重症肌无力靶向治疗进展
Progress in Targeted Therapy for Myasthenia Gravis
DOI: 10.12677/acm.2024.1461776, PDF, HTML, XML, 下载: 39  浏览: 71 
作者: 张慧玲*, 洪思琦:重庆医科大学附属儿童医院神经内科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,重庆
关键词: 重症肌无力FcRn抑制剂补体抑制剂B细胞耗竭剂Myasthenia Gravis FcRn Inhibitors Complement Inhibitors B Cell-Depletion Agent
摘要: 重症肌无力(myasthenia gravis, MG)是一种慢性的、波动的、补体和抗体介导的自身免疫性疾病,针对骨骼肌突触后神经肌肉连接的疾病。临床上主要表现为全身或局部肌肉无力、容易疲劳等症状。乙酰胆碱酯酶和皮质类固醇仍然是一线治疗,静脉注射免疫球蛋白(IVIG)和血浆置换(PE)为急性加重期的推荐疗法,特别是重症肌无力危象。然而,MG的治疗需要长期的免疫抑制,传统药物有多样选择性,但需长时间才能起作用,并有相应的不良反应,大约10%~15%的MG患者对传统疗法无效。过去十年,已经出现了几种新的生物制剂,包括补体抑制剂、新生儿Fc受体(FcRn)抑制剂、B细胞耗竭剂等,它们具有靶向性的免疫治疗,副作用少,起效快等特点。本文就几种生物制剂的疗效、安全性等进行综述。
Abstract: Myasthenia gravis (MG) is a chronic, fluctuating, complement and antibody mediated autoimmune disease that targets the postsynaptic neuromuscular connections in skeletal muscles. The main clinical manifestations are systemic or local muscle weakness, and easy fatigue. Acetylcholinesterase and corticosteroids remain first-line treatments, while intravenous immunoglobulin (IVIG) and plasma exchange (PE) are recommended therapies for acute exacerbation, especially in the crisis of myasthenia gravis. However, the treatment of MG requires long-term immunosuppression, and traditional drugs have diverse selectivity but require a long time to take effect, with corresponding adverse reactions. About 10%~15% of MG patients are ineffective with traditional therapies. In the past decade, several new biological agents have emerged, including B-cell depleting agents, complement inhibitors, and neonatal Fc receptor (FcRn) inhibitors, which have the characteristics of targeted immunotherapy, low side effects, and fast onset. This article provides a review of the efficacy, safety, and other aspects of several biological agents.
文章引用:张慧玲, 洪思琦. 重症肌无力靶向治疗进展[J]. 临床医学进展, 2024, 14(6): 298-303. https://doi.org/10.12677/acm.2024.1461776

1. 引言

重症肌无力是由自身抗体介导的获得性神经肌肉接头传递障碍的自身免疫性疾病,临床表现为波动性眼肌或全身肌无力,呈晨轻暮重。其中乙酰胆碱受体(acetycholinereceptor, AchR)抗体是最常见的致病性抗体;另外,包括肌肉特异性受体酪氨酸激酶(muscle-specific receptor tyrosine kinase, MuSK)、低密度脂蛋白受体相关蛋白4(low-density lipoprotein receptor-related protein4, LRP4)及兰尼碱(RyR)等抗体陆续被发现参与MG发病。这些抗体可干扰AchR聚集、影响AchR功能及神经肌肉接头(neuromuscular junction,NMJ)信号传递,引起波动性局部或全身肌无力。我国MG发病率约为0.68/10万[1]。中国儿童及青少年MG (juvenile myasthenia gravis, JMG)患病高达50% [2]。传统MG的治疗以胆碱酯酶抑制剂、糖皮质激素、免疫抑制剂、静脉注射免疫球蛋白(intravenous immunoglobulins, IVIG)、血浆置换(plasma exchange, PE)以及胸腺切除为主。MG的治疗方法依赖于胆碱酯酶抑制剂的对症治疗和传统的免疫抑制,以口服类固醇和非甾体免疫抑制剂为代表[3] [4]。尽管已经大大降低了MG的死亡率,但目前的治疗方法仍然不能缓解或改善所有MG患者的临床症状[5]。长期口服类固醇激素会带来糖尿病、骨质疏松、白内障、高血压、肥胖、易怒和皮肤病等副作用。为克服传统免疫抑制剂的局限性及副作用等,在过去十年,靶向免疫疗法已经被开发出来,其作用靶点包括B细胞耗竭、补体级联反应以及新生儿Fc受体的抑制作用[5]。新型生物制剂提供选择性、靶向性免疫治疗,是部分重症肌无力治疗的未来。

