腰椎退行性疾病中椎旁肌肉脂肪浸润的影像学评估方法
Imaging Evaluation Methods for Fat Infiltration of Paravertebral Muscles in Lumbar Degenerative Diseases
DOI: 10.12677/acm.2024.1461759, PDF, HTML, XML, 下载: 31  浏览: 45 
作者: 黄 晓, 杨 全*:重庆医科大学附属永川医院放射科,重庆
关键词: 脂肪浸润腰椎退行性疾病MRICTFatty Infiltration Lumbar Degenerative Disease MRI CT
摘要: 目的:对椎旁肌肉脂肪浸润的影像学评估方法的优缺点,和它与腰椎退行性病变的相关性等进行了综述。方法:广泛查阅国内外关于椎旁肌肉脂肪浸润评估方法、椎旁肌肉退变与腰椎疾病的相关文献,对常用的椎旁肌肉脂肪浸润评估方法优点和局限性等方面、椎旁肌肉退变与腰椎疾病的关系进行总结。结果:CT、MRI常被用于评估脂肪浸润程度,并且可靠性较好;影像学评估方法各有优缺点。研究表明脂肪浸润能更好地代表肌肉退变,椎旁肌肉退变与多种腰椎疾病相关。结论:椎旁肌肉的脂肪浸润评估方法多样,但不同研究结果之间存在差异,缺乏统一标准,希望未来能够建立统一的评估体系,对临床诊疗提供帮助。
Abstract: Objective: To review the advantages and disadvantages of imaging methods for assessing fat infiltration of the paravertebral muscles and their relationship to degenerative lumbar spine disease. Methods: We extensively reviewed domestic and international literature on paraspinal muscle fat infiltration assessment methods, paraspinal muscle degeneration and lumbar spine diseases; we summarized the advantages and limitations of commonly used paraspinal muscle fat infiltration assessment methods, and the relationship between paraspinal muscle degeneration and lumbar spine diseases. Results: CT and MRI are commonly used to assess the extent of fat infiltration with good reliability. The imaging evaluation methods have their own advantages and disadvantages. Studies have shown that fat infiltration better represents muscle degeneration and that paraspinal muscle degeneration is associated with a variety of lumbar spine disorders. Conclusions: The fat infiltration of paravertebral muscles is assessed by various methods, but there are differences between the results of different studies and a lack of uniform standards, and we hope that in the future we can establish a uniform assessment system to help clinical diagnosis and treatment.
文章引用:黄晓, 杨全. 腰椎退行性疾病中椎旁肌肉脂肪浸润的影像学评估方法[J]. 临床医学进展, 2024, 14(6): 167-173. https://doi.org/10.12677/acm.2024.1461759

1. 引言

椎旁肌肉群对于保证脊柱的稳定性具有很大意义,同时椎旁肌肉的退行性变也与脊柱疾病的发生与发展有着密切关系,椎旁肌肉的退变在形态学上主要包括了肌肉质和量的改变,即脂肪浸润(Fat Infiltration, FI)和肌肉萎缩(肌肉体积缩小,横截面积变小)。其中肌肉的FI能更好地代表了肌肉退变,因为即便肌肉的横截面积(Cross-Sectional Area, CSA)保持不变,脂肪浸润程度仍然可以显著变化,并且每个人的肌肉面积与体积大小是不一样的 [1] [2] 。FI是椎旁肌肉成分变化的关键性指标,不仅是导致肌肉力量下降的关键因素,同时也是肌肉退变的晚期阶段 [3] [4] 。近年来,人们对FI的影像学评估越来越多样化,然而由于各种影像学方法的成像方式,测量方法以及参数选择的不同,导致FI有差异 [3] [5] [6] 。论文中着重研究了电子计算机断层扫描(Computed Tomography, CT)和磁共振成像(Magnetic Resonance Imaging, MRI),并总结了目前的FI影像学评价方式,探讨这些方式的优势、局限性以及在临床实践中的应用,为进一步的研究和临床诊断提供深入的理解与展望。

