耳毒性有机溶剂与噪声联合接触致听力损失的流行病学研究进展
Epidemiological Research Progress on the Effects of Combined Exposure to Ototoxic Organic Solvents and Noise on Hearing Loss
DOI: 10.12677/bp.2024.142011, PDF, HTML, XML, 下载: 43  浏览: 65 
作者: 任 佳, 王雅欣:杭州师范大学公共卫生学院,浙江 杭州
关键词: 听力损失耳毒性有机溶剂噪声联合接触流行病学研究进展Hearing Loss Ototoxic Organic Solvent Noise Combined Exposure Epidemiology Research Progress
摘要: 常见的耳毒性有机溶剂包括甲苯、二甲苯、苯乙烯、三氯乙烯和苯系物混合有机溶剂。有研究结果显示,甲苯、二甲苯、苯乙烯、三氯乙烯分别与噪声联合接触时对作业工人听力损失均具有协同作用,苯系物(苯、甲苯、二甲苯、乙苯、苯乙烯等)或混合有机溶剂与噪声联合接触亦可对工人听力损失产生协同效应;其中,苯乙烯或三氯乙烯与噪声联合接触时,工人的听力损失与苯乙烯或三氯乙烯的接触水平存在一定的剂量–效应关系。此外,即使是工作场所空气中苯乙烯或苯系物混合有机溶剂水平低于职业接触限值,其与噪声联合接触也可对工人听力损失产生协同效应。但耳毒性有机溶剂与噪声联合接触时的听力损失的预测模型、发病特征、测定方法以及职业接触限值等方面,仍有待进一步研究。
Abstract: Common ototoxic organic solvents include toluene, xylene, styrene, carbon disulfide, trichloroethylene and mixed organic solvents. Some research results show that toluene, xylene, styrene, carbon disulfide, and trichloroethylene have synergistic effects on workers’ hearing loss when combined with noise, and benzene series (benzene, toluene, xylene, ethylbenzene, styrene, etc.) or mixed organic solvents and noise combined exposure can also produce synergistic effects on workers’ hearing loss. When styrene or trichloroethylene is exposed to noise, there is a dose-effect relationship between the hearing loss of workers and the exposure level of styrene or trichloroethylene. In addition, even if the level of styrene or benzene series or mixed organic solvents in the air in the workplace is below the occupational exposure limit, the combined exposure with noise can have a synergistic effect on workers’ hearing loss. However, the prediction model, pathogenesis characteristics, determination methods and occupational exposure limits of hearing loss in ototoxic organic solvents combined with noise are still to be further studied.
文章引用:任佳, 王雅欣. 耳毒性有机溶剂与噪声联合接触致听力损失的流行病学研究进展[J]. 生物过程, 2024, 14(2): 83-88. https://doi.org/10.12677/bp.2024.142011

1. 引言

据世界卫生组织预测,2050年全球近25亿人将患有不同程度的听力损失,听力损失已成为全球性的公共卫生问题 [1] 。听力损失可由多种因素引起,包括年龄、遗传、接触耳毒性有机溶剂和噪声等 [2] 。既往对听力损失的研究多集中在噪声性听力损失,其特征是听力损失程度会随着年龄、噪声接触水平和时间的增加而增加,并最终导致永久性听力损失 [3] 。工作场所中噪声经常与耳毒性有机溶剂同时存在,两者联合接触对听力的影响引起广泛关注。人群流行病学研究结果显示,甲苯、二甲苯、苯乙烯、二硫化碳、三氯乙烯和混合有机溶剂均可引起听力损失 [4] [5] [6] ;与噪声和耳毒性有机溶剂的单纯接触比较,耳毒性有机溶剂和噪声联合接触所致听力损失的发生率更高、发生时间更早 [7] [8] 。目前,人们对耳毒性有机溶剂与噪声联合接触导致听力损失的剂量–反应关系、听阈值的变化特点等方面尚缺乏全面认识。本文基于美国国家职业安全卫生研究所列出的常见耳毒性有机溶剂(甲苯、二甲苯、苯乙烯、三氯乙烯和苯系物混合有机溶剂) [9] ,就其与噪声联合接触致听力损失的流行病学研究进行综述,为职业人群听力损失的防治提供参考。