2. 补体C5抑制剂

抗AChR抗体在重症肌无力发病中发挥着重要作用。抗AChR抗体通常为IgG1或IgG3类抗体,可激活补体级联反应,形成膜攻击复合物。膜攻击复合物在导致神经肌肉传递失败中发挥着核心作用,抑制MAC的形成可改善EAMG症状[6]。而保护性调节因子衰变加速因子1 (DAF1)和CD59a缺陷小鼠更容易患实验性自身免疫性重症肌无力[7]。AChR抗体通过经典途径激活补体级联,形成C5转换酶,将C5分解为C5a、C5b,C5b同C6、C7、C8和C9最终形成膜攻击复合物[8]。LRP4抗体属于IgG1型,部分患者血清也存在IgG2和IgG3型,也可激活补体系统[9]。抗MuSK抗体主要是IgG4型,具有抗炎作用,不能激活补体系统[10]。因此,补体C5可作为AChRMG补体激活途径中一个重要的靶点,对于治疗AChR-MG很有前景,以下介绍几种已经过临床研究的补体抑制剂。

2.1. Eculizumab

神经肌肉接点补体激活是其传递障碍的原因之一,eculizumab是首个获得监管部门批准用于临床的补体抑制剂,这是一种人源化抗c5单克隆抗体(mAb),它特异性抑制C5补体裂解成其末端活性成分C5a和C5b,以及MACC5b-9复合物的形成和沉积。一项针对14例难治性全身型AChR抗体阳性重症肌无力患者(≥18岁)的随机双盲安慰剂对照的II期研究,采用诱导剂量600 mgIV,每周一次,持续4周,随后维持剂量900 mgIV,每2周1次,持续12周,所有患者在首次给药前14天接种脑膜炎奈瑟菌疫苗,使用常规免疫抑制治疗,未使用IVIG、PE或利妥昔单抗[11]。7例患者中6例(86%)接受eculizumab治疗16周,达到了重症肌无力(QMG)评分降低3分的疗效终点,并且安慰剂和eculizumab治疗组患者的严重不良事件发生频率相同[11]。在另一项III期多中心试验中,在没有严重感染或者不良事件发生的前提下,接受eculizumab治疗的患者临床改善显著。在这项实验中,最常见的不良反应是头痛、上呼吸道感染和鼻咽炎[12]。在另一项样本量为62名抗AChR抗体阳性的成人难治性gMG患者的研究中,应用FDA推荐剂量Eculizumab后,可以迅速完全抑制终末补体活化,临床得到持续缓解[13]

2.2. Zilucoplan

Zilucoplan是一种合成的大环内酯类药物,对抑制C5补体的裂解具有很强的亲和力,并且还能与C5b结合,阻断其与C6补体的相互作用[14]。它具有自我给药、起效快速及皮下给药(SC)的优势[15]。可以提高患者的依从性。一项II期随机双盲对照多中心临床试验,比较了0.1 mg/kg/d和0.3 mg/kg/d两种剂量的皮下给zilucoplan或安慰剂的对照研究,持续了12周,用药两组均具有临床意义和统计学意义的改善,但0.1 mg/kg起效较慢,且临床改善不如0.3 mg/kg组明显,与安慰剂相比,Zilucoplan具有良好的安全性和耐受性[16]。1例患者服用0.3 mg/kg后,原有憩室炎加重,并发结肠旁脓肿,没有其他严重的不良反应,如脑膜炎球菌感染或死亡[16]。Zilucoplan已获得FDA罕见药资格,用于治疗中度至重度抗ARhr抗体阳性gMG,目前正在进行III期试验[17] [18]