2. 脂肪浸润

FI是指脂肪细胞出现于正常情况下不含脂肪组织的组织器官间质中。在肌肉中,脂质要么以脂肪细胞的形式储存,具有脂肪成像特征,要么以肌细胞内脂滴即细胞内脂质(Intra Myocellular Lipids, IMCL)的形式储存。脂肪细胞可以位于肌肉之间(肌肉周围脂肪组织),也可以位于肌肉内部(肌肉内脂肪组织),二者均作为肌细胞外脂质(Extra Myocellular Lipids, EMCL),能通过CT、MRI成像 [7] [8] 。MRI图像在肌肉和脂肪组织之间提供了良好的对比度,但不能区分IMCL和较小的EMCL [7] 。据研究指出,椎旁肌肉力量降低与EMCL的升高呈现负相关性,而IMCL则与长期腰背部不适及腰椎前凸等病症相关联。据此,IMCL或许能够作为预测腰背部疼痛和脊柱异常的新兴指标 [8] 。

对FI的评估主要包括了半定量评估和定量评估,通过CT和MRI等可以对椎旁肌的FI进行视觉分级,根据研究,Sorensen [9] 和Kalichman [10] 等学者各自发展了不同的视觉半定量评估方法。而在临床中,Goutallier分级系统被广泛采用,其将脂肪浸润程度分为五个等级(0级表示无脂肪浸润;1级表示脂肪浸润较少;2级表示脂肪浸润未超过一半;3级表示脂肪浸润达到一半;4级表示脂肪浸润超过一半) [11] [12] 。半定量评估在临床实践中方便直观但是观察者间差异较大,随着影像技术的发展,定量评估方法出现了并且开始逐步应用,定量评估比半定量评估更加准确。定量评估是利用信号强度差阈值技术分离脂肪区域 [6] ,将脂肪CSA/总CSA的比值作为FI的指标,或者采用水脂分离技术去单独量化脂肪等;但是目前定量评估的测量方法较多且不统一,无法比较各种研究之间的值。

3. 电子计算机断层扫描

CT扫描是一种无创、可重复的检查,能够提供关于肌肉密度、FI等的相关信息,在CT扫描中,脂肪组织可以很容易地识别为局部低密度区域 [13] 。CT通过CT值(Hounsfield Unit, HU)来反映FI程度,因为FI的增加反映在肌肉密度的降低上 [14] 。CT值是用于量化人体某一特定组织或器官密度的单位,表示在CT图像中,各种组织与X射线衰减系数的等效值。Goodpaster等 [15] 研究发现,骨骼肌衰减和脂质浓度之间具有良好的一致性,当肌肉内脂质含量每增加1 g/100ml,CT值大约减少1。因此,可以通过观察邻近肌肉的CT值来推测FI。尽管如此,目前尚缺乏统一的标准来选择CT成像中的感兴趣区域(Region of Interest, ROI)。

定量计算机断层扫描(Quantitative Computed Tomography, QCT)技术,是通过应用该技术于临床CT扫描所获得的数据,对骨密度和脂肪含量进行定量测量和分析的方法。既往众多前期研究 [16] [17] 已证实QCT技术在评估个体组成成分方面的有效性。在临床医学实践中,QCT技术主要被用于精确测量骨密度 [18] ,这一技术已经得到广泛应用。此外,该技术在近年来已进一步拓展其应用领域,包括但不限于计算图像中的脂肪面积以及评估肝脏内的脂肪含量 [19] [20] ,从而使得QCT技术的应用范围得到显著扩展。有研究表明 [21] ,QCT和MRI对椎旁肌肉FI的定量测量结果之间的一致性较好。相比较于CT值间接反映FI,QCT可以直接测量椎旁肌肉内脂肪和肌肉的密度,从而实现不同成分的精确定量,因此在将来有望通过QCT定量测量椎旁肌肉FI,为椎旁肌肉退变的评估提供更准确的数据。

