儿童肾脏实体肿瘤治疗方式的研究进展
Progress towards Therapies for Solid Renal Tumors in Children
DOI: 10.12677/acm.2024.1461769, PDF, HTML, XML, 下载: 26  浏览: 45  科研立项经费支持
作者: 林 洁, 石秦林, 田小毛:重庆医科大学附属儿童医院泌尿外科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,结构性出生缺陷与器官修复重建重庆市重点实验室,重庆;刘 丰*:重庆医科大学附属儿童医院泌尿外科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,结构性出生缺陷与器官修复重建重庆市重点实验室,重庆;四川大学华西第二医院小儿泌尿外科,出生缺陷与相关妇儿疾病教育部重点实验室,四川 成都
关键词: 肾脏肿瘤手术综述化疗放疗Renal Tumor Surgery Reviews Chemotherapy Radiotherapy
摘要: 近年来,大多数儿童肾肿瘤的治疗通过传统治疗手段(手术及放化疗)可得到有效治疗,但某些临床分期高,组织分化差的肿瘤复发率仍较高,总体生存率依旧较低。随着新技术、新理念不断出现,靶向、介入、消融、免疫、生物治疗成为目前肿瘤治疗研究关注度较高的治疗方式,在儿童肿瘤中亦取得丰富的研究成果。现对儿童肾脏肿瘤的治疗方式研究进展做一回顾性总结,以期为临床治疗个体化、多元化,改善患儿复发率及生存率起到一定的参考价值。
Abstract: Most pediatric kidney tumors could be effectively treated by traditional treatment (surgery, chemotherapy and radiotherapy) in recent years. However, there were a couple of patients, with high clinical stage and unfavorable histology, who were observed with high recurrent ratio and low overall survival rate. At the same time, some new treatments (including targeted therapy, interventional therapy, ablation treatment, immunotherapy and biotherapy) have been widely concerned and obtained a lot of research findings, with the development of new technology and conception. Therefore, in order to promote individual as well as diversity therapy and improve the recurrence and survival ratio, we summarized the research development of treatment in children’s kidney neoplasms.
文章引用:林洁, 石秦林, 田小毛, 刘丰. 儿童肾脏实体肿瘤治疗方式的研究进展[J]. 临床医学进展, 2024, 14(6): 245-254. https://doi.org/10.12677/acm.2024.1461769

1. 引言

小儿肾肿瘤约占所有儿童恶性肿瘤的6% [1] ,其中约85%为肾母细胞瘤(Wilms Tumor, WT) [2] ,其余以恶性肿瘤如肾透明细胞肉瘤(Clear Cell Sarcoma of the Kidney, CCSK),肾横纹肌样瘤(Malignant Rhabdoid Tumor of the Kidney, MRTK)居多,只有极少数为良性,如中胚层肾瘤(Congenital Mesoblastic Nephroma, CMN)。多数儿童肾肿瘤(如肾母细胞瘤)的治疗,以手术为基石,以放化疗为辅助,总体生存率较高 [3] 。然而,传统的治疗手段对于肾透明细胞肉瘤、肾横纹肌样瘤等肿瘤疗效并不理想。多项研究表明,靶向与免疫、介入、消融术、生物治疗等辅助治疗手段在肾肿瘤中具有显著的应用前景。因此,本文总结儿童肾肿瘤现有的治疗方式(见图1),着眼于肿瘤治疗的研究进展,旨在为儿童肾脏肿瘤治疗研究提供参考。

Figure 1. Treatment strategies for renal tumors in children

图1. 儿童肾肿瘤的治疗方式

2. 儿童肾脏肿瘤的流行病学

2.1. 肾母细胞瘤

肾母细胞瘤是儿童肾脏最常见的肿瘤,约占所有儿童肿瘤的5% [3] 。该病好发于0~4岁儿童,高峰年龄为3岁 [4] 。肾母细胞瘤的病因尚未明确,研究认为可能与遗传综合征、WT1和WT2基因缺失、1q染色体异常缺失、11p15位点的表观遗传改变等多个方面有关 [5] 。其中,较为经典的理论是“肾残余学说”即:肾脏组织中残留未成熟的肾源性成分(肾胚基细胞分化停滞) [6] 。同时,有学者发现,CTNNB1、TP53、IGF2、SIX1、SIX2等基因突变或丢失与WT的发生存在明显相关性 [7] 。另外,近年来,有部分研究关注到免疫细胞(NK、T、B细胞)等改变与WT的发生密切相关 [8] 。

2.2. 其他肿瘤

肾透明细胞肉瘤是儿童第二常见肾脏肿瘤,最初被认为是WT的一个亚型,随后因为与WT差异较大而被独立出来。CCSK约占原发性儿童肾脏肿瘤的2%~7% [9] ,发病年龄1岁半~4岁半,男女发病率比1.8:1。目前CCSK病因未明,研究发现可能与BCOR内部串联重复序列或易位染色体t (10; 17) (q22; p13)导致YWHAE基因与NUTM2B/NUTM2E基因融合有关 [10] 。

肾横纹肌样瘤好发于婴幼儿(尤其是小于12个月的婴儿),约占小儿肾脏肿瘤的0.9%~2% [11] 。其与起源于中枢神经系统的非典型畸胎瘤/横纹肌样瘤(AT/RT)和起源于中枢神经系统以外的肾外横纹肌样瘤(EERT)共同构成恶性横纹肌样瘤(MRT) [12] 。

