肝移植术后早期高BNP的研究进展
Research Progress of High BNP in the Early Period after Liver Transplantation
DOI: 10.12677/acm.2024.1461764, PDF, HTML, XML, 下载: 30  浏览: 51  科研立项经费支持
作者: 王柯宇, 刘连腾, 李一龙:山东第一医科大学,研究生部,山东 济南;丁庆宝, 李自强*:山东第一医科大学第一附属医院,肝移植肝脏外科,山东 济南
关键词: 肝移植BNP终末期肝病急性心功能衰竭Liver Transplantation BNP End-Stage Liver Disease Acute Heart Failure
摘要: 肝移植已成为终末期肝病最有效治疗方式。但由于手术本身的特点、术前患者的基础状况较差且肝功能失代偿时间长容易造成术后易并发心血管系统的并发症并影响全身各器官功能进而影响预后。B型利钠肽(BNP)是心力衰竭的诊断标志物,术后早期BNP的升高可能会带来受者的急性心力衰竭。本文就肝移植术后早期BNP增加的危险因素及临床意义、肝移植受者心脏风险的预测及围术期管理进行综述。
Abstract: Liver transplantation has become the most effective treatment for end-stage liver disease. However, due to the characteristics of the operation itself, the poor basic condition of the patients before operation and the long time of liver decompensation, it is easy to cause postoperative cardiovascular complications and affect the function of organs in the whole body, thus affecting the prognosis. B-type natriuretic peptide (BNP) is a diagnostic marker of heart failure, and the elevation of BNP in the early postoperative period may bring about acute heart failure in the recipient. This article reviews the risk factors and clinical significance of increased BNP in the early period after liver transplantation, and the prediction and perioperative management of cardiac risk in liver transplantation recipients.
文章引用:王柯宇, 刘连腾, 李一龙, 丁庆宝, 李自强. 肝移植术后早期高BNP的研究进展[J]. 临床医学进展, 2024, 14(6): 205-212. https://doi.org/10.12677/acm.2024.1461764

1. 正文

随着肝移植手术日益发展,手术技术、术后监护、免疫抑制剂药物应用、术后随访等水平的逐渐成熟,肝移植手术目前已经成为终末期肝病的最佳治疗方式 [1] 。但肝移植手术复杂,所需时间长对全身血流动力学影响大、术前存在的心血管基础疾病、围术期输注液体量大容易造成急性心力衰竭在内的心血管事件,从而影响移植肝细胞功能进而愈后 [2] 。有研究报道,多达41%的患者在肝移植术后6月内发生心血管事件,包括心律失常、心肌梗死、心力衰竭等 [3] 。在一项前瞻性研究中了随访4265例肝移植患者,有1328例(31.1%)患者死亡,其中心血管疾病死亡率占228例(17.2%) [4] 。因此在肝移植受者中进行心血管筛查,对于早期发现可能进展为明显心衰的临床患者或亚临床患者具有重要意义。BNP指脑舒钠肽,是由脑室在舒张期的脑室壁的拉伸刺激下分泌的。它可诱导利钠,并通过降低交感神经张力来降低周围血管阻力 [5] 。B型利钠肽(BNP)通常被用作为心力衰竭的标准标志物,肝移植术后早期BNP的升高预示心力衰竭的可能 [6] [7] 。但关于其发生率、危险因素和结果的数据很少 [8] 。本文通过国内外文献总结肝移植术后早期BNP升高危险因素的研究进展,提升术者的风险意识,从而进一步降低肝移植术后心力衰竭发生率来改善临床预后结果。

2. 肝移植术后早期高BNP的危险因素

2.1. 肝硬化心肌病(CCM)