2.3. Ravulizumab

Ravulizumab (ultomiris)也是一种高亲和力结合补体C5的人源化重组单抗,是一种长效补体C5抑制剂[19]。2022年4月28日,FDA批准ravulizumab用于抗AChR抗体阳性gMG的治疗,该药物也获得了EMA的批准,作为抗AChR抗体阳性gMG的附加疗法。与eculizumab相比,它具有更高的药效学和药代动力学,延长了半衰期,可以每8周给药一次(而eculizumab每2周给药一次),ravulizumab能够维持持续的临床改善具有良好的耐受性,可达1年[20]。在一项随机、双盲、安慰剂对照的多中心研究中,ravulizumab或安慰剂治疗26周后进行MG-ADL、QMG评分比较,ravulizumab组两项分数较基线变化幅度均大于安慰机组,且有统计学意义[21]。因此,ravulizumab治疗gMG具有良好的有效性及安全性,在满足gMG免疫抑制治疗的需求方面具有很大的希望。

3. FcRn抑制剂

重症肌无力另一个重要的靶点是FcRn,它在不同的细胞表达,但最重要是在血管内皮上表达,在血管内皮上结合抗体的Fc部分,并携带抗体穿过细胞表面进入溶酶体[22]。IgG通过胞饮进入细胞内,在溶酶体中,FcRn与IgG结合抑制IgG被溶酶体降解来提高IgG浓度,延长其半衰期[23]。这一过程有助于IgG介导的自身免疫性疾病(如MG)的发展。通过抑制FcRn来促进致病性IgG的降解成为MG治疗新策略。

3.1. Efgartigimod

Efgartigimod (ARGX-113)是一种人源化IgG1衍生的Fc片段,通过高亲和力结合FcRn竞争性抑制IgG再循环,此外,efgartigimod维持其pH依赖性的结合能力,使其在血流中循环,从而延长其半衰期[24]。Efgartigimod已在多个国家获批用于治疗AChR-MG。在健康志愿者中进行的I期研究表明,单剂量的Efgartigimod可在第2天降低IgG水平,在第6天至第21天之间下降幅度最大,多次给药后,血清IgG水平下降75%~85% [25]。副作用有头痛、寒战、头晕、疲劳、白细胞计数改变和CRP水平升高[26]。在抗AChR抗体阳性的全身型MG患者中进行的II期探索性研究显示,从第一次用药开始,IgG迅速减少,并在第四次用药后一周减少达到70% [26]。Efgartigimod具有良好的耐受性以及安全性。最常见的不良反应是头痛和鼻咽炎。

3.2. Rozanolixizumab

Rozanolixizumab是一种人源化IgG4单克隆抗体,通过结合和阻断FcRn受体起作用,导致循环IgG水平下降[27]。该抗体于2023年获得FDA批准,用于治疗抗AChR抗体阳性-gMG以及抗MuSK抗体阳性-MG。Rozanolizumab总体耐受性良好,最常见的不良反应是头痛和腹泻[28]。目前,已经完成的OLE研究MG0004 (NCT04124965)和正在进行的OLE研究MG0007 (NCT04650854)正在评估rozanolizumab的长期安全性。

4. B细胞耗竭剂

Rituximab

利妥昔单抗是一种抗B细胞药物,最初获批用于治疗非霍奇金淋巴瘤[29]。由于B细胞产生致病性抗体在重症肌无力中的重要作用,利妥昔单抗除了应用于类风湿关节炎之外[30],还应用于重症肌无力。利妥昔单抗是一种嵌合单克隆抗体,针对CD20。CD20表达于所有B细胞。在Michael K Hehir [31]等人的双盲随机对照研究中,纳入77名抗MuSK抗体阳性MG患者,与对照组(16%)相比,接受利妥昔单抗治疗组(58%)达到主要疗效比例更高,最后一次随访时,29%的利妥昔单抗治疗患者正在服用泼尼松,而对照组为74%。利妥昔单抗也用于治疗儿童重症肌无力(JMG)。在一项回顾性研究中,10名JMG患者接受利妥昔单抗治疗,在2年的随访中,6名患者(60%)获得了完全缓解或者药物缓解,7名患者(70%)减少传统免疫抑制剂的使用,主要副作用是输液相关反应(30%) [32]。综上所述,利妥昔在成人及儿童重症肌无力均有良好的有效性及安全性。