CT扫描因其简单性和可重复性而更容易在临床中使用,花费相对较低,检查时间短,但是多次检测所接受的辐射可能会对人体健康带来一定的影响,同时在软组织分辨率方面相对较差,可能无法清晰显示椎旁肌肉中不同成分的微小变化。因此具有一定的弊端。

4. 磁共振成像

MRI是多参数、多序列成像,可以从多个角度揭示椎旁肌肉的组织学和生理学信息。MRI在椎旁肌肉退变的研究中优势主要体现在其对软组织的高分辨率。通过不同的序列,我们能够清晰地显示椎旁肌肉中不同成分,如脂肪、纤维等,为研究椎旁肌肉组织结构和变化提供更详尽的信息。其弊端在于在临床实践中评估肌肉质量(例如FI)通常很耗时且需要经验丰富的技术人员,同时花费相对较高。

4.1. 常规MRI序列

T1加权序列(T1-weighted MRI sequence, T1WI)与T2加权序列(T2-weighted MRI sequence, T2WI)是临床常规序列,可在所有MR扫描仪上使用,并且易于使用,其软组织分辨率高,可以很好的区分肌肉和脂肪组织,同时可以评估肌群间、肌纤维间的脂肪浸润程度,是定性或半定量放射学评估的基础。传统的T2WI通过计算脂肪和肌肉像素来评估脊柱旁肌肉的脂肪浸润,然而,这种方法的准确性是有限的 [22] ,因此仍无法实现对肌细胞内脂肪含量准确的定量测量。

4.2. Dixon技术

1984年,Dixon提出了一种新的MRI技术,利用脂肪和水之间的共振频率差异(化学位移),利用修改后的自旋回波脉冲序列,将质子信号的脂肪和水成分分解为两个独立的图像 [23] ,即水脂分离成像,该方法被称为Dixon技术。Dixon技术将提供参数化水和脂肪含量的图谱,具体为质子密度脂肪分数(Proton Density Fat Fraction, PDFF)和质子密度水分数(Proton Density Water Fraction, PDWF)。PDFF衡量的是脂肪组织中的氢质子密度与整体脂肪及水分子中氢质子密度总和的比例。PDFF反映了组织脂肪浓度,被建议用作测量组织脂肪浓度的标准化MRI和MRS参数 [24] 。

与常规MRI相比,Dixon技术使用稳健的水脂分离算法,在量化肌肉脂肪含量方面具有出色的准确性,同时它还具有良好的空间覆盖率、采集时间短、技术要求简单等特点,可提供准确的脂肪定量 [22] [25] [26] 。Dixon序列已成为量化肌肉脂肪浸润的首选方法;然而,IMCL和EMCL不能分开是一个局限性。

4.3. MRI波谱分析(Magnetic Resonance Spectroscopy, MRS)

MRS技术通过分析氢原子在不同化合物的共振频率上的化学位移,实现对活体组织内化合物组成和含量的非侵入性检测。这项技术能够无损伤地探测到生理和病理生理过程中具有重要意义的关键代谢物。骨骼肌的MRS使用1H-MRS评估肌肉脂质组成 [27] ,可以分别测量IMCL和EMCL的含量 [28] 。1H-MRS生成的强度谱是脂质代谢物的相对化学位移的函数,以ppm为单位测量,以四甲基硅烷(Tetramethylsilane, TMS)的H信号为参考,其值为0 ppm [29] ,活组织中的水质子在约4.7 ppm时共振,EMCL在约1.5 ppm时共振,IMCL在约1.28 ppm时共振 [7] 。Dixon成像无法检测到EMCL和IMCL之间以及其他液体代谢物之间非常小的化学位移差异,MRS却能将二者区分。然而MRS更多是用于肝脏的脂肪测定,这是因为肝脏脂肪分布相对均匀,准确性较高,在肌肉的应用中相对较少,因为MRS会受到脂肪组织浸润不均匀性的限制 [30] ;同时MRS扫描效率低、复杂、可重复性少。

