热环境中多孔功能梯度材料微圆板的自由振动分析
Free Vibration Analysis of Porous Functionally Graded Materials Circular Micro-Plates in Thermal Environment
摘要: 基于经典板理论和修正偶应力理论,研究热环境中多孔功能梯度材料(FGM)微圆板的自由振动问题。首先利用Hamilton原理推导热环境中含有材料尺度参数的多孔FGM微圆板自由振动的控制微分方程并进行无量纲化。然后应用微分变换法(DTM)对多孔FGM微圆板自由振动的无量纲控制微分方程和边界条件进行变换,得到计算自由振动无量纲固有频率的代数特征方程。最后通过MATLAB编程计算并分析了梯度指数、孔隙率、不同升温方式和材料尺度参数对多孔FGM微圆板无量纲固有频率的影响。结果表明:材料尺度参数的增加,无量纲固有频率会增大;梯度指数影响频率,反映了材料从陶瓷到金属的转变特性;孔隙率会削弱刚度,进而影响固有频率。研究结果可为今后热环境中多孔FGM微圆板的设计与应用提供数据支持。
Abstract: The free vibration problem of porous functional graded material (FGM) circular micro-plates in a thermal environment is investigated based on the classical plate theory and the modified coupled stress theory. Firstly, Hamilton’s principle is used to derive the governing differential equations for the free vibration of porous FGM circular micro-plates in thermal environment containing material scale parameters and to carry out the dimensionless quantization. Then the differential transformation method (DTM) is applied to transform the dimensionless governing differential equations and boundary conditions of the free vibration of the porous FGM circular micro-plate to obtain the algebraic characteristic equations for calculating the dimensionless natural frequency of the free vibration. Finally, the effects of gradient index, porosity, different heating methods and material scale parameters on the dimensionless natural frequency of porous FGM circular micro-plates are calculated and analyzed by MATLAB programming. The results show that the dimensionless natural frequencies increase with the increase of the material scale parameter; the gradient index affects the frequency, reflecting the transition characteristics of the material from ceramic to metal; and the porosity weakens the stiffness, which in turn affects the natural frequencies. The results can provide data support for the design and application of porous FGM circular micro-plates in thermal environments in the future.
文章引用:滕兆春, 薛刚, 雷飞鹏. 热环境中多孔功能梯度材料微圆板的自由振动分析[J]. 力学研究, 2024, 13(2): 39-51. https://doi.org/10.12677/ijm.2024.132005

1. 引言

功能梯度材料(Functionally Graded Material, FGM)是指材料的化学组成、微观结构、原子排列由一侧向另一侧呈连续梯度变化,从而使材料的性质和功能连续地呈梯度变化[1],与传统的复合材料相比,FGM具有能够确保应力分布平稳过渡、增加不同材料界面的结合强度等优点。20世纪70年代,Bever等[2]首先对功能梯度材料结构提出了构想,到了80年代日本材料科学家新野正之、平井敏雄等人为了未来制造超高音速飞行器壳体提出了功能梯度材料的概念。如今FGM的应用非常广泛,在航天航空、电子器件、汽车发动机、制动器、化工部件等诸多方面都有广泛的应用[3] [4]。随着各个领域对FGM结构的不断需求,人们对FGM及结构的力学行为进行了大量研究。

对于FGM结构的力学行为的研究已有较多成果,具体可参考Reddy [5]、Pandey [6]和沈惠申[7]等学者的系列工作。同时,随着研究的深入和精细化,孔隙对FGM结构性能的影响也得到很多学者的研究和重视。Ebrahimi等基于四变量剪切变形梁理论,研究了含孔隙FGM梁的热机械振动,详细讨论了梯度指数、孔隙率、不同孔隙分布以及热效应对多孔结构梁振动的影响[8]。苏盛开等基于含孔隙的Voight混合模型和高阶三角剪切变形理论,研究了多孔FGM梁的热–力耦合屈曲行为,讨论了材料非均匀参数、孔隙率和长细比等参数对屈曲临界温度的影响[9]。Daikh等采用一种新的简单的高阶剪切变形理论,分析了多孔FGM夹层板的自由振动和屈曲,研究了孔隙率、夹芯板几何形状和非均匀性参数对夹层板屈曲和自由振动的影响[10]