5. 结论

与新开发的药物相比,重症肌无力患者的现有传统药物治疗仍存在许多问题,包括长期的免疫抑制剂带来的副作用,且仍有约10%~15%为难治性重症肌无力,严重影响了患者的生活质量。这些靶向治疗药物疗效快,副作用少,可以缓解临床症状提高患者生活治疗,且可以减少传统免疫抑制剂的使用。然而,由于这些药物被用作附加疗法,它们在单一疗法和疾病早期的效果仍不清楚。并且高昂的费用限制了其使用的优先级,且在儿童患者中的疗效不确定,需要更多的临床研究提供循证依据。

NOTES

*通讯作者。

参考文献

[1] Lazaridis, K. and Tzartos, S.J. (2020) Autoantibody Specificities in Myasthenia Gravis; Implications for Improved Diagnostics and Therapeutics. Frontiers in Immunology, 11, Article 212.
https://doi.org/10.3389/fimmu.2020.00212
[2] Chen, J., Tian, D.-C., Zhang, C., Li, Z., Zhai, Y., Xiu, Y., et al. (2020) Incidence, Mortality, and Economic Burden of Myasthenia Gravis in China: A Nationwide Population-Based Study. The Lancet Regional Health-Western Pacific, 5, Article 100063.
https://doi.org/10.1016/j.lanwpc.2020.100063
[3] Huang, X., Li, Y., Feng, H., Chen, P. and Liu, W. (2018) Clinical Characteristics of Juvenile Myasthenia Gravis in Southern China. Frontiers in Neurology, 9, Article 77.
https://doi.org/10.3389/fneur.2018.00077
[4] Hong, Y., Skeie, G.O., Zisimopoulou, P., Karagiorgou, K., Tzartos, S.J., Gao, X., et al. (2017) Retracted Article: Juvenile-Onset Myasthenia Gravis: Autoantibody Status, Clinical Characteristics and Genetic Polymorphisms. Journal of Neurology, 264, 955-962.
https://doi.org/10.1007/s00415-017-8478-z
[5] Vanoli, F. and Mantegazza, R. (2023) Current Drug Treatment of Myasthenia Gravis. Current Opinion in Neurology, 36, 410-415.
https://doi.org/10.1097/wco.0000000000001196
[6] Howard Jr., J.F. (2017) Myasthenia Gravis: The Role of Complement at the Neuromuscular Junction. Annals of the New York Academy of Sciences, 1412, 113-128.
https://doi.org/10.1111/nyas.13522
[7] Lin, F., Kaminski, H.J., Conti-Fine, B.M., Wang, W., Richmonds, C. and Medof, M.E. (2002) Markedly Enhanced Susceptibility to Experimental Autoimmune Myasthenia Gravis in the Absence of Decay-Accelerating Factor Protection. Journal of Clinical Investigation, 110, 1269-1274.
https://doi.org/10.1172/jci0216086
[8] Mantegazza, R., Vanoli, F., Frangiamore, R. and Cavalcante, P. (2020) Complement Inhibition for the Treatment of Myasthenia Gravis. ImmunoTargets and Therapy, 9, 317-331.
https://doi.org/10.2147/itt.s261414
[9] Zisimopoulou, P., Evangelakou, P., Tzartos, J., Lazaridis, K., Zouvelou, V., Mantegazza, R., et al. (2014) A Comprehensive Analysis of the Epidemiology and Clinical Characteristics of Anti-LRP4 in Myasthenia Gravis. Journal of Autoimmunity, 52, 139-145.
https://doi.org/10.1016/j.jaut.2013.12.004
[10] Klooster, R., Plomp, J.J., Huijbers, M.G., Niks, E.H., Straasheijm, K.R., Detmers, F.J., et al. (2012) Muscle-Specific Kinase Myasthenia Gravis IgG4 Autoantibodies Cause Severe Neuromuscular Junction Dysfunction in Mice. Brain, 135, 1081-1101.
https://doi.org/10.1093/brain/aws025