肝硬化心肌病(Cirrhotic Cardiomyopathy, CCM)的定义是指没有预先存在心脏疾病的肝硬化患者的心功能障碍 [9] 。2005年在世界胃肠病学大会上将肝硬化心肌病的诊断标准定为收缩功能障碍、舒张功能受损和心脏电生理障碍 [10] 。从病理生理学的角度来看,肝脏的纤维化导致肝脏代谢及合成的功能下降,包括肾素、血管紧张素II、P物质、抗利尿激素和醛固酮在内的重要的生物活性物质在肝脏中降解减少,导致循环血流增加和外周血管阻力减少 [11] ,主要表现为心输出量和心率的增加 [12] 。同时交感神经肾上腺素能异常的增强也会导致心肌舒张功能不全 [13] 。由于大多数肝硬化患者没有明显的临床症状,其CCM的诊断往往被漏诊。肝脏重量占总重量的2.5%,即每公斤体重33克,每100克肝脏的总血流量为100~130毫升/分钟,占总血量的10%~15% [14] 。手术作为肝硬化心肌病的应激事件,术中肝下下腔静脉和门静脉开放期间是肝移植术中血流动力学最不稳定的时间段之一 [15] 。Aggarwal等人将再灌注后综合征(PRS)描述为平均动脉压(MAP)比基线值下降N30%,持续时间至少1分钟,且发生在肝脏移植门静脉及下腔静脉开放后的最初5分钟内 [16] 。严重PRS的特征是血流动力学严重不稳定,心率明显降低,心律失常严重,有时会出现心搏骤停 [17] 。另外,有些肝硬化患者术前经历了经颈静脉肝内门体分流术,该手术可迅速将大量内脏血液转移到心脏,加大了心脏的负担 [18] 。心肌纤维化和心室顺应性降低,从而刺激BNP的分泌 [19] 。肝硬化心肌病患者在肝移植术后早期极易出现急性心力衰竭,导致BNP的升高。肝移植是治疗肝硬化心肌病的有效方法,移植后心脏发生可逆性重构,全身和内脏血流动力学的恢复,前负荷和后负荷的改变,从而引起心肌的改善 [10] 。

2.2. 缺血性心肌病(ICM)

缺血性心肌病(Ischemic Cardiomyopathy, ICM)是由于冠状动脉血流减少最终导致心肌缺血,临床表现为胸痛或不适、呼吸困难、运动耐受性降低、心律失常、左心室功能不全 [20] ,最终导致心力衰竭或死亡。虽然移植后新发的心衰在本质上大多是非缺血性的 [21] ,但缺血性心肌病在肝移植候选患者中非常普遍。据报道,慢性肝病中冠心病的总体患病率在2%~28%之间,增加了肝移植术后的死亡率和发病率 [22] 。Plotkin等人报道了32例已知冠心病患者接受原位肝移植治疗的3年死亡率为50% [23] 。另外,血浆BNP与冠状动脉狭窄的数量相关,且在涉及左前降支的患者中其价值更高 [24] 。因此,冠心病在肝移植手术中的重要性不应被低估。此外,有研究发现肝移植前经皮冠状动脉介入治疗或冠状动脉搭桥术尚未显示对心血管生存获益 [25] 。

2.3. 酒精性心肌病(AC)

酒精滥用可导致非缺血性扩张型心肌病,通常被称为酒精性心肌病(Alcoholic Cardiomyopathy, AC)。通常会出现心肌扩张、肌原纤维坏死和纤维化,并伴有肌原纤维和肌细胞中线粒体的减少 [26] 。酒精性心肌病的发展与每日酒精摄入量和酒精滥用的持续时间有关 [2] 。慢性和过度饮酒可导致进行性心功能障碍和心力衰竭 [27] 。有研究称饮酒 > 80 g/天至少5年会显著增加患该病的风险 [28] ,表现出收缩期末期和舒张期左心室容积增加,随后心脏后壁增厚。Chunya等人的一项回顾性研究中,有34.5%酒精性心肌病的患者出现心电图异常,有10%的出现QT间期延长 [29] 。在一个小鼠模型中,摄入含5%酒精的饮食,再加上一次每公斤体重5克的暴饮,结果表明,10天后就会导致线粒体功能障碍、心脏脂肪变性、收缩功能损害、松弛和动脉弹性受损,以及总外周阻力降低 [30] 。当心脏损伤进展时出现心排血量减少及舒张功能障碍,心室壁受到扩张或牵拉导致BNP升高。

2.4. 非酒精性脂肪肝病(NAFLD)