5. 超声

超声(Ultrasonography, US)已成为研究和测定肌肉结构与大小的主要技术之一。在评估肌肉质量和质量方面是可靠的 [30] [31] 。US是一种可重复性的成像技术,可用于测量比较不同的人群,这些测量的有效性已经得到证实 [32] [33] 。与其他成像方式相比,US有简便、无创、无辐射、价格低廉等优点,但同时也受限于检查者诊断的主观性以及图像质量参差不齐等缺点。

6. 椎旁肌肉脂肪浸润与腰椎退行性疾病的关系

多项研究均已证实,腰椎退行性疾病的发展过程中,椎旁肌肉的退变扮演了关键角色,Sun等 [34] 研究了60名L4~L5腰椎间盘突出症患者的数据,发现相邻节段的多裂肌萎缩程度以及椎间盘退变程度存在显著差异;与非特异性腰痛患者比较,椎间盘突出症患者的肌肉萎缩现象更为突出;Kalichman等 [10] 发现,L4节段竖脊肌密度的降低与同一层面腰椎滑脱之间存在显著的相关性;Lee等 [35] 发现,退行性扁平背部患者的脊椎畸形程度及其术后恢复,与周围肌肉的萎缩及脂肪浸润状况存在关联;李启光 [36] 发现骨盆后倾程度与竖脊肌脂肪浸润程度之间呈正相关,下腰椎前凸则与竖脊肌及多裂肌的脂肪浸润程度呈负相关,而竖脊肌与多裂肌的萎缩程度与骨盆倾斜及下腰椎前凸无关。这表明,椎旁肌的退化可能是导致脊柱畸形的原因之一。同时通过观察脂肪浸润程度,我们可以发现,腰椎退行病变的患者,其多裂肌、竖脊肌和腰大肌等肌肉均存在不同程度的退变 [1] [37] [38] 。

同时,腰痛与所有腰椎水平的脊柱旁肌肉脂肪浸润密切相关,多裂肌在腰椎下部水平受到影响,而竖脊肌在腰椎上部水平的脂肪浸润更为严重,研究表明,炎症与腰痛密切相关,一些炎症因子可能是腰痛的诊断生物标志物,炎症介质的失调与FI关系密切,说明椎旁肌肉的炎症失调可能对腰痛症状产生广泛影响 [37] [38] [39] [40] [41] 。

7. 总结与展望

目前对于椎旁肌肉FI的评估主要是通过影像学检查,随着人们研究的一步步深入,腰椎退行性疾病与肌肉退变的相关性被逐步揭示,同时关于脂肪测量的技术也已经逐步成熟,从半定量再到定量评估,影像学技术在不断的发展;这些影像学技术各自具有独特的优势和应用,共同为我们提供了深入了解椎旁肌肉退变的窗口,但是评估必须更好地标准化。椎旁肌肉退变与多种腰椎退行性疾病有关,但不同研究结果之间存在差异,希望未来能够建立统一的评估体系,明确椎旁肌在腰椎退行性疾病中的作用,让影像学更好地发挥自己的优势,为患者的诊治和预防提供帮助。