近年来,微/纳米机电系统(MEMS/NEMS)已成为机器人及电子产品中的核心组件,分析微/纳米机电系统中结构的力学行为是进行安全设计和应用的前提。目前关于FGM微纳米结构的力学行为研究,学者们主要基于非局部弹性理论、偶应力理论或应变梯度理论等进行相关工作。Nguyen等人考虑尺寸相关效应,采用Eringen提出的非局部弹性理论来研究智能纳米板的力学行为,基于高阶剪切变形理论,获得智能功能梯度压电多孔纳米板的控制方程,研究幂律指数、外部电压、孔隙率、边界条件、孔隙率分布和非局部参数对智能纳米板固有频率的影响[11]。Saeed等基于不同的高阶剪切变形模型和修正的应变梯度理论,研究了可变材料尺度常数、孔隙率参数、材料梯度指数、曲率和不同边界条件对FG多孔微梁自由振动响应的影响[12]。Teng等基于修正偶应力理论,采用数值求解法–微分变换法(DTM),讨论了孔隙率、尺度参数、梯度指数对FGM微梁无量纲固有频率和临界屈曲载荷的影响[13]。Akbaş等人基于伯努利–欧拉梁和修正偶应力理论获得了移动载荷作用下FGM多孔微梁的动力学控制方程,通过Ritz和Newmark方法求解控制方程,研究孔隙率系数、材料分布和长度尺度参数对功能梯度多孔微梁动态响应的影响[14]。Masoud等使用修正偶应力和Mindlin板理论,通过Newton-Raphson迭代法,研究了孔隙分布、孔隙率,改变长度尺度参数对微板后屈曲的影响[15]

根据已有关于FGM圆板的文献表明,对多孔FGM微圆板的研究则相对较少,同时一些研究结果也很好地验证了微分变换法(Differential Transformation Method, DTM)在求解特征值问题时的实用性和有效性。目前关于热环境中多孔FGM微圆板自由振动问题的研究在国内外还鲜见有文献报道。本文基于经典板理论和修正偶应力理论,考虑均匀孔隙模型,用微分变换法对不同升温下的多孔FGM微圆板进行研究。研究结果通过退化也验证了DTM计算的准确性。最后计算分析了梯度指数、孔隙率、材料尺度参数、不同升温类型对FGM圆板无量纲固有频率的影响。为今后多孔功能梯度材料(FGM)微圆板提供了理论支持。

2. 多孔FGM微圆板的模型描述

2.1. 计算模型和材料属性

Figure 1. Schematic diagram of a porous FGM circular micro-plate

1. 多孔FGM微圆板结构示意图

图1所示,考虑一个孔隙均匀分布的FGM微圆板并选取柱坐标系,rθz分别表示径向、环向和横向坐标。多孔FGM微圆板半径为R,厚度为h,物性参数沿z轴厚度方向呈梯度分布,其成分沿此方向从底面的纯金属层( z=0.5h )到顶面的纯陶瓷层( z=0.5h )连续变化,则物性参数P (如密度ρ、弹性模量E和热膨胀系数α等)由以下混合率模型统一给出[16]

P( z,θ,T )=[ P c ( T ) P m ( T ) ] ( 1 2 + z h ) n + P m ( T )[ P c ( T )+ P m ( T ) ] β 2 (1)

式中: 0.5hz0.5h n是梯度指数,PcPm分别是模型上部陶瓷和下部金属无孔隙时的物性参数,β是孔隙率。考虑材料的温度依赖特性,物性参数与温度的关系为[17]

P( T )= P 0 ( P 1 T 1 +1+ P 1 T+ P 2 T 2 + P 3 T 3 ) (2)