非酒精性脂肪肝病(Non-Alcoholic Fatty Liver Disease, NAFLD)是一种与肥胖相关的疾病,已被发现是心血管疾病的独立危险因素,与发病率和死亡率相关 [31] 。最近的研究已经确定非酒精性脂肪肝病不仅是冠心病和心血管事件的危险因素,而且是心肌结构和功能早期异常的危险因素 [32] ,引起左心室功能不全、肥厚、心力衰竭、瓣膜病(如主动脉瓣硬化)和心律失常(如心房颤动)等心血管疾病。非酒精性脂肪肝病(NAFLD)会加剧全身胰岛素抵抗,导致动脉粥样硬化性血脂异常,并释放各种促炎、促凝和促纤维化介质,这些介质可能在心脏和心律失常并发症的病理生理学中发挥重要作用 [31] 。增加了肝移植术中及术后的心血管风险,影响肝移植受者长期生存率。

2.5. 肺动脉高压(PH)

肺动脉高压(Pulmonary Hypertension, PH)是由肺血管收缩和肺血管阻力增加引起的,可引起右心衰竭,并与较高的发病率和死亡率相关 [33] 。其特征是由于不同程度的肺内皮和平滑肌增生、血管收缩和原位血栓形成,导致血管阻塞和肺动脉血流阻力增加。Talwalkar等人研究表明,门静脉分流术和肺动脉高压之间有很强的关系 [34] 。在中国,据估计4%的肝移植受者术前存在肺动脉高压 [33] 。PH与肝移植时围手术期风险增加相关,这可通过平均肺动脉压和肺血管阻力进行分层。Krowka和同事证明了PH患者可以通过mPAP (肺动脉平均压,Mean Pulmonary Arterial Pressure)进行风险分层。mPAP大于50 mm Hg的PH患者OLT后死亡率为100%,mPAP大于35~50 mm Hg的患者OLT后死亡率为50%,低于35 mm Hg的患者OLT后死亡率为0% [35] 。因此建议对所有肝移植候选患者术前进行超声心动图筛查。此外肝移植是治疗门脉性肺动脉高压的有效措施,LT对PH患者预后良好,一项研究显示5年生存率为76%,与接受OLT的非PH患者相似 [36] 。

2.6. 终末期肝病模型(MELD)评分

终末期肝病模型(MELD)评分是一种衡量慢性肝病严重程度的指标,也被用作患者短期生存的预测因子。等待移植的患者使用该评分进行评估病情严重程度并决定手术顺序 [37] 。MELD评分升高,难治性腹水和酒精性肝硬化的患者在肝移植名单上的死亡率增加。有报道称BNP水平较高的患者的MELD评分较高,表明肝硬化严重程度与生物标志物升高的相关性 [7] 。Satoshi等人的研究显示MELD-XI评分系统可以识别右心衰右心容量超载、肺动脉压和多器官衰竭的高危患者 [38] 。另外,Amelie等人发现使用BNP联合MELD评分对于更好地预测肝移植后的预后 [39] 。

2.7. 输血相关的循环负荷

输血相关循环负荷表现为与液体负荷体征相关的急性呼吸窘迫,在输血患者中发生率接近1% [40] 。肝衰竭患者大量腹水导致长期循环血量减少而致心脏储备减少,由于凝血功能较差,术中需要大量输血。患者常常处于“肝硬化心肌病”状态,心脏收缩和舒张功能降低,急性容积负荷引起的的心脏过度充盈可能导致心肌过度拉伸而发生输血相关的循环负荷及心力衰竭 [41] ,另外在该患者群体中也会有很大概率出现的其他的合并症 [2] 。

3. 肝移植术后早期BNP升高的临床意义

Hyun等人的研究表明术后BNP早期BNP水平可预测肝移植后结局恶化,并可以帮助预测术后一个月内病人的死亡率 [8] 。BNP > 400 pg/ml被作为已知的急性心衰临界值,代表心衰的早期表现或明显心衰的风险 [42] 。达到危险因素及BNP目标值的这些患者可能不久就极容易成为急性心衰或“心衰可能”状态,可以为我们带来临床预警。