[11] Howard Jr., J.F., Barohn, R.J., Cutter, G.R., Freimer, M., Juel, V.C., Mozaffar, T., et al. (2013) A Randomized, Double-Blind, Placebo-Controlled Phase II Study of Eculizumab in Patients with Refractory Generalized Myasthenia Gravis. Muscle & Nerve, 48, 76-84.
https://doi.org/10.1002/mus.23839
[12] Howard Jr., J.F., Utsugisawa, K., Benatar, M., et al. (2017) Safety and Efficacy of Eculizumab in Anti-Acetylcholine Receptor Antibody-Positive Refractory Generalised Myasthenia Gravis (REGAIN): A Phase 3, Randomised, Double-Blind, Placebo-Controlled, Multicentre Study. The Lancet Neurology, 16, 976-986.
https://doi.org/10.1016/S1474-4422(17)30369-1
[13] Monteleone, J.P.R., Gao, X., Kleijn, H.J., Bellanti, F. and Pelto, R. (2021) Eculizumab Pharmacokinetics and Pharmacodynamics in Patients with Generalized Myasthenia Gravis. Frontiers in Neurology, 12, Article 696385.
https://doi.org/10.3389/fneur.2021.696385
[14] Tang, G.-Q., Tang, Y., Dhamnaskar, K., Hoarty, M.D., Vyasamneni, R., Vadysirisack, D.D., et al. (2023) Zilucoplan, a Macrocyclic Peptide Inhibitor of Human Complement Component 5, Uses a Dual Mode of Action to Prevent Terminal Complement Pathway Activation. Frontiers in Immunology, 14, Article 1213920.
https://doi.org/10.3389/fimmu.2023.1213920
[15] Mastellos, D.C., Ricklin, D. and Lambris, J.D. (2019) Clinical Promise of Next-Generation Complement Therapeutics. Nature Reviews Drug Discovery, 18, 707-729.
https://doi.org/10.1038/s41573-019-0031-6
[16] Howard Jr., J.F., Nowak, R.J., Wolfe, G.I., Freimer, M.L., Vu, T.H., Hinton, J.L., et al. (2020) Clinical Effects of the Self-Administered Subcutaneous Complement Inhibitor Zilucoplan in Patients with Moderate to Severe Generalized Myasthenia Gravis. JAMA Neurology, 77, 582-592.
https://doi.org/10.1001/jamaneurol.2019.5125
[17] Shirley, M. (2024) Correction: Zilucoplan: First Approval. Drugs, 84, 373.
https://doi.org/10.1007/s40265-024-02019-2
[18] Howard Jr., J.F., Bresch, S., Genge, A., et al. (2023) Safety and Efficacy of Zilucoplan in Patients with Generalised Myasthenia Gravis (RAISE): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Study. The Lancet Neurology, 22, 395-406.
https://doi.org/10.1016/S1474-4422(23)00080-7
[19] Vu, T., Ortiz, S., Katsuno, M., Annane, D., Mantegazza, R., Beasley, K.N., et al. (2023) Ravulizumab Pharmacokinetics and Pharmacodynamics in Patients with Generalized Myasthenia Gravis. Journal of Neurology, 270, 3129-3137.
https://doi.org/10.1007/s00415-023-11617-1
[20] Meisel, A., Annane, D., Vu, T., Mantegazza, R., Katsuno, M., Aguzzi, R., et al. (2023) Long-Term Efficacy and Safety of Ravulizumab in Adults with Anti-Acetylcholine Receptor Antibody-Positive Generalized Myasthenia Gravis: Results from the Phase 3 CHAMPION MG Open-Label Extension. Journal of Neurology, 270, 3862-3875.
https://doi.org/10.1007/s00415-023-11699-x