式中P0P1P1P2P3为温度相系数,一般由实验给出,由表1给出。

Table 1. Temperature correlation coefficient of physical parameters of ceramic and metal materials [17]

1. 陶瓷和金属材料物性参数的温度相关系数表[17]

材料

P0

P1

P1

P2

P3

P/300 K

Si3N4







E

3.4843 × 1011

0

−3.070 × 104

2.160 × 107

−8.946 × 1011

322.27 × 109

α

5.8723 × 106

0

9.095 × 104

0

0

7.475 × 106

ρ

2370

0

0

0

0

2370

SUS304







E

201.04 × 109

0

3.079 × 104

−6.534 × 107

0

207.79 × 109

α

12.330 × 106

0

8.086 × 104

0

0

15.321 × 106

ρ

8166

0

0

0

0

8166

2.2. 温度场描述

假设FGM微圆板整体初始温度均匀且初始温度T0视为室温300 K,温度变化量为ΔT,则板的温度场可以统一表示为:

T( z )= T m +ΔT ( 1 2 + z h ) η (3)

式中: ΔT= T c T m TcTm分别为FGM微圆板的上下表面温度。 η 是温度指数, η=0 为均匀升温, η=1 为线性升温,当 η 取其它值时均为非线性升温。

2.3. 修正偶应力理论

各向同性线弹性材料中的应变能U可使用修正的偶应力理论[18]获得,如下所示:

U= 1 2 V ( σ:ε+m:χ )dV (4)

式中: ε σ 分别是应变张量和应力张量, χ m 是曲率应变和偶应力张量。四个张量定义如下:

σ=λtr( ε )I+2uε (5)

ε= 1 2 [ u+ ( u ) 2 ] (6)

m=2 l 2 μχ (7)

χ=[ Λ+ ( Λ ) 2 ] (8)

式中: λ μ 是Lame常数, I 为单位张量,ul分别是位移矢量和材料长度尺度参数,并且 Λ 是由下式定义的旋转矢量:

Λ= 1 2 curl( u ) (9)

Lame常数 λ μ 与材料弹性模量E、泊松比 ν 的关系为:

λ= νE ( 1+ν )( 1ν ) μ= E 2( 1+ν )

3. 控制微分方程的推导与DTM变换

3.1. 无量纲控制微分方程

经典板理论中,多孔FGM微圆板中任一点的径向位移分量 u r 、环向位移分量 u θ 和横向位移分量 u z 分别为:

u r =u( r,θ,z,t )z w( r,θ,z,t ) r u θ =z w( r,θ,z,t ) θ u z =w( r,θ,t ) (10)

式中:uw是圆板中面的径向和横向位移,t为时间。对于只考虑轴对称问题,环向位移 u θ 为零,因此,多孔FGM微圆板的位移场可重写如下:

u r =u( r,t )z w r u θ ( r,z,t )=0 u z =w( r,t ) (11)

应变分量写成如下:

ε rr = u r z 2 w r 2 ε θθ = u r z r w r ε rz = ε rθ = ε zθ =0 (12)

本构方程为:

σ rr = E( z ) 1 ν 2 ( ε rr +ν ε θθ ) σ θθ = E( z ) 1 ν 2 ( ε θθ +ν ε rr ) (13)

由式(9)可得旋转矢量的表达式为:

Λ= 1 2r | e r r e θ e z r θ z u rv w | (14)

式中: e r e θ e z 分别为多孔FGM微圆板径向、环向和横向的单位矢量,v是多孔FGM微圆板中面的环向位移。再将式(14)代入式(8),得到曲率张量的一个非零分量为:

X rθ = 1 4 ( 2 w r 2 + 1 r w r ) (15)

薄膜力和弯矩定义如下:

N rr = h/2 h/2 σ r r dz =( A 11 u r + A 12 u r )( B 11 2 w r + B 12 r w r ) (16)

N θθ = h/2 h/2 σ θθ dz =( A 12 u r + A 11 u r )( B 11 1 r w r + B 12 2 w r 2 ) (17)