Xp11.2易位/TFE3基因融合相关性肾癌又称TFE3融合性肾癌,是由于Xp11.2位点上的TFE3基因断裂移位并形成新的TFE3融合基因 [13] ,从而促进TFE3蛋白过表达,干扰转录调控,导致肿瘤发生。该病以5岁以上儿童多见,发病率约为40% [14] 。

中胚层肾瘤又称胎儿肾错构瘤,是3个月内婴幼儿最常见的胚胎性肿瘤,呈低度恶性,约占儿童肾肿瘤的3%。其发生可能与胎儿时期尿液过多或羊水过多有关。

3. 儿童肾脏肿瘤的治疗

目前儿童肾脏肿瘤的治疗方式依旧是以手术为主,以放化疗为辅 [3] 。在现有的治疗方案下,I、II期WT及一些良性肿瘤获得良好的治愈率。然而CCSK,MRTK,III、IV期WT等肿瘤预后较差(如MRTK的4年OS仅为23.2% [15] ),需要探索更具特异性和安全性的治疗方式。

3.1. 手术治疗

手术治疗按类型可以分为开放,腹腔镜及机器人辅助手术,按术式分可以分为根治性(Radical Nephrectomy, RN)及保留肾单位手术(Nephron Sparing Surgery, NSS)。不同手术类型的优缺点可见表1 [16] [17] [18] 。

3.1.1. 手术治疗现状

手术的原则是早期,安全,完整的切除肿瘤组织 [19] 。与成人不同的是,儿童肾脏实体肿瘤大多首选开放性肿瘤根治术 [20] ,少部分肿瘤如小于6个月且无禁忌证的WT患儿(如双侧、孤立肾WT),应选择保留肾单位切除术 [21] 。在所有儿童恶性肾脏肿瘤中,肾母细胞瘤预后最好。一项研究显示,在接受NSS的70名WT患儿(45名单侧,25名双侧)中,仅有1名弥漫转移的双侧WT患者死亡(OS 98.6%);接受RN的912名患者中死亡34例(OS 96.27%),两者生存率没有明显差异 [22] 。CCSK目前的5年总生存率(Overall Survival, OS)为85.9% [23] ,较肾母细胞瘤略低。有研究对13名CCSK患者进行随访,其中有12名接受RN,最终4例骨髓转移,5例死亡,4例失访,1例完全缓解 [24] 。MRTK预后较其他肾肿瘤差。韩国学者对16例MRTK患者进行分析,其中14例行肾脏切除术并予以术前化疗,10例接受术后化疗,最终6例患者死亡(2例患者复发,4例出现疾病进展),5年OS仅为60.3% [25] 。我国一个单中心研究收集30例MRTK患者,其中27例行RN,1例行NSS,最终仅5例存活,2年OS仅20.8% [26] 。

Table 1. Merits and demerits in different surgeries [16] [17] [18]

表1. 不同手术类型的优缺点 [16] [17] [18]

3.1.2. 手术治疗的研究进展

开放手术因手术视野广,肿瘤切除完全等优点成为儿童首选治疗方式,但其手术创伤大,术后恢复慢,远期并发症多(如肠梗阻,肾衰竭,肿瘤复发等)。微创手术操作更加精细,创伤更小,远期并发症少,研究发现与开放手术的EFS相似。近年来在儿童肾肿瘤应用逐渐增多,不仅在体积小,包膜完整,位于肾脏一极的肿瘤方面具有良好的疗效,还适用于一些瘤体较大,情况复杂的病人:单中心研究将术前化疗与机器人辅助NSS联合治疗患有WAGR综合征的WT患儿,效果良好 [27] 。有学者成功将机器人辅助RN与瘤栓切除术联合,在实施RN的同时取出了下腔静脉II级瘤栓 [28] 。更有学者将三维可视化技术应用于机器人手术中,取得较好的疗效 [29] 。机器人操作更精细,损伤更小,可用于需进行精细操作的手术中。但微创手术肿瘤残存率高,淋巴结活检范围小,有一定的复发风险,需要根据患者实际情况选择相应的治疗方案。

3.2. 化疗

3.2.1. 化疗的现状

目前儿童肾肿瘤的治疗包括美国儿童协作组(Children’s Oncology Group, COG)和国际儿科肿瘤协会(International Society of Pediatric Oncology, SIOP)两大主流方案。COG主张直接手术,而SIOP建议先行术前化疗,两种方案的总体生存率无明显差异 [29] 。术前化疗的优势在于能缩小瘤体,减少并发症的发生,降低放疗概率。SIOP试验表明,术前放疗或化疗可以将肿瘤破溃比例从20%以上降低至5% [30] 。不幸的是,术前化疗也会改变肿瘤的分期及分型,导致误诊率增加。因此我国的中国小儿肿瘤专业委员会(Chinese Children Cancer Group, CCCG)方案认为,能完整切除的肿瘤,无需术前化疗 [31] 。