2. 甲苯接触及其与噪声的联合接触

甲苯是一种重要的化工原料,广泛存在于黏合剂制造、电镀、机械制造和修理、油漆制造、杀虫剂制造和橡胶制造等工业中。甲苯可经呼吸道吸入或通过消化道、皮肤吸收而进入人体,主要影响中枢神经系统。甲苯不仅对神经系统、生殖系统等具有毒性作用,还可造成听觉系统的损伤 [10] 。黄伟新等 [11] 研究结果显示,长期接触超过国家职业接触限值的甲苯可导致工人血液中自由基和丙二醛水平升高,从而损害接触人群的听觉系统。多项研究表明,甲苯与噪声联合接触可产生协同作用,增加工人罹患听力损失的风险,且对中高频听阈均有影响 [12] [13] [14] [15] 。高盛庭等 [12] 对某家具厂工人的研究结果显示,甲苯与噪声联合接触对听力损害具有协同作用;噪声[>85.0 dB (A)]与甲苯(>50 mg/m3)接触水平均超过国家职业接触限值的混合接触组工人的高频3~6 kHz频段听阈值和听力损失检出率分别高于单纯噪声接触组和对照组(P值均 < 0.05)。王建宇等 [13] 对广州市某冷轧厂连续性噪声作业和接触甲苯的工人的研究结果显示,与累积噪声接触量 < 70.0 dB (A)的对照组比较,当累积噪声接触量≥80.0dB (A)时,甲苯和噪声联合接触所致听力损失的风险大于甲苯和噪声单纯接触所致听力损失危险度之和;表明噪声和甲苯在听力损失的发生中存在协同作用。Fuente等 [14] 研究结果显示,与未接触甲苯和噪声的对照组工人比较,长期接触低水平噪声[<85.0 dB (A)]与高水平甲苯(13.69 mg/m3)的工人发生听力损失的风险增加,且主要损害2~6 kHz的中高频听力。王璐等 [15] 对某包装企业连续接触稳态噪声和甲苯的男性工人的研究结果显示,噪声[平均强度为(82.3 ± 2.3) dB (A)]与甲苯(几何均数为42.7 mg/m3)联合接触可增加男性工人罹患高频听力损失的风险(P < 0.01)。

3. 二甲苯接触及其与噪声的联合接触

二甲苯是一种由煤焦油或石油碳氢化合物的芳构化生成的有机溶剂,被广泛用于涂料、清漆、脱脂剂、涂料稀释剂和杀虫剂等产品的生产。一项病例–对照研究结果显示,长期接触二甲苯的实验室人员出现了双侧感音神经性听力损失和某些中枢神经听觉系统功能改变 [16] 。还有研究结果显示,接触二甲苯的工人尿中甲基马尿酸水平与2~8 kHz纯音听阈之间存在相关性 [17] ;表明二甲苯接触与听阈水平有一定相关性。二甲苯与噪声联合接触可对高频听阈产生影响,且两者的联合接触可协同增加工人罹患听力损失的风险。Sliwinska-Kowalska等 [18] 对联合接触噪声和以二甲苯为主要成分的有机溶剂混合物的船舶行业工人研究结果显示,接触二甲苯的工人在4、6、8 kHz高频下的平均听阈高于对照组;单纯接触二甲苯或噪声组工人罹患听力损失的风险分别是对照组的4.1和3.8倍;联合接触噪声和二甲苯组工人发生听力损失的风险是对照组的6.7倍;表明二甲苯与噪声的联合接触可协同增加罹患听力损失的风险。

4. 苯乙烯接触及其与噪声的联合接触

苯乙烯是一种重要的化工原料,其作为聚苯乙烯塑料的前体,在包括绝缘、玻璃纤维、管道、汽车和船舶部件、食品容器、地毯衬底等产品的制造中具有重要的意义 [19] 。苯乙烯与甲苯的结构相似,但其耳毒性强于甲苯,可对工人的听觉系统造成渐进性或永久性的损害 [20] 。Muijser等 [21] 研究结果显示,与接触噪声者比较,接触苯乙烯的工人高频听阈(8 kHz)升高(P < 0.05);接触高水平苯乙烯的工人高频听阈高于接触低水平苯乙烯者(P < 0.05)。Morata等 [22] 研究结果显示,苯乙烯接触可影响工人2 kHz的听力,苯乙烯接触水平即使低于瑞典的推荐限值86.0 mg/m3,其也可对工人听觉系统产生毒性作用。噪声与苯乙烯联合接触可增加工人罹患听力损失的风险,且主要影响高频听阈。Sliwinska-Kowalska等 [23] 研究结果显示,联合接触苯乙烯和噪声的塑料厂和游艇厂工人罹患听力损失的风险是单纯接触苯乙烯或噪声者的2.0~3.0倍;接触苯乙烯水平与工人6~8 kHz听阈存在正相关,但仅在8 kHz中苯乙烯与噪声联合接触组人群听力损失率高于单纯噪声接触组(P < 0.05);表明苯乙烯主要影响6~8 kHz的听阈,而联合接触对8 kHz的听阈影响更大。梁永锡等 [24] 对某运动器材企业生产过程中接触苯乙烯和噪声的工人研究结果显示,联合接触高水平[加权平均接触水平为(402.8 ± 52.2) mg/m3)]苯乙烯与噪声组工人高频听力损失检出率高于单纯接触噪声的工人(P < 0.05),且联合接触组工人高频听力损失率随着苯乙烯接触水平的增加而增加(P < 0.01)。此外,有研究结果显示,即便苯乙烯水平和噪声水平均在日本的推荐限值范围内,联合接触苯乙烯和噪声时间大于5年的工人高频听阈高于对照组工人(P < 0.05) [25] 。提示即使噪声和苯乙烯水平均低于职业接触限值,但两者的联合接触仍可引起听阈的改变。