[21] Vu, T., Meisel, A., Mantegazza, R., Annane, D., Katsuno, M., Aguzzi, R., et al. (2022) Terminal Complement Inhibitor Ravulizumab in Generalized Myasthenia Gravis. NEJM Evidence, 1, EVIDoa2100066.
https://doi.org/10.1056/evidoa2100066
[22] Roopenian, D.C. and Akilesh, S. (2007) FcRn: The Neonatal Fc Receptor Comes of Age. Nature Reviews Immunology, 7, 715-725.
https://doi.org/10.1038/nri2155
[23] Pyzik, M., Kozicky, L.K., Gandhi, A.K. and Blumberg, R.S. (2023) The Therapeutic Age of the Neonatal Fc Receptor. Nature Reviews Immunology, 23, 415-432.
https://doi.org/10.1038/s41577-022-00821-1
[24] Wolfe, G.I., Ward, E.S., de Haard, H., Ulrichts, P., Mozaffar, T., Pasnoor, M., et al. (2021) IgG Regulation through FcRn Blocking: A Novel Mechanism for the Treatment of Myasthenia Gravis. Journal of the Neurological Sciences, 430, Article 118074.
https://doi.org/10.1016/j.jns.2021.118074
[25] Ulrichts, P., Guglietta, A., Dreier, T., van Bragt, T., Hanssens, V., Hofman, E., et al. (2018) Neonatal Fc Receptor Antagonist Efgartigimod Safely and Sustainably Reduces IgGs in Humans. Journal of Clinical Investigation, 128, 4372-4386.
https://doi.org/10.1172/jci97911
[26] Howard Jr., J.F., Bril, V., Burns, T.M., Mantegazza, R., Bilinska, M., Szczudlik, A., et al. (2019) Randomized Phase 2 Study of FcRn Antagonist Efgartigimod in Generalized Myasthenia Gravis. Neurology, 92, e2661-e2673
https://doi.org/10.1212/wnl.0000000000007600
[27] Kiessling, P., Lledo-Garcia, R., Watanabe, S., Langdon, G., Tran, D., Bari, M., et al. (2017) The FcRn Inhibitor Rozanolixizumab Reduces Human Serum IgG Concentration: A Randomized Phase 1 Study. Science Translational Medicine, 9, eaan1208.
https://doi.org/10.1126/scitranslmed.aan1208
[28] Bril, V., Drużdż, A., Grosskreutz, J., et al. (2023) Safety and Efficacy of Rozanolixizumab in Patients with Generalised Myasthenia Gravis (MycarinG): A Randomised, Double-Blind, Placebo-Controlled, Adaptive Phase 3 Study. The Lancet Neurology, 22, 383-394.
https://doi.org/10.1016/S1474-4422(23)00077-7
[29] Kosmas, C., Stamatopoulos, K., Stavroyianni, N., Tsavaris, N. and Papadaki, T. (2002) Anti-CD20-Based Therapy of B Cell Lymphoma: State of the Art. Leukemia, 16, 2004-2015.
https://doi.org/10.1038/sj.leu.2402639
[30] Schioppo, T. and Ingegnoli, F. (2017) Current Perspective on Rituximab in Rheumatic Diseases. Drug Design, Development and Therapy, 11, 2891-2904.
https://doi.org/10.2147/dddt.s139248
[31] Hehir, M.K., Hobson-Webb, L.D., Benatar, M., Barnett, C., Silvestri, N.J., Howard, J.F., et al. (2017) Rituximab as Treatment for Anti-Musk Myasthenia Gravis. Neurology, 89, 1069-1077.
https://doi.org/10.1212/wnl.0000000000004341
[32] Ramdas, S., Della Marina, A., Ryan, M.M., et al. (2022) Rituximab in Juvenile Myasthenia Gravis—An International Cohort Study and Literature Review. European Journal of Paediatric Neurology, 40, 5-10.
https://doi.org/10.1016/j.ejpn.2022.06.009