Ω rθ = h 2 h 2 m rθ dz = A 55 l 2 ( 1 r w r w 2 r 2 ) (18)

M rr = h 2 h 2 σ rr zdz =( B 11 u r + B 12 u r )( D 11 2 w r 2 + D 12 r w r ) (19)

M θθ = h 2 h 2 σ θθ zdz =( B 12 u r + B 11 u r )( D 11 r w r + D 12 2 w r 2 ) (20)

式中各刚度系数定义为:

{ A 11 , B 11 , D 11 }= h 2 h 2 ( E( z ) 1 ν 2 ( z ) ) { 1,z, z 2 }dz= E c 1 ν 2 ( h ϕ 1 , h 2 ϕ 2 , 1 12 h 3 ϕ 3 )

{ A 12 , B 12 , D 12 }= h 2 h 2 ( E( z )ν( z ) 1 ν 2 ( z ) ) { 1,z, z 2 }dz= E c v 1 ν 2 ( h ϕ 1 , h 2 ϕ 2 , 1 12 h 3 ϕ 3 )

A 55 = h 2 h 2 ( E( z ) 2( 1+ν( z ) ) )dz = E c 2( 1+ν ) h ϕ 1

式中经简化的系数 ϕ 1 ϕ 2 ϕ 3 的表达式分别为:

ϕ 1 = E m E c + 1 n+1 ( 1 E m E c ) β 2 ( 1+ E m E c )

ϕ 2 = n 2( n+1 )( n+2 ) ( 1 E m E c )

ϕ 3 = E m E c + 3( n 2 +n+2 ) ( n+1 )( n+2 )( n+3 ) ( 1 E m E c ) β 2 ( 1+ E m E c )

应用Hamilton变分原理可推导出热环境中多孔FGM微圆板的运动微分方程。Hamilton原理如下:

δ t 1 t 2 ( SUH ) =0 (21)

式中:SUH分别为系统的动能、应变能和外力势能, δ 为变分符号,t1t2分别表示系统运动的初始时刻和终止时刻。

多孔FGM微圆板的动能为:

S= 1 2 V ρ( z ) [ ( u t ) 2 + ( v t ) 2 + ( w t ) 2 ]dV (22)

外力势能为:

H= 1 2 A N T ( w r ) 2 dA (23)

式中: N T = 1 1ν h 2 h 2 E( z )α( z ) ( T T 0 )dz

将非零应变和曲率应变分量代入等式(4)即可得到圆板在轴对称条件下的应变能为:

U= 1 2 A h 2 h 2 [ σ rr ( u r z 2 w r 2 )+ σ θθ ( u r z r w r )+ m rθ ( 2 w r 2 + 1 r w r ) ]dzdA = 1 2 [ M rr u r N θθ u r + M rr 2 w r 2 + M θθ 1 r w r + Ω rθ ( 2 w r 2 + 1 r w r ) ]dA (24)

式中A是板的横截面积。

利用上述Hamiton原理,可得到多孔FGM微圆板的运动微分方程为:

1 r [ r ( r N rr ) N θθ ]= I 1 2 u t 2 (25)

1 r [ r ( r M rr +r Ω rθ ) ]+ 1 r [ r ( r N T w r M θθ ) ]= I 1 2 w t 2 (26)

式中: I 1 为惯性系数, I 1 = h 2 h 2 ρ( z )dz = ρ c h ϕ 4 ,其中 ϕ 4 = ρ m ρ c + 1 n+1 ( 1 ρ m ρ c ) β 2 ( 1+ ρ m ρ c ) 。在周边固支边界条件下,多孔FGM微圆板的径向位移为零,故式(26)可改写为:

( D 11 + A 55 l 2 )( 4 w r 4 + 2 r 3 w r 3 1 r 2 2 w r 2 + 1 r 3 w r ) 1 r r ( r N T w r )= I 1 w 2 t 2 (27)