5. 苯系物接触及其与噪声的联合接触

苯系混合物是职业活动过程中较为常见的有机溶剂。目前,已有许多关于职业接触苯系物与噪声联合暴露与听力损失关系的研究。段丹萍等 [26] 对某汽车制造业接触苯系物(苯、甲苯和二甲苯)和噪声工人的研究结果显示,噪声和苯系物联合接触组工人高频听力损失率高于单纯接触噪声组工人(P < 0.05);提示噪声与苯系物联合作用可能增加工人的高频听力损失风险。Saraei等 [27] 对某轮胎厂540名接触苯系物(苯、甲苯、乙苯和二甲苯)和噪声工人的研究结果显示,噪声和有机溶剂联合接触组、噪声接触组、溶剂接触组工人听力损失检出率分别是对照组的11.72、4.49、1.86倍;提示苯系物与噪声联合接触可能对工人听力损失产生协同效应。刘丹等 [28] 研究结果显示,与对照组比较,噪声组、联合接触组[接触低水平苯系物(甲苯、二甲苯、乙苯)]工人双耳各频率听阈、语频平均听阈和高频平均听阈均升高(P值均 < 0.05),语频和高频听力损失检出率均升高(P值均 < 0.05);与噪声组比较,联合接触组人群右耳0.5、1.0 kHz听阈和左耳0.5 kHz听阈均升高(P值均 < 0.05),语频听力损失检出率升高(P < 0.02);提示苯系物接触可加剧噪声导致的语频听力损失。此外,Zhang等 [4] 研究结果显示,联合接触噪声和远低于职业接触限值的苯系物(主要成分为苯、甲苯、乙苯、二甲苯、苯丙烯)的工人,其听力损失较单纯接触噪声或苯系物的工人更严重。

6. 三氯乙烯接触及其与噪声的联合接触

三氯乙烯是一种无色、无腐蚀性溶剂,工业上主要用作脱脂剂,干洗剂,生产油漆、蜡和杀虫剂。职业接触三氯乙烯主要影响肝脏、肾脏和心脏等实质性器官,也可对中枢神经有强烈的抑制作用 [29] 。然而,也有研究表明,职业性接触三氯乙烯与工人的听力损失有关 [30] [31] 。邱士起等 [30] 研究结果显示,联合接触噪声和三氯乙烯的工人高频听力损失检出率高于单纯接触噪声的工人,且三氯乙烯对噪声所致的听力损失具有协同作用。晁斌等 [31] 研究结果显示,联合接触三氯乙烯和噪声主要引起工人8 kHz频段的听阈提高,且听阈随着三氯乙烯的接触时间延长或三氯乙烯的接触水平增加而升高;三氯乙烯对噪声引起的高频听力损失具有协同作用。