NOTES

*通讯作者。

参考文献

[1] D’hooge, R., Cagnie, B., Crombez, G., et al. (2012) Increased Intramuscular Fatty Infiltration without Differences in Lumbar Muscle Cross-Sectional Area during Remission of Unilateral Recurrent Low Back Pain. Manual Therapy, 17, 584-588.
https://doi.org/10.1016/j.math.2012.06.007
[2] Fortin, M., Lazáry, À., Varga, P.P., et al. (2016) Paraspinal Muscle Asymmetry and Fat Infiltration in Patients with Symptomatic Disc Herniation. European Spine Journal: Official Publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 25, 1452-1459.
https://doi.org/10.1007/s00586-016-4503-7
[3] Kalichman, L., Carmeli, E. and Been, E. (2017) The Association between Imaging Parameters of the Paraspinal Muscles, Spinal Degeneration, and Low Back Pain. BioMed Research International, 2017, Article ID: 2562957.
https://doi.org/10.1155/2017/2562957
[4] Biltz, N.K., Collins, K.H., Shen, K.C., et al. (2020) Infiltration of Intramuscular Adipose Tissue Impairs Skeletal Muscle Contraction. The Journal of Physiology, 598, 2669-2683.
https://doi.org/10.1113/JP279595
[5] Cooley, J.R., Walker, B.F., et al. (2018) Relationships between Paraspinal Muscle Morphology and Neurocompressive Conditions of the Lumbar Spine: A Systematic Review with Meta-Analysis. BMC Musculoskeletal Disorders, 19, Article No. 351.
https://doi.org/10.1186/s12891-018-2266-5
[6] Han, G., Jiang, Y., Zhang, B., et al. (2021) Imaging Evaluation of Fat Infiltration in Paraspinal Muscles on MRI: A Systematic Review with a Focus on Methodology. Orthopaedic Surgery, 13, 1141-1148.
https://doi.org/10.1111/os.12962
[7] Engelke, K., Chaudry, O., Gast, L., et al. (2023) Magnetic Resonance Imaging Techniques for the Quantitative Analysis of Skeletal Muscle: State of the Art. Journal of Orthopaedic Translation, 42, 57-72.
https://doi.org/10.1016/j.jot.2023.07.005
[8] 韩耕愚, 姜宇, 李危石. 不同影像学参数在评估腰部椎旁肌退变中应用的研究进展[J]. 中国脊柱脊髓杂志, 2020, 30(6): 566-571.
[9] Solgaard Sorensen, J., Kjaer, P., Jensen, S.T., et al. (2006) Low-Field Magnetic Resonance Imaging of the Lumbar Spine: Reliability of Qualitative Evaluation of Disc and Muscle Parameters. Acta Radiologica (Stockholm, Sweden: 1987), 47, 947-953.
https://doi.org/10.1080/02841850600965062
[10] Kalichman, L., Hodges, P., Li, L., et al. (2010) Changes in Paraspinal Muscles and Their Association with Low Back Pain and Spinal Degeneration: CT Study. European Spine Journal: Official Publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 19, 1136-1144.
https://doi.org/10.1007/s00586-009-1257-5
[11] Slabaugh, M.A., Friel, N.A., Karas, V., et al. (2012) Interobserver and Intraobserver Reliability of the Goutallier Classification Using Magnetic Resonance Imaging: Proposal of a Simplified Classification System to Increase Reliability. The American Journal of Sports Medicine, 40, 1728-1734.
https://doi.org/10.1177/0363546512452714
[12] Pinter, Z.W., Wagner, S., Fredericks, D., et al. (2021) Cervical Paraspinal Muscle Fatty Degeneration Is Not Associated with Muscle Cross-Sectional Area: Qualitative Assessment Is Preferable for Cervical Sarcopenia. Clinical Orthopaedics and Related Research, 479, 726-732.
https://doi.org/10.1097/CORR.0000000000001621
