology, 28, 256-263.
https://doi.org/10.1038/nbt.1608
[53] Li, Z., Wang, C., Wang, Z., Zhu, C., Li, J., Sha, T., et al. (2019) Allele-Selective Lowering of Mutant HTT Protein by HTT-LC3 Linker Compounds. Nature, 575, 203-209.
https://doi.org/10.1038/s41586-019-1722-1
[54] Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., et al. (2006) Suppression of Basal Autophagy in Neural Cells Causes Neurodegenerative Disease in Mice. Nature, 441, 885-889.
https://doi.org/10.1038/nature04724