7. 展望

已有流行病学研究主要证实了单纯接触甲苯、二甲苯、苯乙烯、三氯乙烯或苯系混合物可导致听力损失,明确了当上述有机溶剂与噪声联合接触时导致听力损失风险增加 [11] [12] [13] 。鉴于有机溶剂与噪声联合接触的广泛存在以及对听力的影响,可考虑从以下几方面开展进一步研究。1) 剂量–效应关系研究。通过分析人群数据,建立噪声与有机溶剂联合接触时接触水平与听力损失之间的剂量–反应(效应)关系,建立联合接触致听力损失的预测模型,明确联合接触时噪声和有机溶剂的职业接触限值,建立更科学的职业接触限值标准。2) 联合接触影响听力损失的发病特征研究。不同有机溶剂对听觉系统的作用不同,因此与噪声联合接触时所致的听力损失特征也会有所不同。例如最早出现听阈位移的频率、不同频率的最大听阈位移值、听力频率上限、接触工龄与听力损失的关系等均可能会发生变化。加强这些指标与联合接触相关的听力损失发病特征和发病规律研究,对职业性听力损失或职业性噪声聋的诊断和早期预防具有重要意义。3) 联合接触相关听力损失检测方法研究。有机溶剂与噪声联合接触对听觉系统的损伤机制尚未明确,因此只通过纯音测听尚难以全面、准确地评估有机溶剂与噪声联合接触对听觉系统造成的损伤。应尝试综合运用扩展高频纯音测听、畸变产物耳声发射、声阻抗、听觉脑干诱发电位、耳蜗电图、频率跟随反应、噪声下言语测听等方法对研究对象的听力进行综合判断,筛选出适宜的检测指标,建立科学的早期检测方法。