4. 肝移植术后早期BNP升高的预防及监测

医生在评估病人是否能接受肝移植时,必须确保病人能够忍受高风险的手术。肝移植术前心脏功能评估首先是心电图(Electrocardiogram, ECG)和二维超声心动图 [43] 。当心音听诊显示不规则节律和/或快速或缓慢脉搏时,需要确认心电图记录并作出诊断 [44] ,因为移植前或术后心律失常的诊断对于预防肝移植后的不良结局至关重要。另外心电图也可能提示右心室肥厚和右心房扩张。美国肝病研究协会(AASLD)推荐多巴酚丁胺应激超声心动图(Dobutamine Stress Echocardiography, DSE)作为一种有效的评估筛查工具 [25] ,可辅助发现诱导的收缩功能障碍,提示心肌有氧功能受损。肝移植术前可使用二维超声心动图确定受者心脏的左心室尺寸、射血分数、多普勒速度、瓣膜功能和肺动脉压力。LIM等人确定了重要的肝移植前超声心动图重要参数,如E/e、LAVI (左房最大容量指数)和LVEF (左心室射血分数),并且它们可以作为肝移植后死亡率和心力衰竭的独立预测因子 [45] 。一般普遍认为EF < 40%是肝移植手术的绝对禁忌证,EF < 50%是肝移植的相对禁忌。EF < 50%或多普勒超声检查显示整体纵向应变受损均提示潜在的肝硬化心肌病,此时需高度警惕 [46] 。此外多普勒经胸超声心动图(Transthoracic Echocardiography, TTE)是一种无创的、有用的筛查方法,它可以通过测量三尖瓣反流来计算右心室收缩压或肺动脉收缩压 [37] 。对于疑似冠心病肝移植受者在术前行CT冠状动脉造影可以排除冠脉狭窄,并确定哪些患者应进行有创冠状动脉造影,以更好地评估患者病情 [44] 。国外有研究者提出了心脏磁共振成像(Cardiac Magnetic Resonance Imaging, CMRI),但CMRI诊断CAD的灵敏度较低。心肺运动测试(Cardiopulmonary Exercise Testing, CPET)可用于鉴别临床心力衰竭事件的高风险人群,6分钟步行距离增加与肝移植术后生存率提高有关,但这些检查需要具体设备、时间以及患者配合完成 [47] 。有国内学者提出术中使用经食道心脏超声 (Transesophageal Echocardiography, TEE),TEE可对术中心脏结构和功能以及容量状态提供实时连续的监测 [48] ,但患者73%有食道静脉曲张 [49] ,同样存在较大的风险。

5. 围术期管理及治疗

BNP > 400 pg/ml作为一种已知的急性心衰临界值 [27] ,代表心衰的早期表现或明显心衰的风险。根据现有文献 [50] ,肝移植后的心力衰竭的治疗与通常的心力衰竭治疗没有很大的区别。主要的治疗方法是利尿剂、心脏正向肌力药和血管升压剂支持。使用机械通气、体外膜肺氧合(ECMO)也被报道为治疗肝移植后急性心力衰竭的可行选择。主动脉内球囊反搏(IABP)可以作为术中或术后早期治疗急性心力衰竭的有效工具,但它在肝移植患者中的应用在文献中很少有描述 [51] 。因此对于肝移植后器官功能恶化和心力衰竭的患者,应考虑早期建立先进的血流动力学支持装置。术中及术后维持正常血容量和避免前负荷和后负荷的急性波动也是至关重要的,可以通过使用快速输液、利尿或术后肾脏替代治疗来实现。术后肾脏替代治疗也可能有助于纠正酸中毒。术后早期相对限制的输血可以降低术后死亡的风险。Iago等人比较了肝移植术后24小时内大量输血(>6单位)的患者的1年、3年及5年的存活率(分别为78.1%、71.6% 和 66.8%)明显低于术后输血少量(<6单位)的患者(分别为92.6%、85.2%和79.7%) [52] 。高危患者接受密切的监测是必要的,术后定期监测脑利钠肽(BNP)在肝移植后3个月内是有益的。术后床旁二维超声心动图可以帮助识别心内凝块、监测肝血管血流情况。接受肝移植的患者都推荐采用血栓弹性成像(TEG)指导的输血方案,因为不仅肝功能障碍导致的凝血障碍可导致出血,而且如果结合床旁CRRT或ECMO等技术,全身肝素化相关凝血障碍可加重出血 [2] 。PH的治疗旨在改善心功能,减少血管阻力,优化功能能力,并实现围术期“低风险”的临床特征 [53] 。一项随机对照显示,内皮素受体拮抗剂如安布生坦或波生坦,显著改善了患者的mPAP等血流动力学指标 [54] 。