对于WT,COG认为,除了I期预后良好型(Favorable Histology, FH)、年龄 < 24个月或瘤重 < 550 g的患者之外,其余均需行术后化疗 [32] 。由于双侧WT的4年OS只有56% [33] ,因此2022年,COG AREN0534研究首次对180例双侧WT患儿进行术前化疗,最终4年无事件生存率(Event-Free Survival, EFS)和OS分别为81%和95%;这表明术前化疗可以改善双侧WT的预后 [34] 。对于CCSK,SIOP-RTSG 2016方案建议所有6个月至16岁的CCSK患者均使用术前化疗 [35] 。

3.2.2. 化疗的进展

自20世纪90年代开始,肿瘤的化疗方案没有太大的变化,大多数肾肿瘤化疗方案均包含阿霉素,长春新碱,放线菌素。阿霉素具有显著的心脏毒性,SIOP WT-2001试验在治疗II~III期中危肾母细胞瘤时省略阿霉素,结果显示包含阿霉素组的2年无事件生存率为92.6%,不含阿霉素组的2年EFS为88.2%,差异为4.4%,未超过预定义的10% [36] 。AREN0321研究显示IV方案(长春新碱、伊立替康)可缓解II~IV期WT患者的预后,同时也会增加化疗药物的毒性反应。有文章报道能负载多柔比星的纳米机器人,可通过L-精氨酸协助进入细胞内释放化疗药,提高药物摄取率 [37] ,降低药物毒副作用。在化疗耐药方面,AREN12B4和AREN16B1-Q表明抑制素是化疗耐药WT的潜在预后标志物和靶点 [38] 。对于肿瘤复发的患者,有学者采取热化疗治疗,发现热疗组有效率90%、1年后复发率10%,而非热疗组有效率仅66.67%,复发率30% [39] 。此外,高剂量化疗联合自体干细胞移植已证实可以减少CCSK的复发 [35] 。尽管现在多数肾肿瘤治愈率大幅度提升,化疗相关毒性,化疗耐药,化疗后肿瘤复发仍然是困扰人们的一大难题,亟待进一步研究。

3.3. 放疗

近年来,随着科学技术及放射学的发展,放疗方式逐渐变得更加多样,更具选择性。

3.3.1. 放疗方式

3D适型放射治疗(3D-CRT)依旧是主流的治疗方式;然而,由于强调放射治疗(IMRT)能更好的覆盖靶区和保护重要器官,目前在临床上应用的越来越多 [40] 。其中,心脏保留全肺强调放疗(WL IMRT)已证明可提高心脏、甲状腺及乳腺保护和肺体积剂量覆盖 [41] ;立体定向全身放疗(SBRT)适用于儿童孤立性局部复发、单发转移或姑息性治疗,但立体定向全身放疗的相关报道较少;近距离放疗可以在几天内进行高度集中的放疗,从而减少外部照射,适用于需要保留器官的低龄患儿。如Raquel等人对3名双侧WT患儿采用NSS联合近距离放疗,结果显示3名患者均获得持续完全缓解 [42] 。质子束治疗(PBT)更加精确,在剂量测定方面存在优势,近年来可用性有所提高,目前已证实在肺癌,淋巴癌等肿瘤中疗效显著。研究表明质子束治疗还可以降低WT的晚期副作用及辐射诱发继发性恶性肿瘤的风险 [40] 。

3.3.2. 放疗照射范围

肿瘤破溃的患儿建议行全腹照射(WAI),在照射时需避免正常肾脏接受过多的辐射;放射方法常规选择3D适型放射治疗,也有前瞻性研究表明强调放射治疗对正常肾脏的辐射更低,对破裂瘤体覆盖更好 [43] 。

尽管放疗在恶性肿瘤中的研究已经取得诸多进展,但依旧缺乏针对儿童肾脏肿瘤的特异性方案。

3.4. 靶向治疗

靶向治疗是成人肿瘤的研究热点,近年来在儿童肿瘤也在积极的探索特异性治疗靶点。Patience等发现一例复发性肺转移的FH型WT患儿携带着BRAFV600E突变,这种突变以往多见于黑色素瘤及结肠癌,此前未见与WT相关的报道;该患者经BRAF/MEK抑制剂联合治疗后的12个月,仍然处于完全缓解状态,提示BRAF/MEK抑制剂有望成为具有BRAFV600E突变型肿瘤的治疗选择 [44] 。M6620作为一种新型ATR抑制剂,临床前实验数据显示在WT中存在治疗前景 [45] 。针对PI3/AKT通路的靶向治疗已被证实在儿童肾细胞癌中具有临床益处。Buparlisib是目前最先进的靶向PI3K及其亚型的抑制剂,而目前被批准用于临床的靶向通路蛋白的抑制剂,只有依维莫司和坦西莫司等哺乳动物mTORC1的变构抑制剂 [46] 。靶向治疗特异性优势明显,未来有望成为儿童肿瘤治疗的新兴治疗手段。

3.5. 介入治疗

经血管介入可以用于诸多场合,在儿童肿瘤主要包括动脉化疗,动脉栓塞以及经动脉化疗栓塞。经动脉化疗栓塞(Transcatheter Arterial Chemoembolization, TACE)是指将栓塞剂和化疗药物共同注入瘤动脉内,以维持局部较高的药物浓度,在达到杀伤肿瘤细胞的同时减少化疗药物的副作用 [47] 。非手术切除肝细胞癌首选经动脉化疗栓塞 [48] 。国内学者发现经动脉化疗栓塞也可以用于儿童晚期WT及CCSK [49] ;并且TACE联合全身化疗治疗转移性及不可切除的WT的缓解率高于单纯TACE [50] 。