[13] Yang, F., Liu, Z., Zhu, Y., et al. (2022) Imaging of Muscle and Adipose Tissue in the Spine: A Narrative Review. Medicine, 101, E32051.
https://doi.org/10.1097/MD.0000000000032051
[14] 王伟, 李危石, 陈仲强. 椎旁肌评价方法及其与腰椎疾病相关性的研究进展[J]. 中国修复重建外科杂志, 2020, 34(11): 1462-1467.
[15] Goodpaster, B.H., Kelley, D.E., Thaete, F.L., et al. (2000) Skeletal Muscle Attenuation Determined by Computed Tomography Is Associated with Skeletal Muscle Lipid Content. Journal of Applied Physiology (Bethesda, Md: 1985), 89, 104-110.
https://doi.org/10.1152/jappl.2000.89.1.104
[16] Guo, Z., Blake, G.M., Li, K., et al. (2020) Liver Fat Content Measurement with Quantitative CT Validated against MRI Proton Density Fat Fraction: A Prospective Study of 400 Healthy Volunteers. Radiology, 294, 89-97.
https://doi.org/10.1148/radiol.2019190467
[17] Li, X., Xie, Y., Lu, R., et al. (2022) Relationship between Oseteoporosis with Fatty Infiltration of Paraspinal Muscles Based on QCT Examination. Journal of Bone and Mineral Metabolism, 40, 518-527.
https://doi.org/10.1007/s00774-022-01311-z
[18] Chen, L., Wu, X.Y., Jin, Q., et al. (2023) The Correlation between Osteoporotic Vertebrae Fracture Risk and Bone Mineral Density Measured by Quantitative Computed Tomography and Dual Energy X-Ray Absorptiometry: A Systematic Review and Meta-Analysis. European Spine Journal: Official Publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 32, 3875-3884.
https://doi.org/10.1007/s00586-023-07917-9
[19] 朱章祥, 张苗苗. 定量CT参数和代谢指标在非酒精性脂肪肝中的应用研究[J]. 中国CT和MRI杂志, 2022, 20(12): 98-100.
[20] 周爽, 陆靖, 赵俊功,等. 定量CT测量腹部脂肪分布和肝脏脂肪含量与非酒精性脂肪肝相关性[J]. 医学影像学杂志, 2021, 31(8): 1350-1353.
[21] 张雯双, 王玲, 郎昭,等. 定量CT与化学位移编码磁共振成像测量椎旁肌肉脂肪含量的相关性研究[J]. 中华骨与关节外科杂志, 2022, 15(9): 669-674.
[22] Zhao, Y., Huang, M., Serrano Sosa, M., et al. (2019) Fatty Infiltration of Paraspinal Muscles Is Associated with Bone Mineral Density of the Lumbar Spine. Archives of Osteoporosis, 14, Article No. 99.
https://doi.org/10.1007/s11657-019-0639-5
[23] Grimm, A., Meyer, H., Nickel, M.D., et al. (2018) Evaluation of 2-Point, 3-Point, and 6-Point Dixon Magnetic Resonance Imaging with Flexible Echo Timing for Muscle Fat Quantification. European Journal of Radiology, 103, 57-64.
https://doi.org/10.1016/j.ejrad.2018.04.011
[24] Reeder, S.B., Hu, H.H. and Sirlin, C.B. (2012) Proton Density Fat-Fraction: A Standardized MR-Based Biomarker of Tissue Fat Concentration. Journal of Magnetic Resonance Imaging: JMRI, 36, 1011-1014.
https://doi.org/10.1002/jmri.23741
[25] Yoo, H.J., Hong, S.H., Kim, D.H., et al. (2017) Measurement of Fat Content in Vertebral Marrow Using a Modified Dixon Sequence to Differentiate Benign from Malignant Processes. Journal of Magnetic Resonance Imaging: JMRI, 45, 1534-1544.
https://doi.org/10.1002/jmri.25496
[26] Ma, J. (2008) Dixon Techniques for Water and Fat Imaging. Journal of Magnetic Resonance Imaging: JMRI, 28, 543-558.
https://doi.org/10.1002/jmri.21492
[27] Krššák, M., Lindeboom, L., Schrauwen-Hinderling, V., et al. (2021) Proton Magnetic Resonance Spectroscopy in Skeletal Muscle: Experts’ Consensus Recommendations. NMR in Biomedicine, 34, E4266.
https://doi.org/10.1002/nbm.4266