6. 小结

虽然肝移植手术日益成熟,但术后早期BNP升高相关的心力衰竭值得我们重视。当出现升高时,预示着出现移植后新发的心衰与发病率和死亡率的增加。通过术前全面合理的评估、术前降低风险的治疗和有效的强化术后策略来预防或减少肝移植术后心衰的风险是我们应该要做并需要进一步研究的。

基金项目

山东省医学会临床科研资金——齐鲁专项(YXH2022ZX02127);齐鲁中科新动能创新研究院科研项目(HX2023005004)。

NOTES

*通讯作者。

参考文献

[1] Toussaint, A., Weiss, E., Khoy-Ear, L., et al. (2016) Prognostic Value of Preoperative Brain Natriuretic Peptide Serum Levels in Liver Transplantation. Transplantation, 100, 819-824.
https://doi.org/10.1097/TP.0000000000001077
[2] Sharma, S., Sonny, A., Dalia, A.A., et al. (2020) Acute Heart Failure after Liver Transplantation: A Narrative Review. Clinical Transplantation, 34, e14079.
https://doi.org/10.1111/ctr.14079
[3] Konerman, M.A., Fritze, D., Weinberg, R.L., et al. (2017) Incidence of and Risk Assessment for Adverse Cardiovascular Outcomes after Liver Transplantation. Transplantation, 101, 1645-1657.
https://doi.org/10.1097/TP.0000000000001710
[4] Koshy, A.N., Gow, P.J., Han, H.C., et al. (2021) Sudden Cardiac Death Following Liver Transplantation: Incidence, Trends and Risk Predictors. International Journal of Cardiology, 327, 171-174.
https://doi.org/10.1016/j.ijcard.2020.11.038
[5] Piek, A., Du, W., De Boer, R.A., et al. (2018) Novel Heart Failure Biomarkers: Why Do We Fail to Exploit Their Potential? Critical Reviews in Clinical Laboratory Sciences, 55, 246-263.
https://doi.org/10.1080/10408363.2018.1460576
[6] York, M.K., Gupta, D.K., Reynolds, C.F., et al. (2018) B-Type Natriuretic Peptide Levels and Mortality in Patients with and without Heart Failure. Journal of the American College of Cardiology, 71, 2079-2088.
https://doi.org/10.1016/j.jacc.2018.02.071
[7] Chahal, D., Yau, A., Casciato, P., et al. (2019) B-Type Peptides to Predict Post-Liver Transplant Mortality: Systematic Review and Meta-Analysis. Canadian Liver Journal, 2, 4-18.
https://doi.org/10.3138/canlivj.2018-0014
[8] Chung, H.S., Woo, A., Chae, M.S., et al. (2021) Combined B-Type Natriuretic Peptide as Strong Predictor of Short-Term Mortality in Patients after Liver Transplantation. International Journal of Medical Sciences, 18, 2500-2509.
https://doi.org/10.7150/ijms.54202
[9] Scarlatescu, E., Marchenko, S.P. and Tomescu, D.R. (2020) Cirrhotic Cardiomyopathy—A Veiled Threat. Cardiology in Review, 30, 80-89.
https://doi.org/10.1097/CRD.0000000000000377
[10] Kaur, H. and Premkumar, M. (2022) Diagnosis and Management of Cirrhotic Cardiomyopathy. Journal of Clinical and Experimental Hepatology, 12, 186-199.
https://doi.org/10.1016/j.jceh.2021.08.016
[11] Fede, G., Privitera, G., Tomaselli, T., et al. (2015) Cardiovascular Dysfunction in Patients with Liver Cirrhosis. Annals of Gastroenterology, 28, 31-40.
[12] Møller, S. and Bendtsen, F. (2015) Cirrhotic Multiorgan Syndrome. Digestive Diseases and Sciences, 60, 3209-3225.
https://doi.org/10.1007/s10620-015-3752-3
[13] Møller, S., Danielsen, K.V., Wiese, S., et al. (2019) An Update on Cirrhotic Cardiomyopathy. Expert Review of Gastroenterology & Hepatology, 13, 497-505.
https://doi.org/10.1080/17474124.2019.1587293