3.6. 消融治疗

消融治疗是一种微创治疗手段,包括冷冻消融,热消融如射频消融术(RFA),高强度聚焦超声(HIFU)和光动力疗法(PDT)等,可以用于手术的补充治疗,局部治疗以及姑息治疗等。射频消融术和高强度聚焦超声分别通过射频交变电场以及高声强超声波使周围组织中带电粒子高速运动产生热能 [51] ;而冷冻疗法能令细胞外液迅速形成冰晶;光动力疗法通过局部光传导激活光敏化合物,以上方法最终均起到破坏肿瘤细胞的作用。研究报道在恶性肿瘤患儿中使用消融治疗,其中包括4名腹膜后肿瘤患者,均采用了射频消融术,结果显示,有1例患者复发及疾病进展,该研究最终证实了消融治疗对各种器官原发、复发或转移性肿瘤可行有效。

3.7. 免疫疗法

2011年第一个免疫抑制剂伊匹单抗获批上市,开启了免疫治疗新纪元,至今已广泛用于成人,但对WT和其他儿童肾肿瘤的治疗仍处于早期阶段。免疫疗法的最终目的是增强抗肿瘤免疫 [52] ,常见方法包括抗肿瘤疫苗(如树突状细胞疫苗、基因疫苗等),单克隆抗体疗法,过继细胞免疫疗法(如嵌合抗原受体T细胞免疫疗法),免疫检查点(如CTLA-4、PD-1、PD-L1)阻断等 [53] 。研究发现肿瘤浸润淋巴细胞中PD-1表达较外周血淋巴细胞高,但在肿瘤组织中低表达;PD-L1在间变型中高表达,并与肿瘤复发,转移,疾病进展相关 [54] ;一项研究收集16例MRTK患儿的病理标本进行免疫组化及全外显子测序,最终显示有8例患儿10%~70%的肿瘤细胞PD-L1高表达,9名患者10%~60%,肿瘤细胞PD-1高表达。靶向CTL-4的免疫抑制剂尽管已应用于儿童实体肿瘤,但肿瘤细胞CTL-4表达相关的研究依旧较少 [55] 。B7-H3已证实在WT等多种肿瘤中高表达,并与转移和侵袭、血管生成和上皮-间充质转化相关 [56] 。COX-2抑制剂塞来昔布(NCT02574728)、GPC3靶向治疗(肽疫苗,单克隆抗体,CAR-T等)、自体肿瘤相关抗原特异性T细胞(TAA-T) [57] 、重组肿瘤坏死因子a (TNFa)在儿童复发、复杂性实体肿瘤的疗效分析正在进行临床试验。

3.8. 生物疗法

生物疗法是利用现代生物技术调动宿主的防御机制来对抗肿瘤的一种治疗手段 [58] 。该疗法包括基因疗法、抗血管生成疗法、溶瘤治疗等。

基因疗法是将基因传递给患者以修改基因的表达或调节组织的生物学特征 [59] 。主要包括基因编辑,mRNA药物等,其中有部分已进入临床或开展临床试验研究,如CRISPR/Cas9技术用于筛选肿瘤免疫靶点 [60] 。

抗血管生成疗法通过抑制肿瘤组织中血管生成来达到抗肿瘤目的 [61] ,其中较常见的靶点是血管内皮生长因子(VEGF)。目前已获批应用于临床的药物包括雷珠单抗、雷莫芦单抗、贝伐珠单抗等。其他比较常见的治疗靶点如血小板源性生长因子(PDGF),血管生成素等。

溶瘤病毒(OV)是一种天然或基因工程病毒,能特异性感染肿瘤细胞并使肿瘤细胞裂解,而不损害正常组织 [62] 。常用的溶瘤病毒包括单纯疱疹病毒1 (HSV-1)、新城疫病毒(NDV)、麻疹病毒等。

以上方法通过不同的方式增强机体对抗肿瘤的能力,其中已有部分投入临床使用,遗憾的是,生物疗法中部分仍存在有效性和安全性等未解决的问题,因此还有待进一步探索。

4. 未来与展望

荧光引导手术(FGS)可以利用癌症和正常肾脏之间的解剖或生理差异来描绘肿瘤边缘,这可能为小儿肾肿瘤手术提供一种新方法,并为淋巴结取样提供指导 [63] 。研究发现,中医药在抗肿瘤、缓解化疗后骨髓抑制及提高肿瘤患者晚期生活质量等方面均具有独特的临床价值,例如扶正健脾汤联合西医可减轻实体瘤患儿化疗后骨髓抑制,减少肿瘤转移和复发率,从而提高患儿生活质量、延长生存时间 [64] 。3D打印能帮助外科医生制定更具个体化的治疗方案,有助于加深患者和家属对疾病及其治疗的理解,同时,3D打印的器官(如心脏、肝脏),肿瘤微环境等芯片,可用于再现器官结构及相关疾病的生物力学系统,评估药物代谢及筛选抗肿瘤药物等用途 [65] ,Jenny等人研发出新的3D高危胚芽型WT细胞体外模型,其原代培养物以球体形式悬浮生长并长期繁殖,表达早期肾脏发育和胚基WT元素特征的标记基因,可以用于评估肿瘤疗效 [66] 。纳米机器人可以透过生物屏障、在血管中逆行并停留,通过输送化疗药物、免疫制剂及栓塞药物等参与抗肿瘤 [67] 。靶向与免疫治疗特异性高,副作用较小,有望成为儿童肾肿瘤的一线治疗方式 [68] 。