假设多孔FGM微圆板做简谐振动,令 w( r,t )= w ¯ ( r )cosωt ,式中 ω 是多孔FGM微圆板的固有频率, w ¯ ( r ) 是形状函数,则得到热环境中多孔FGM微圆板自由振动的控制微分方程为:

( D 11 + A 55 l 2 )( d 4 w ¯ d r 4 + 2 r d 3 w ¯ d r 3 1 r 2 d 2 w ¯ d r 2 + 1 r 3 d w ¯ dr )+ N T ( d 2 w ¯ d r 2 + 1 r d w ¯ dr )= I 1 ω 2 w ¯ (28)

引入如下无量纲参数:

l 0 = l h ξ= r R W= w ¯ R κ= h R Ω=ω R 2 12( 1 ν 2 ) ρ c h E c h 3 N T * =12( 1 ν 2 ) N T E c h

式中:Ω为无量纲固有频率, N T * 为无量纲热载荷。则热环境中多孔FGM微圆板自由振动的无量纲控制微分方程为:

[ ϕ 3 κ 2 +6( 1ν ) l 0 2 κ 2 ϕ 1 ]( ξ 3 d 4 W d ξ 4 +2 ξ 2 d 3 W d ξ 3 ξ d 2 W d ξ 2 + dW dξ )+ N T * ( ξ 3 d 2 W d ξ 2 + ξ 2 dW dξ )= Ω 2 W ϕ 4 κ 2 ξ 3 (29)

3.2. 边界条件

对于多孔FGM微圆板的自由振动问题,本文仅考虑周边固支边界条件,可表示如下:

ξ=0 处,微圆板中心边界条件为:

dW dξ =0 d 3 W d ξ 3 + 1 ξ d 2 W d ξ 2 =0 (30)

ξ=1 处,微圆板周边边界条件为:

W=0 dW dξ =0 (31)

3.3. DTM变换

对于热环境中多孔FGM微圆板自由振动无量纲控制微分方程式(29)和边界条件式(30)及式(31)的求解,这里采用一种半解析法——微分变换法(DTM)进行求解。按照DTM的求解过程及原理,将其无量纲控制微分方程组转换为如下的迭代代数方程组可表示为如下形式:

A 0 F[ k+1 ]+ A 1 F[ k1 ] A 2 F[ k3 ]=0 (32)

式中: F[ k ] W的微分变换式。k取大于零的整数,这里从3开始迭代计算。其余各系数A0A1A2的值分别为:

A 0 =( ϕ 3 κ 2 +6( 1v ) l 0 2 κ 2 ϕ 1 )( k 4 2 k 2 +1 )

A 1 = N T * ( k1 ) 2

A 2 = κ 2 Ω 2 ϕ 4

边界条件的DTM变换如下:

ξ=0 处,微圆板中心边界条件为:

F[ 1 ]=F[ 3 ]=F[ 4k+1 ]=F[ 4k+3 ]=0 (33)

ξ=1 处,微圆板周边边界条件为:

k=0 F[ k ] =0 k=0 kF[ k ] =0 (34)

4. 算例分析与数值讨论

通过编写MATLAB程序可计算得到由DTM求解热环境中多孔FGM微圆板特征值问题的无量纲自由振动固有频率。为了验证计算过程的可行性和计算结果的正确性,在不考虑温度依赖,孔隙率,材料尺度参数时,将原问题退化为FGM圆板的自由振动,求解无量纲固有频率,并与已有文献进行比较。

表2给出了在固支条件下,FGM微圆板当梯度指数 n=0 时,材料长度尺度参数 l=0 ,本文与文献结果[19]对比,可以看到DTM的计算结果与文献的结果相吻合,验证了DTM求解的可行性和正确性。其中 ρ c =3800 kg/ m 3 ρ m =2700 kg/ m 3 E c =380GPa E m =70GPa ν=0.3 κ=0.01 β=0

Table 2. Comparison of gradient exponent n=0 on the first five orders dimensionless natural frequencies of FGM circular plate with clamped support condition