[14] Feng, A.C., Fan, H.L., Chen, T.W., et al. (2014) Hepatic Hemodynamic Changes during Liver Transplantation: A Review. World Journal of Gastroenterology, 20, 11131-11141.
https://doi.org/10.3748/wjg.v20.i32.11131
[15] 李文磊, 栗光明. 肝移植受者术前心脏疾病风险评估的现状及展望[J]. 器官移植, 2023, 14(4): 605-611.
[16] Aggarwal, S., Kang, Y., Freeman, J.A., et al. (1987) Postreperfusion Syndrome: Cardiovascular Collapse Following Hepatic Reperfusion during Liver Transplantation. Transplantation Proceedings, 19, 54-55.
[17] Feltracco, P., Barbieri, S., Carollo, C., et al. (2019) Early Circulatory Complications in Liver Transplant Patients. Transplantation Reviews, 33, 219-230.
https://doi.org/10.1016/j.trre.2019.06.005
[18] Ma, Z. and Lee, S.S. (1996) Cirrhotic Cardiomyopathy: Getting to the Heart of the Matter. Hepatology, 24, 451-459.
https://doi.org/10.1002/hep.510240226
[19] Beltrami, M., Palazzuoli, A., Ruocco, G., et al. (2016) The Predictive Value of Plasma Biomarkers in Discharged Heart Failure Patients: The Role of Plasma BNP. Minerva Cardioangiologica, 64, 147-156.
[20] Moroni, F., Gertz, Z. and Azzalini, L. (2021) Relief of Ischemia in Ischemic Cardiomyopathy. Current Cardiology Reports, 23, Article No. 80.
https://doi.org/10.1007/s11886-021-01520-4
[21] Souki, F.G., Raveh, Y., Sancassani, R., et al. (2023) Characteristics, Risk Factors, and Outcome of New-Onset Systolic Heart Failure after Liver Transplantation: A Single-Center Cohort. Transplant Direct, 9, e1499.
https://doi.org/10.1097/TXD.0000000000001499
[22] Diedrich, D.A., Findlay, J.Y., Harrison, B.A., et al. (2008) Influence of Coronary Artery Disease on Outcomes after Liver Transplantation. Transplantation Proceedings, 40, 3554-3557.
https://doi.org/10.1016/j.transproceed.2008.08.129
[23] Plotkin, J.S., Scott, V.L., Pinna, A., et al. (1996) Morbidity and Mortality in Patients with Coronary Artery Disease Undergoing Orthotopic Liver Transplantation. Liver Transplant Surgery, 2, 426-430.
https://doi.org/10.1002/lt.500020604
[24] Palazzuoli, A., Gennari, L., Calabria, P., et al. (2005) Relation of Plasma Brain Natriuretic Peptide Levels in Non-ST-Elevation Coronary Disease and Preserved Systolic Function to Number of Narrowed Coronary Arteries. The American Journal of Cardiology, 96, 1705-1710.
https://doi.org/10.1016/j.amjcard.2005.07.094
[25] Snipelisky, D.F., Mcree, C., Seeger, K., et al. (2015) Coronary Interventions before Liver Transplantation Might Not Avert Postoperative Cardiovascular Events. Texas Heart Institute Journal, 42, 438-442.
https://doi.org/10.14503/THIJ-14-4738
[26] Maisch, B. (2016) Alcoholic Cardiomyopathy: The Result of Dosage and Individual Predisposition. Herz, 41, 484-493.
https://doi.org/10.1007/s00059-016-4469-6
[27] Movva, R. and Figueredo, V.M. (2013) Alcohol and the Heart: To Abstain or Not to Abstain? International Journal of Cardiology, 164, 267-276.
https://doi.org/10.1016/j.ijcard.2012.01.030
[28] Guzzo-Merello, G., Cobo-Marcos, M., Gallego-Delgado, M., et al. (2014) Alcoholic Cardiomyopathy. World Journal of Cardiology, 6, 771-781.
https://doi.org/10.4330/wjc.v6.i8.771