综上所述,多学科联合,个体化治疗是未来肿瘤治疗发展的必然趋势,化疗药物仍旧以老药新用、新药研发为主题,进一步探索副作用小、特异性强、安全性高的治疗方式依旧是我们的追求目标。

基金项目

重庆市自然科学基金面上项目(编号:cstc2021jcyj-msxmX0345)。

NOTES

*通讯作者。

参考文献

[1] Johnston, W.T., Erdmann, F., Newton, R., et al. (2021) Childhood Cancer: Estimating Regional and Global Incidence. Cancer Epidemiology, 71, Article 101662.
https://doi.org/10.1016/j.canep.2019.101662
[2] Zhao, Y., Sun, P., Xiao, J., et al. (2022) International Patterns and Trends of Childhood and Adolescent Cancer, 1978-2012. Journal of the National Cancer Center, 2, 78-89.
https://doi.org/10.1016/j.jncc.2022.02.001
[3] Tchuenkam, L.W., Nwaha Makon, A.S., Ongotsoyi, A.H.P., et al. (2023) Solid Malignant Retroperitoneal Masses in Children in a Low Resource Setting: Epidemiology, Clinicopathologic Characteristics, Treatment, Prognostic and Quality of Life after Surgery; a Cross-Sectional Analytic Study. Global Pediatrics, 3, Article 100028.
https://doi.org/10.1016/j.gpeds.2022.100028
[4] Bhutani, N., Kajal, P. and Sharma, U. (2021) Many Faces of Wilms Tumor: Recent Advances and Future Directions. Annals of Medicine and Surgery, 64, Article 102202.
https://doi.org/10.1016/j.amsu.2021.102202
[5] Li, H., Hohenstein, P. and Kuure, S. (2021) Embryonic Kidney Development, Stem Cells and the Origin of Wilms Tumor. Genes, 12, Article 318.
https://doi.org/10.3390/genes12020318
[6] Stanescu, A.L., Acharya, P.T., Lee, E.Y., et al. (2019) Pediatric Renal Neoplasms: MR Imaging-Based Practical Diagnostic Approach. Magnetic Resonance Imaging Clinics of North America, 27, 279-290.
https://doi.org/10.1016/j.mric.2019.01.006
[7] Cantoni, C., Serra, M., Parisi, E., et al. (2021) Stromal-Like Wilms Tumor Cells Induce Human Natural Killer Cell Degranulation and Display Immunomodulatory Properties towards NK Cells. Oncoimmunology, 10, Article 1879530.
https://doi.org/10.1080/2162402X.2021.1879530
[8] 刘峰, 赵强, 闫杰, 等. 儿童肾透明细胞肉瘤的临床分析[J]. 中国肿瘤临床, 2017, 44(24): 1258-1261.
[9] Furtwängler, R., Gooskens, S.L., van Tinteren, H., et al. (2013) Clear Cell Sarcomas of the Kidney Registered on International Society of Pediatric Oncology (SIOP) 93-01 and SIOP 2001 Protocols: A Report of the SIOP Renal Tumour Study Group. European Journal of Cancer, 49, 3497-3506.
https://doi.org/10.1016/j.ejca.2013.06.036
[10] Farber, B.A., Shukla, N., Lim, I.I.P., et al. (2017) Prognostic Factors and Survival in Non-Central Nervous System Rhabdoid Tumors. Journal of Pediatric Surgery, 52, 373-376.
https://doi.org/10.1016/j.jpedsurg.2016.08.017
[11] Enault, M., Minard-Colin, V., Corradini, N., et al. (2022) Extracranial Rhabdoid Tumours: Results of a SFCE Series of Patients Treated with a Dose Compression Strategy According to European Paediatric Soft Tissue Sarcoma Study Group Recommendations. European Journal of Cancer, 161, 64-78.
https://doi.org/10.1016/j.ejca.2021.10.025
[12] Slade, L. and Pulinilkunnil, T. (2017) The MiTF/TFE Family of Transcription Factors: Master Regulators of Organelle Signaling, Metabolism, and Stress Adaptation. Molecular Cancer Research, 15, 1637-1643.
https://doi.org/10.1158/1541-7786.MCR-17-0320
[13] 钟海军, 王翔. 儿童肾细胞癌(RCC)的临床病理特征及手术疗效分析[J]. 复旦学报(医学版), 2020, 47(1): 24-30.
[14] Tomlinson, G.E., Breslow, N.E., Dome, J., et al. (2005) Rhabdoid Tumor of the Kidney in the National Wilms’ Tumor Study: Age at Diagnosis as a Prognostic Factor. Journal of Clinical Oncology, 23, 7641-7645.
https://doi.org/10.1200/JCO.2004.00.8110
[15] Gow, K.W., Barnhart, D.C., Hamilton, T.E., et al. (2013) Primary Nephrectomy and Intraoperative Tumor Spill: Report from the Children’s Oncology Group (COG) Renal Tumors Committee. Journal of Pediatric Surgery, 48, 34-38.
https://doi.org/10.1016/j.jpedsurg.2012.10.015