参考文献

[1] GBD 2019 Hearing Loss Collaborators (2021) Hearing Loss Prevalence and Years Lived with Disability, 1990-2019: Findings from the Global Burden of Disease Study 2019. Lancet, 397, 996-1009.
[2] Browncs Emmett, S.D., Robler, S.K., et al. (2018) Global Hearing Loss Prevention. Otolaryngologic Clinics of North America, 51, 575-592.
https://doi.org/10.1016/j.otc.2018.01.006
[3] Natarajan, N., Batts, S. and Stankovic, K.M. (2023) Noise-Induced Hearing Loss. Journal of Clinical Medicine, 12, Article 2347.
https://doi.org/10.3390/jcm12062347
[4] Zhang, Y., Liu, Y., Li, Z., et al. (2023) Effects of Coexposure to Noise and Mixture of Toluene, Ethylbenzene, Xylene, and Styrene (TEXS) on Hearing Loss in Petrochemical Workers of Southern China. Environmental Science and Pollution Research, 30, 31620-31630.
https://doi.org/10.1007/s11356-022-24414-6
[5] Hemmativaghef, E. (2020) Exposure to Lead, Mercury, Styrene, and Toluene and Hearing Impairment: Evaluation of Dose-Response Relationships, Regulations, and Controls. Journal of Occupational and Environmental Hygiene, 17, 574-597.
https://doi.org/10.1080/15459624.2020.1842428
[6] Chalansonnet, M., Carreres-Pons, M., Venet, T., et al. (2018) Combined Exposure to Carbon Disulfide and Low-Frequency Noise Reversibly Affects Vestibular Function. NeuroToxicology, 67, 270-278.
https://doi.org/10.1016/j.neuro.2018.06.010
[7] Lawson, S.M., Masterson, E.A. and Azman, A.S. (2019) Prevalence of Hearing Loss among Noise-Exposed Workers within the Mining and Oil and Gas Extraction Sectors, 2006-2015. American Journal of Industrial Medicine, 62, 826-837.
https://doi.org/10.1002/ajim.23031
[8] Cabello-López, A., Chávez-Gómez, N.L., Torres-Valenzuela, A., et al. (2021) Audiometric Findings of Printing Press Workers Exposed to Noise and Organic Solvents. International Journal of Audiology, 60, 8-15.
https://doi.org/10.1080/14992027.2020.1795735
[9] Occupational Safety and Health Administration (2018) Preventing Hearing Loss Caused by Chemical (Ototoxicity) and Noise Exposure.
https://www.cdc.gov/niosh/docs/2018-124/default.html
[10] Augusto, L.S., Kulay, L.A. and Franco, E.S. (2012) Audition and Exhibition to Toluene—A Contribution for the Theme. International Archives of Otorhinolaryngology, 16, 246-258.
https://doi.org/10.7162/S1809-97772012000200015
[11] 黄伟欣, 谢国强, 范秀红, 等. 甲苯对接触人群听觉系统损伤及血清某些物质变化研究[J]. 中国职业医学, 2012, 39(2): 146-147.
[12] 高盛庭, 刘文娟, 胡俊, 等. 甲苯与职业性噪声接触对听力损失的联合作用[J]. 职业卫生与应急救援, 2015, 33(6): 398-400, 404.
[13] 王建宇, 丘创逸, 耿继武, 等. 甲苯与职业噪声暴露对听力损害调查[J]. 中国热带医学, 2010, 10(3): 310-311, 321.
[14] Fuente, A., Mcpherson, B. and Hickson, L. (2013) Auditory Dysfunction Associated with Solvent Exposure. BMC Public Health, 13, Article No. 39.
https://doi.org/10.1186/1471-2458-13-39
[15] 王璐, 焦建栋, 马倩倩. 甲苯与职业性噪声联合暴露加重男工听力损失[J]. 中国工业医学杂志, 2014, 27(1): 13-16.
[16] Fuente, A., Mcpherson, B. and Hood, L.J. (2012) Hearing Loss Associated with Xylene Exposure in a Laboratory Worker. Journal of the American Academy of Audiology, 23, 824-830.
https://doi.org/10.3766/jaaa.23.10.7
[17] Fuente, A., Mcpherson, B. and Cardemil, F. (2013) Xylene-Induced Auditory Dysfunction in Humans. Ear and Hearing, 34, 651-660.
https://doi.org/10.1097/AUD.0b013e31828d27d7
[18] Sliwinska-Kowalska, M., Zamyslowska-Szmytke, E., Szymczak, W., et al. (2005) Exacerbation of Noise-Induced Hearing Loss by Co-Exposure to Workplace Chemicals. Environmental Toxicology and Pharmacology, 19, 547-553.
https://doi.org/10.1016/j.etap.2004.12.018
[19] Boffetta, P., Adami, H.O., Cole, P., et al. (2009) Epidemiologic Studies of Styrene and Cancer: A Review of the Literature. Journal of Occupational and Environmental Medicine, 51, 1275-1287.
https://doi.org/10.1097/JOM.0b013e3181ad49b2
[20] Hoet, P. and Lison, D. (2008) Ototoxicity of Toluene and Styrene: State of Current Knowledge. Critical Reviews in Toxicology, 38, 127-170.
https://doi.org/10.1080/10408440701845443
[21] Muijser, H., Hoogendijk, E.M. and Hooisma, J. (1988) The Effects of Occupational Exposure to Styrene on High-Frequency Hearing Thresholds. Toxicology, 49, 331-340.
https://doi.org/10.1016/0300-483X(88)90016-9
[22] Morata, T.C., Johnson, A.C., Nylen, P., et al. (2002) Audiometric Findings in Workers Exposed to Low Levels of Styrene and Noise. Journal of Occupational and Environmental Medicine, 44, 806-814.
https://doi.org/10.1097/00043764-200209000-00002
[23] Sliwińska-Kowalska, M., Zamyslowska-Szmytke, E., Szymczak, W., et al. (2003) Ototoxic Effects of Occupational Exposure to Styrene and Co-Exposure to Styrene and Noise. Journal of Occupational and Environmental Medicine, 45, 15-24.
https://doi.org/10.1097/00043764-200301000-00008
[24] 梁永锡, 刘新霞, 冯简青, 等. 高水平苯乙烯接触加重噪声对听力影响的研究[J]. 职业卫生与应急救援, 2020, 38(1): 67-69, 93.
[25] Morioka, I., Miyai, N., Yamamoto, H., et al. (2000) Evaluation of Combined Effect of Organic Solvents and Noise by the Upper Limit of Hearing. Industrial Health, 38, 252-257.
https://doi.org/10.2486/indhealth.38.252
[26] 段丹萍, 黄婷苑, 白卢皙, 等. 噪声联合其他职业病危害因素对听力损失与心电图影响[J]. 中国职业医学, 2019, 46(6): 700-704.
[27] Saraei, M., Omidi, R., Aminian, O., et al. (2022) The Combined Effect of Noise and Solvent Exposure on Hearing Loss in the Tire Factory Workers. Indian Journal of Otolaryngology and Head & Neck Surgery, 74, 3887-3892.
https://doi.org/10.1007/s12070-021-02697-4
[28] 刘丹, 孙新, 胡伟江. 低水平苯系物与噪声联合接触对工人听力损失影响[J]. 中国职业医学, 2021, 48(1): 59-64.
[29] 胡明霞. 三氯乙烯的毒理学研究新进展[J]. 国外医学(卫生学分册), 2001, 28(3): 155-158.
[30] 邱士起, 练海泉, 晁斌, 等. 三氯乙烯对职业接触人群听觉损害的研究[J]. 现代预防医学, 2008, 35(9): 1611-1615.
[31] 晁斌, 练海泉, 李芳健, 等. 三氯乙烯与噪声对职业接触人群听力损害联合作用的研究[J]. 现代预防医学, 2007, 34(3): 448-451.