[29] Wang, C., Gao, H., Liu, W., et al. (2023) Alcoholic Cardiomyopathy in Patients with Alcoholic Liver Cirrhosis: A Study Across 10 Years. European Journal of Gastroenterology & Hepatology, 35, 600-603.
https://doi.org/10.1097/MEG.0000000000002541
[30] Matyas, C., Varga, Z.V., Mukhopadhyay, P., et al. (2016) Chronic Plus Binge Ethanol Feeding Induces Myocardial Oxidative Stress, Mitochondrial and Cardiovascular Dysfunction, and Steatosis. American Journal of Physiology-Heart and Circulatory Physiology, 310, H1658-H1670.
https://doi.org/10.1152/ajpheart.00214.2016
[31] Ballestri, S., Lonardo, A., Bonapace, S., et al. (2014) Risk of Cardiovascular, Cardiac and Arrhythmic Complications in Patients with Non-Alcoholic Fatty Liver Disease. World Journal of Gastroenterology, 20, 1724-1745.
https://doi.org/10.3748/wjg.v20.i7.1724
[32] Bonapace, S., Perseghin, G., Molon, G., et al. (2012) Nonalcoholic Fatty Liver Disease Is Associated with Left Ventricular Diastolic Dysfunction in Patients with Type 2 Diabetes. Diabetes Care, 35, 389-395.
https://doi.org/10.2337/dc11-1820
[33] Cosarderelioglu, C., Cosar, A.M., Gurakar, M., et al. (2016) Portopulmonary Hypertension and Liver Transplant: Recent Review of the Literature. Experimental and Clinical Transplantation, 14, 113-120.
[34] Talwalkar, J.A., Swanson, K.L., Krowka, M.J., et al. (2011) Prevalence of Spontaneous Portosystemic Shunts in Patients with Portopulmonary Hypertension and Effect on Treatment. Gastroenterology, 141, 1673-1679.
https://doi.org/10.1053/j.gastro.2011.06.053
[35] Krowka, M.J., Plevak, D.J., Findlay, J.Y., et al. (2000) Pulmonary Hemodynamics and Perioperative Cardiopulmonary-Related Mortality in Patients with Portopulmonary Hypertension Undergoing Liver Transplantation. Liver Transplantation, 6, 443-450.
https://doi.org/10.1053/jlts.2000.6356
[36] Swanson, K.L., Wiesner, R.H. and Krowka, M.J. (2005) Natural History of Hepatopulmonary Syndrome: Impact of Liver Transplantation. Hepatology, 41, 1122-1129.
https://doi.org/10.1002/hep.20658
[37] Saab, S., Landaverde, C., Ibrahim, A.B., et al. (2006) The MELD Score in Advanced Liver Disease: Association with Clinical Portal Hypertension and Mortality. Experimental and Clinical Transplantation, 4, 395-399.
[38] Abe, S., Yoshihisa, A., Takiguchi, M., et al. (2014) Liver Dysfunction Assessed by Model for End-Stage Liver Disease Excluding INR (MELD-XI) Scoring System Predicts Adverse Prognosis in Heart Failure. PLOS ONE, 9, e100618.
https://doi.org/10.1371/journal.pone.0100618
[39] Kwon, H.M., Moon, Y.J., Kim, K.S., et al. (2021) Prognostic Value of B-Type Natriuretic Peptide in Liver Transplant Patients: Implication in Posttransplant Mortality. Hepatology, 74, 336-350.
https://doi.org/10.1002/hep.31661
[40] Hendrickson, J.E., Roubinian, N.H., Chowdhury, D., et al. (2016) Incidence of Transfusion Reactions: A Multicenter Study Utilizing Systematic Active Surveillance and Expert Adjudication. Transfusion, 56, 2587-2596.
https://doi.org/10.1111/trf.13730