[16] Spiegl, H.R., Murphy, A.J., Yanishevski, D., et al. (2020) Complications Following Nephron-Sparing Surgery for Wilms Tumor. Journal of Pediatric Surgery, 55, 126-129.
https://doi.org/10.1016/j.jpedsurg.2019.09.066
[17] 胡忠, 陶俊. 开放性与腹腔镜肾脏部分切除术治疗肾脏肿瘤的疗效比较[J]. 浙江创伤外科, 2021, 26(5): 909-910.
[18] 蒋鸿飞, 林涛, 石秦林. 肾母细胞瘤综合治疗研究进展[J]. 临床小儿外科杂志, 2020, 19(10): 916-920.
[19] Mrad, C., Coulomb, L.A., Tabone, M.D., et al. (2020) Evaluation of the Nephron-Sparing Surgery Formula in Wilms Tumors. Pediatric Blood & Cancer, 67, e28661.
https://doi.org/10.1002/pbc.28661
[20] Lopyan, N.M. and Ehrlich, P.F. (2021) Surgical Management of Wilms Tumor (Nephroblastoma) and Renal Cell Carcinoma in Children and Young Adults. Surgical Oncology Clinics of North America, 30, 305-323.
https://doi.org/10.1016/j.soc.2020.11.002
[21] Imam, N. and Burjonrappa, S. (2022) Nephron Sparing Surgery Outcomes in Wilms’ Tumor: Is It Ready for Primetime? Pediatric Surgery International, 39, Article No. 5.
https://doi.org/10.1007/s00383-022-05299-5
[22] Gao, H., Cheng, Q.Y., Zhao, Q., et al. (2021) Childhood Clear Cell Sarcoma of Kidney: Incidence and Survival. Frontiers in Pediatrics, 9, Article 675373.
https://doi.org/10.3389/fped.2021.675373
[23] El, K.M., Khattab, M., El, K.M., et al. (2004) Clear Cell Sarcoma of the Kidney. A Study of 13 Cases. Archives de Pédiatrie, 11, 794-799.
https://doi.org/10.1016/j.arcped.2004.02.023
[24] Koh, K.N., Han, J.W., Choi, H.S., et al. (2023) Epidemiologic and Clinical Outcomes of Pediatric Renal Tumors in Korea: A Retrospective Analysis of the Korean Pediatric Hematology and Oncology Group (KPHOG) Data. Cancer Research and Treatment, 55, 279-290.
https://doi.org/10.4143/crt.2022.073
[25] Fang, Y.W., Song, H.C., Sun, N., et al. (2022) Non-Wilms’ Renal Tumors in Children: Experience with 139 Cases Treated at a Single Center. BMC Urology, 22, Article No. 89.
https://doi.org/10.1186/s12894-022-01042-3
[26] Priyank, Y., Amita, M., Deepak, K.K., et al. (2018) Nephron-Sparing Surgery for Syndromic Wilms’ Tumor: Robotic Approach. Urology, 116, 172-175.
https://doi.org/10.1016/j.urology.2018.03.003
[27] 吕雪雪, 李品, 陶元东, 等. 全球首例全机器人下单一体位儿童肾母细胞瘤根治术联合下腔静脉Ⅱ级瘤栓取出术[J]. 机器人外科学杂志(中英文), 2023, 4(2): 154-159.
[28] 杨小龙, 崔振宇, 马涛, 等. 三维可视化成像技术在机器人辅助肾部分切除术治疗复杂肾肿瘤中的应用[J]. 现代肿瘤医学, 2023, 31(7): 1311-1314.
[29] Vujanic, G.M., Gessler, M., Ooms, A., et al. (2018) The UMBRELLA SIOP-RTSG 2016 Wilms Tumour Pathology and Molecular Biology Protocol. Nature Reviews Urology, 15, 693-701.
https://doi.org/10.1038/s41585-018-0100-3
[30] Beckwith, J.B. (1986) Wilms Tumor and Other Renal Tumors of Childhood: An Update. The Journal of Urology, 136, 320-324.
https://doi.org/10.1016/S0022-5347(17)44854-3
[31] 中华医学小儿外科学分会泌尿外科学组. 儿童肾母细胞瘤诊疗专家共识[J]. 中华小儿外科杂志, 2020, 41(7): 585-589.
[32] 王金湖, 蔡嘉斌, 李民驹, 等. 儿童肾母细胞瘤国际及国内诊治方案解读[J]. 临床小儿外科杂志, 2020, 19(9): 765-774.
[33] Chintagumpala, M.M., Perlman, E.J., Tornwall, B., et al. (2022) Outcomes Based on Histopathologic Response to Preoperative Chemotherapy in Children with Bilateral Wilms Tumor: A Prospective Study (COG AREN0534). Cancer, 128, 2493-2503.
https://doi.org/10.1002/cncr.34219
[34] Gooskens, S.L., Graf, N., Furtwängler, R., et al. (2018) Position Paper: Rationale for the Treatment of Children with CCSK in the UMBRELLA SIOP-RTSG 2016 Protocol. Nature Reviews. Urology, 15, 309-319.
https://doi.org/10.1038/nrurol.2018.14
[35] Pritchard-Jones, K., Bergeron, C., De Camargo, B., et al. (2015) Omission of Doxorubicin from the Treatment of Stage II-III, Intermediate-Risk Wilms’ Tumour (SIOP WT 2001): An Open-Label, Non-Inferiority, Randomised Controlled Trial. The Lancet, 386, 1156-1164.
https://doi.org/10.1016/S0140-6736(14)62395-3