2. 固支条件下梯度指数 n=0 对FGM圆板前5阶无量纲固有频率的对比


1

2

3

4

5

文献[19]

10.216

39.773

89.104

158.187

247.004

本文解

10.215

39.771

89.105

158.186

247.37

误差%

0.01

0.005

0.22

0.001

0.14

表3给出了在固支条件下,FGM微圆板取不同的梯度指数时,本文与文献结果对比发现,DTM的计算结果也与文献结果[20]相吻合,进一步验证了DTM求解的正确性。其中 ρ c =3800 kg/ m 3 ρ m =2700 kg/ m 3 E c =380GPa E m =70GPa ν=0.3 κ=0.01 β=0

Table 3. Comparison of dimensionless natural frequencies of FGM circular plates with different gradient indices with clamped support conditions

3. 固支条件下不同梯度指数对FGM圆板无量纲固有频率的对比


n

0

0.1

0.5

1

2

5

1

文献[20]

10.216

9.851

8.973

8.5

8.125

7.576

本文解

10.215

9.85

8.971

8.498

8.123

7.573

误差%

0.01

0.01

0.22

0.23

0.24

0.3

2

文献[20]

39.773

38.352

34.933

33.093

31.634

29.496

本文解

39.771

38.349

34.928

32.8417

31.626

29.485

误差%

0.005

0.008

0.01

0.01

0.02

0.09

图2图3为多孔FGM微圆板在固支(C)边界下,当 κ=0.1 h/l =2 β=0.1 ΔT=100K 时,梯度指数增加对无量纲前三阶固有频率Ω之间的影响曲线。可以看出当厚度半径比,温升值,材料尺度参数,孔隙率取特定值时,随着梯度指数n的增加,多孔FGM微圆板的无量纲固有频率Ω逐渐下降,当n在小于1时,无量纲固有频率减小的波动很剧烈,当n在大于1时,无量纲频率变化相较缓慢,后趋近于收敛。这也合理解释了FGM中陶瓷材料向金属材料过渡的特性,以功能梯度的形式在变化。

Figure 2. Effect of gradient index on the first three orders dimensionless natural frequencies under uniform temperature rise

2. 均匀升温下梯度指数对无量纲前三阶固有频率的影响

Figure 3. Effect of gradient index on the first three orders dimensionless natural frequencies under linear temperature rise

3. 线性升温下梯度指数对无量纲前三阶固有频率的影响

Figure 4. Effect of porosity on the first three orders dimensionless natural frequencies under uniform temperature rise

4. 均匀升温下孔隙率对无量纲前三阶固有频率的影响

Figure 5. Effect of porosity on dimensionless first three orders dimensionless natural frequencies under linear temperature rise

5. 线性升温下孔隙率对无量纲前三阶固有频率的影响

Figure 6. Effect of h/l on the first three orders dimensionless natural frequencies at uniform temperature rise

6. 均匀升温下h/l对无量纲前三阶固有频率的影响

Figure 7. Effect on h/l the first three orders dimensionless natural frequencies under linear temperature rise

7. 线性升温下h/l对无量纲前三阶固有频率的影响

图4图5为多孔FGM微圆板在固支(C)边界下,当 n=1 κ=0.1 h/l =2 ΔT=100K 时,孔隙率β增加对无量纲前三阶固有频率Ω之间的影响曲线。可以看出随着孔隙率β的增加,多孔功能梯度材料微圆板的无量纲频率在缓慢增大,是因为孔隙的存在削弱了FGM圆板的整体刚度,但也降低了等效质量,此时质量的弱化强于刚度弱化的缘故。

图6图7为多孔FGM微圆板在固支(C)边界下,当 κ=0.1 n=1 β=0.1 ΔT=100K 时,h/l增加对无量纲前三阶固有频率Ω之间的影响曲线。当厚度半径比,温升值,梯度指数,孔隙率取特定值时,可以看出固有频率Ω随着h/l增大而逐渐减小。得到随着材料尺度参数的增加,无量纲固有频率在增大。