[41] Hernandez-Guerra, M., Lopez, E., Bellot, P., et al. (2006) Systemic Hemodynamics, Vasoactive Systems, and Plasma Volume in Patients with Severe Budd-Chiari Syndrome. Hepatology, 43, 27-33.
https://doi.org/10.1002/hep.20990
[42] Mueller, C., Mcdonald, K., De Boer, R.A., et al. (2019) Heart Failure Association of the European Society of Cardiology Practical Guidance on the Use of Natriuretic Peptide Concentrations. European Journal of Heart Failure, 21, 715-731.
https://doi.org/10.1002/ejhf.1494
[43] European Association for the Study of the Liver (2018) EASL Clinical Practice Guidelines for the Management of Patients with Decompensated Cirrhosis. Journal of Hepatology, 69, 406-460.
https://doi.org/10.1016/j.jhep.2018.03.024
[44] Izzy, M., Fortune, B.E., Serper, M., et al. (2022) Management of Cardiac Diseases in Liver Transplant Recipients: Comprehensive Review and Multidisciplinary Practice-Based Recommendations. American Journal of Transplantation, 22, 2740-2758.
https://doi.org/10.1111/ajt.17049
[45] Lim, W.H., Chew, N.W., Quek, J., et al. (2022) Echocardiographic Assessment of Cardiovascular Function and Clinical Outcomes in Liver Transplant Recipients. Clinical Transplantation, 36, e14793.
https://doi.org/10.1111/ctr.14793
[46] Kaski, J.C., Crea, F., Gersh, B.J., et al. (2018) Reappraisal of Ischemic Heart Disease. Circulation, 138, 1463-1480.
https://doi.org/10.1161/CIRCULATIONAHA.118.031373
[47] Patel, S.S., Nabi, E., Guzman, L., et al. (2018) Coronary Artery Disease in Decompensated Patients Undergoing Liver Transplantation Evaluation. Liver Transplantation, 24, 333-342.
https://doi.org/10.1002/lt.25012
[48] 吉晓琳, 张欢, 黄佳鹏. 经食道心脏超声在肝移植手术中的应用[J]. 麻醉安全与质控, 2020, 4(1): 53-57.
[49] Mazilescu, L.I., Bezinover, D., Paul, A., et al. (2018) Unrecognized Esophageal Perforation after Liver Transplantation. Journal of Cardiothoracic and Vascular Anesthesia, 32, 1407-1410.
https://doi.org/10.1053/j.jvca.2017.10.035
[50] Moguilevitch, M., Rufino, M., Leff, J., et al. (2015) Novel Approach for Heart Failure Treatment after Liver Transplantation. Liver Transplantation, 21, 1103-1104.
https://doi.org/10.1002/lt.24162
[51] Palanisamy, A.P., Nadig, S.N., Chedister, G.R., et al. (2017) Use of Intra-Aortic Counterpulsation in Cardiogenic Shock Post-Liver Transplantation. Clinical Transplantation, 31, e13002.
https://doi.org/10.1111/ctr.13002
[52] Justo, I., Marcacuzco, A., Caso, Ó., et al. (2023) Risk Factors of Massive Blood Transfusion in Liver Transplantation: Consequences and a New Index for Prediction Including the Donor. Cirugía Española (English Edition), 101, 684-692.
https://doi.org/10.1016/j.cireng.2023.09.002
[53] Galiè, N., Mclaughlin, V.V., Rubin, L.J., et al. (2019) An Overview of the 6th World Symposium on Pulmonary Hypertension. European Respiratory Journal, 53, Article 1802148.
https://doi.org/10.1183/13993003.02148-2018
[54] Preston, I.R., Burger, C.D., Bartolome, S., et al. (2020) Ambrisentan in Portopulmonary Hypertension: A Multicenter, Open-Label Trial. The Journal of Heart and Lung Transplantation, 39, 464-472.
https://doi.org/10.1016/j.healun.2019.12.008