[36] Wan, M.M., Chen, H., Da, W.Z., et al. (2021) Nitric Oxide-Driven Nanomotor for Deep Tissue Penetration and Multidrug Resistance Reversal in Cancer Therapy. Advanced Science, 8, Article 2002525.
https://doi.org/10.1002/advs.202002525
[37] Ortiz, M.V., Ahmed, S., Burns, M., et al. (2019) Prohibitin Is a Prognostic Marker and Therapeutic Target to Block Chemotherapy Resistance in Wilms’ Tumor. JCI Insight, 4, e127098.
https://doi.org/10.1172/jci.insight.127098
[38] Wang, J., Meng, D., Hu, Y., et al. (2023) Hyperthermic Intraperitoneal Chemotherapy for Recurrent Nephroblastoma in Children. Journal of the College of Physicians and Surgeons of Pakistan, 33, 170-175.
https://doi.org/10.29271/jcpsp.2023.02.170
[39] Laprie, A., Bernier, V., Padovani, L., et al. (2022) Guide for Paediatric Radiotherapy Procedures. Cancer/Radiothérapie, 26, 356-367.
https://doi.org/10.1016/j.canrad.2021.11.018
[40] Kalapurakal, J.A., Lee, B., Bautista, J., et al. (2019) Cardiac-Sparing Whole Lung Intensity Modulated Radiation Therapy in Children with Wilms Tumor: Final Report on Technique and Abdominal Field Matching to Maximize Normal Tissue Protection. Practical Radiation Oncology, 9, e62-e73.
https://doi.org/10.1016/j.prro.2018.07.005
[41] Dávila, F.R., Pieters, B.R., Wilde, J.C.H., et al. (2020) A Role of Brachytherapy in Bilateral Wilms Tumors: A Long-Term Follow-Up of Three Highly Selected Cases and Literature Review. Brachytherapy, 20, 478-484.
https://doi.org/10.1016/j.brachy.2020.09.001
[42] Sardaro, A., Carbonara, R., Petruzzelli, M.F., et al. (2019) Proton Therapy in the Most Common Pediatric Non-Central Nervous System Malignancies: An Overview of Clinical and Dosimetric Outcomes. Italian Journal of Pediatrics, 45, Article No. 170.
https://doi.org/10.1186/s13052-019-0763-2
[43] Obasaju, P., Shahab, S., Dunn, E., et al. (2020) BRAF V600E-Mutated Metastatic Pediatric Wilms Tumor with Complete Response to Targeted RAF/MEK Inhibition. Cold Spring Harbor Molecular Case Studies, 6, a004820.
https://doi.org/10.1101/mcs.a004820
[44] Kurmasheva, R.T., Kurmashev, D., Reynolds, C.P., et al. (2018) Initial Testing (Stage 1) of M6620 (Formerly VX-970), a Novel ATR Inhibitor, Alone and Combined with Cisplatin and Melphalan, by the Pediatric Preclinical Testing Program. Pediatric Blood & Cancer, 65, e26825.
https://doi.org/10.1002/pbc.26825
[45] 洪博, 董瑞. 肾母细胞瘤治疗研究进展[J]. 临床小儿外科杂志, 2021, 20(6): 569-575.
[46] Ge, N., Wang, H., He, C., et al. (2023) Optimal Interventional Treatment for Liver Cancer: HAIC, TACE or iTACE? Journal of Interventional Medicine, 6, 59-63.
https://doi.org/10.1016/j.jimed.2023.03.001
[47] Sieghart, W., Hucke, F. and Peck-Radosavljevic, M. (2015) Transarterial Chemoembolization: Modalities, Indication, and Patient Selection. Journal of Hepatology, 62, 1187-1195.
https://doi.org/10.1016/j.jhep.2015.02.010
[48] Wang, J.H., Li, M.J., Tang, D.X., et al. (2019) Neoadjuvant Transcatheter Arterial Chemoembolization and Systemic Chemotherapy for Treatment of Clear Cell Sarcoma of the Kidney in Children. Journal of Pediatric Surgery, 54, 550-556.
https://doi.org/10.1016/j.jpedsurg.2018.09.012
[49] Li, M.J., Zhou, Y.B., Huang, Y., et al. (2011) A Retrospective Study of the Preoperative Treatment of Advanced Wilms Tumor in Children with Chemotherapy versus Transcatheter Arterial Chemoembolization Alone or Combined with Short-Term Systemic Chemotherapy. Journal of Vascular and Interventional Radiology, 22, 279-286.
https://doi.org/10.1016/j.jvir.2010.11.025
[50] Gomez, F.M., Patel, P.A., Stuart, S., et al. (2014) Systematic Review of Ablation Techniques for the Treatment of Malignant or Aggressive Benign Lesions in Children. Pediatric Radiology, 44, 1281-1289.
https://doi.org/10.1007/s00247-014-3001-5