Figure 8. Effect of uniform temperature rise ( η=0 ) on the first three orders dimensionless natural frequencies

8. 均匀升温( η=0 )对前三阶无量纲固有频率的影响

Figure 9. Effect of linear temperature rise ( η=1 ) on the first three orders dimensionless natural frequencies

9. 线性升温( η=1 )对前三阶无量纲固有频率的影响

Figure 10. Effect of nonlinear temperature rise ( η=2 ) on the first three orders dimensionless natural frequencies

10. 非线性升温( η=2 )对前三阶无量纲固有频率的影响

图8图9图10为多孔FGM微圆板在固支(C)边界下,当 κ=0.1 n=1 β=0.1 h/l =2 时,不同升温方式时,温度增加对无量纲前三阶固有频率Ω之间的影响曲线。当厚度半径比,材料尺度参数,梯度指数,孔隙率取特定值时,可以看出固有频率随着温度的增大而逐渐减小。比较发现,可以得到当温度指数变大时,无量纲固有频率下降的较慢。

5. 结论

本文基于经典板和修正偶应力理论,利用Hamilton原理推导出了含有材料尺度参数的多孔FGM微圆板自由振动的控制微分方程。通过使用微分变换法(DTM)对无量纲控制微分方程和边界条件进行变换,得到了计算无量纲固有频率代数特征方程,计算分析了梯度指数、孔隙率、不同升温方式、材料长度尺度参数对多孔FGM微圆板无量纲固有频率的影响。主要结论如下:

1) 随着梯度指数n的增加,多孔FGM微圆板的无量纲固有频率Ω逐渐下降,这类现象合理的解释了FGM中陶瓷材料向金属材料过渡的特性。

2) 随着孔隙率β的增大,多孔FGM微圆板的无量纲频率在逐渐增大,是因为孔隙的存在削弱了FGM圆板的整体刚度,但也降低了等效质量,此时质量的弱化强于刚度弱化的缘故。

3) 随着材料尺度参数的增大,多孔FGM微圆板的无量纲频率在逐渐增大,材料长度尺度参数对固有频率有增加作用。然而随着温度的增大,多孔FGM微圆板的无量纲频率在逐渐减小。