[28] Ogon, I., Takebayashi, T., Takashima, H., et al. (2017) Magnetic Resonance Spectroscopic Analysis of Multifidus Muscles Lipid Content and Association with Spinopelvic Malalignment in Chronic Low Back Pain. The British Journal of Radiology, 90, 20160753.
https://doi.org/10.1259/bjr.20160753
[29] Harris, R.K., Becker, E.D., Cabral De Menezes, S.M., et al. (2002) NMR Nomenclature: Nuclear Spin Properties and Conventions for Chemical Shifts. IUPAC Recommendations 2001. Solid State Nuclear Magnetic Resonance, 22, 458-483.
https://doi.org/10.1006/snmr.2002.0063
[30] Albano, D., Messina, C., Vitale, J., et al. (2020) Imaging of Sarcopenia: Old Evidence and New Insights. European Radiology, 30, 2199-2208.
https://doi.org/10.1007/s00330-019-06573-2
[31] Mourtzakis, M., Parry, S., Connolly, B., et al. (2017) Skeletal Muscle Ultrasound in Critical Care: A Tool in Need of Translation. Annals of the American Thoracic Society, 14, 1495-1503.
https://doi.org/10.1513/AnnalsATS.201612-967PS
[32] Fitze, D.P., Franchi, M.V., Peterhans, L., et al. (2023) Reliability of Panoramic Ultrasound Imaging and Agreement with Magnetic Resonance Imaging for the Assessment of Lumbar Multifidus Anatomical Cross-Sectional Area. Scientific Reports, 13, Article No. 19647.
https://doi.org/10.1038/s41598-023-46987-z
[33] Belavý, D.L., Armbrecht, G. and Felsenberg, D. (2015) Real-Time Ultrasound Measures of Lumbar Erector Spinae and Multifidus: Reliability and Comparison to Magnetic Resonance Imaging. Physiological Measurement, 36, 2285-2299.
https://doi.org/10.1088/0967-3334/36/11/2285
[34] Sun, D., Liu, P., Cheng, J., et al. (2017) Correlation between Intervertebral Disc Degeneration, Paraspinal Muscle Atrophy, and Lumbar Facet Joints Degeneration in Patients with Lumbar Disc Herniation. BMC Musculoskeletal Disorders, 18, Article No. 167.
https://doi.org/10.1186/s12891-017-1522-4
[35] Lee, J.H. and Lee, S.H. (2017) Does Lumbar Paraspinal Muscles Improve after Corrective Fusion Surgery in Degenerative Flat Black? Indian Journal of Orthopaedics, 51, 147-154.
https://doi.org/10.4103/0019-5413.201713
[36] 李启光. 下腰椎椎旁肌退变与脊柱骨盆力线的相关性分析[D]: [硕士学位论文]. 济南: 山东大学, 2016.
[37] Teichtahl, A.J., Urquhart, D.M., Wang, Y., et al. (2015) Fat Infiltration of Paraspinal Muscles Is Associated with Low Back Pain, Disability, and Structural Abnormalities in Community-Based Adults. The Spine Journal: Official Journal of the North American Spine Society, 15, 1593-1601.
https://doi.org/10.1016/j.spinee.2015.03.039
[38] Chen, X., Cui, P., Li, Y., et al. (2024) Links Among MRI Features in Paraspinal Muscles, Inflammatory Processes, and Related Back Pain in Patients with Lumbar Disc Herniation. JOR Spine, 7, E1310.
https://doi.org/10.1002/jsp2.1310
[39] 张元成, 敖俊. 腰椎退行性疾病中椎旁肌退变的影像学研究进展[J]. 局解手术学杂志, 2021, 30(9): 829-833.
[40] Shi, L., Yan, B., Jiao, Y., et al. (2022) Correlation between the Fatty Infiltration of Paraspinal Muscles and Disc Degeneration and the Underlying Mechanism. BMC Musculoskeletal Disorders, 23, Article No. 509.
https://doi.org/10.1186/s12891-022-05466-8
[41] Ekşi, M. and Özcan-Ekşi, E.E. (2024) Fatty Infiltration of the Erector Spinae at the Upper Lumbar Spine Could Be a Landmark for Low Back Pain. Pain Practice: The Official Journal of World Institute of Pain, 24, 278-287.
https://doi.org/10.1111/papr.13302