[51] Laso-Garcia, I., Arias-Funez, F., Santiago-Gonzalez, M., et al. (2022) Prospective Long-Term Experience in the Treatment of Renal Tumors with Cryotherapy: Follow-Up with Computed Tomography Scan and Contrast-Enhanced Ultrasound. Central European Journal of Urology, 75, 265-271.
[52] Hont, A.B., Dumont, B., Sutton, K.S., et al. (2023) The Tumor Microenvironment and Immune Targeting Therapy in Pediatric Renal Tumors. Pediatric Blood & Cancer, 70, e30110.
https://doi.org/10.1002/pbc.30110
[53] Zhang, L., Jiao, H., Shen, M., et al. (2022) Clinical Significance of Tumoral PD-L1 Expression in Wilms Tumors. Journal of Pediatric Urology, 18, 11-14.
https://doi.org/10.1016/j.jpurol.2021.10.015
[54] Picarda, E., Ohaegbulam, K.C. and Zang, X. (2016) Molecular Pathways: Targeting B7-H3 (CD276) for Human Cancer Immunotherapy. Clinical Cancer Research, 22, 3425-3431.
https://doi.org/10.1158/1078-0432.CCR-15-2428
[55] Dong, P., Xiong, Y., Yue, J., et al. (2018) B7H3 as a Promoter of Metastasis and Promising Therapeutic Target. Frontiers in Oncology, 8, Article 264.
https://doi.org/10.3389/fonc.2018.00264
[56] Hont, A.B., Cruz, C.R., Ulrey, R., et al. (2019) Immunotherapy of Relapsed and Refractory Solid Tumors with ex vivo Expanded Multi-Tumor Associated Antigen Specific Cytotoxic T Lymphocytes: A Phase I Study. Journal of Clinical Oncology, 37, 2349-2359.
https://doi.org/10.1200/JCO.19.00177
[57] Brechbiel, M.W. (2018) A New Era of Cancer Biotherapy and Radiopharmaceuticals. Cancer Biotherapy and Radiopharmaceuticals, 33, 1-2.
https://doi.org/10.1089/cbr.2018.29001.mwb
[58] Cesur-Ergun, B. and Demir-Dora, D. (2023) Gene Therapy in Cancer. The Journal of Gene Medicine, 25, e3550.
https://doi.org/10.1002/jgm.3550
[59] Liu, D., Zhao, X., Tang, A., et al. (2020) CRISPR Screen in Mechanism and Target Discovery for Cancer Immunotherapy. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1874, Article 188378.
https://doi.org/10.1016/j.bbcan.2020.188378
[60] Fallah, A., Heidari, H.R., Bradaran, B., et al. (2019) A Gene-Based Anti-Angiogenesis Therapy as a Novel Strategy for Cancer Treatment. Life Sciences, 239, Article 117018.
https://doi.org/10.1016/j.lfs.2019.117018
[61] Muthukutty, P. and Yoo, S.Y. (2023) Oncolytic Virus Engineering and Utilizations: Cancer Immunotherapy Perspective. Viruses, 15, Article 1645.
https://doi.org/10.3390/v15081645
[62] Romao, R., van der Steeg, A., Malek, M., et al. (2023) Technical Advances in the Surgical Management of Wilms Tumors in Children. Pediatric Blood & Cancer, 70, e30267.
https://doi.org/10.1002/pbc.30267
[63] 张吉, 史学, 李海天, 等. 中西医结合治疗对恶性实体瘤患儿5年生存情况的影响[J]. 中国医药导报, 2019, 16(18): 117-120.
[64] Monteduro, A.G., Rizzato, S., Caragnano, G., et al. (2023) Organs-on-Chips Technologies—A Guide from Disease Models to Opportunities for Drug Development. Biosensors and Bioelectronics, 231, Article 115271.
https://doi.org/10.1016/j.bios.2023.115271
[65] Wegert, J., Zauter, L., Appenzeller, S., et al. (2020) High-Risk Blastemal Wilms Tumor Can Be Modeled by 3D Spheroid Cultures in Vitro. Oncogene, 39, 849-861.
https://doi.org/10.1038/s41388-019-1027-8
[66] Zhang, H., Li, Z., Gao, C., et al. (2021) Dual-Responsive Biohybrid Neutrobots for Active Target Delivery. Science Robotics, 6, eaaz9519.
https://doi.org/10.1126/scirobotics.aaz9519
[67] Gu, H., Hanedan, E., Boehler, Q., et al. (2022) Artificial Microtubules for Rapid and Collective Transport of Magnetic Microcargoes. Nature Machine Intelligence, 4, 678-684.
https://doi.org/10.1038/s42256-022-00510-7
[68] Walz, A.L., Fernandez, C.V. and Geller, J.I. (2019) Novel Therapy for Pediatric and Adolescent Kidney Cancer. Cancer and Metastasis Reviews, 38, 643-655.
https://doi.org/10.1007/s10555-019-09822-4