NOTES

*通讯作者。

参考文献

[1] 马涛, 赵忠民, 刘良祥, 等. 功能梯度材料的研究进展及应用前景[J]. 化工科技, 2012, 20(1): 71-75.
[2] Bever, M.B. and Shen, M. (1974) The Morphology of Polymeric Alloys. Materials Science Engineering, 15, 145-157.
https://doi.org/10.1016/0025-5416(74)90046-9
[3] Jun, T. (2012) Development and Application of Functionally Gradient Materials. Proceedings of the 2012 International Conference on Industrial Control and Electronics Engineering, Xi’an, 23-25 August 2012, 1022-1025.
[4] Narayan, R.J., Hobbs, L.W., Jin, C. and Rabiei, A. (2006) The Use of Functionally Gradient Materials in Medicine. Journal of Materials Science: Materials in Medicine, 58, 52-56.
https://doi.org/10.1007/s11837-006-0142-5
[5] Reddy, J.N. and Chin, C.D. (1998) Thermomechanical Analysis of Functionally Graded Cylinders and Plates. Journal of Thermal Stresses, 21, 593-626.
https://doi.org/10.1080/01495739808956165
[6] Pandey, P.M., Rathee, S., Srivastava, M. and Jain, P.K., Eds. (2021) Functionally Graded Materials (FGMs): Fabrication, Properties, Applications, and Advancements. CRC Press, Boca Raton.
https://doi.org/10.1201/9781003097976
[7] Shen, H.S. (2009) Functionally Graded Materials: Nonlinear Analysis of Plates and Shells. CRC Press, Boca Raton.
[8] Ebrahimi, F. and Jafari, A. (2017) A Four-Variable Refined Shear-Deformation Beam Theory for Thermo-Mechanical Vibration Analysis of Temperature-Dependent FGM Beams with Porosities. Mechanics of Advanced Materials and Structures, 25, 212-224.
https://doi.org/10.1080/15376494.2016.1255820
[9] 苏盛开, 黄怀纬. 多孔功能梯度梁的热-力耦合屈曲行为[J]. 复合材料学报, 2017, 37(12): 2794-2799.
[10] Daikh, A.A. and Zenkour, A.M. (2019) Free Vibration and Buckling of Porous Power-Law and Sigmoid Functionally Graded Sandwich Plates Using a Simple Higher-Order Shear Deformation Theory. Materials Research Express, 6, Article 115707.
https://doi.org/10.1088/2053-1591/ab48a9
[11] Nguyen, L.B., Nguyen-Xuan, H., Thai, C.H. and Phung-Van, P. (2023) A Size-Dependent Effect of Smart Functionally Graded Piezoelectric Porous Nanoscale Plates. International Journal of Mechanics and Materials in Design, 19, 817-830.
https://doi.org/10.1007/s10999-023-09660-x
[12] Mirzaei, S., Hejazi, M. and Ansari, R. (2023) Isogeometric Analysis of Small-Scale Effects on the Vibration of Functionally Graded Porous Curved Microbeams Based on the Modified Strain Gradient Elasticity Theory. Acta Mechanica, 234, 4535-4557.
https://doi.org/10.1007/s00707-023-03616-0
[13] Teng, Z.C., Wang, W.B. and Gu, C.L. (2022) Free Vibration and Buckling Characteristics of Porous Functionally Graded Materials (FGMs) Micro-Beams Based on the Modified Couple Stress Theory. Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 102, e202100219.
https://doi.org/10.1002/zamm.202100219
[14] Akbaş, S.D., Doğuşcan, Ş., Akgöz, B., et al. (2022) Dynamic Analysis of Functionally Graded Porous Microbeams under Moving Load. Transport in Porous Media, 142, 209-227.
https://doi.org/10.1007/s11242-021-01686-z
[15] Rezaei, M., Khorshidvand, R.A., Khorsandijou, M.S. and Jabbari, M. (2023) Parametric Study for Modified Couple Stress Theory on Postbuckling of Size-Dependent FG Saturated Porous Mindlin Microplates. Physica Scripta, 98, Article 065958.
https://doi.org/10.1088/1402-4896/acd6c3
[16] Rahmani, A., Faroughi, S. and Friswell, M.I. (2020) The Vibration of Two-Dimensional Imperfect Functionally Graded (2D-FG) Porous Rotating Nanobeams Based on General Nonlocal Theory. Mechanical Systems and Signal Processing, 144, Article 106854.
https://doi.org/10.1016/j.ymssp.2020.106854
[17] Aria, A.I., Rabczuk, T. and Friswell, M.I. (2019) A Finite Element Model for the Thermo-Elastic Analysis of Functionally Graded Porous Nanobeams. European Journal of Mechanics-A/Solids, 77, Article 103767.
https://doi.org/10.1016/j.euromechsol.2019.04.002
[18] Reddy, J.N. and Berry, J. (2012) Nonlinear Theories of Axisymmetric Bending of Functionally Graded Circular Plates with Modified Couple Stress. Composite Structures, 94, 3664-3668.
https://doi.org/10.1016/j.compstruct.2012.04.019
[19] Wu, T.Y., Wang, Y.Y. and Liu, G.R. (2002) Free Vibration Analysis of Circular Plates Using Generalized Differential Quadrature Rule. Computer Methods in Applied Mechanics and Engineering, 191, 5365-5380.
https://doi.org/10.1016/S0045-7825(02)00463-2
[20] Pradhan, K.K. and Chakraverty, S. (2015) Free Vibration of Functionally Graded Thin Elliptic Plates with Various Edge Supports. Structural Engineering and Mechanics, 53, 337-354.
https://doi.org/10.12989/sem.2015.53.2.337