循环miRNAs作为急性缺血性卒中生物标记物和脑保护机制的研究进展
Research Progress on Circulating miRNAs as Biomarkers and Neuroprotective Mechanisms in Acute Ischemic Stroke
DOI: 10.12677/acm.2024.1461740, PDF, HTML, XML, 下载: 42  浏览: 96 
作者: 韦建琦:内蒙古医科大学包头临床医学院神经内科,内蒙古 包头;樊 宇*:包头市中心医院神经内科,内蒙古 包头
关键词: 循环miRNAs急性缺血性卒中脑保护机制预后生物标记物Circulating miRNAs Acute Ischemic Stroke Neuroprotective Mechanisms Prognostic Biomarkers
摘要: MicroRNAs (miRNAs)是一类非编码RNA分子,在基因转录后调节急性缺血性中风(AIS)中发挥重要作用。由于miRNAs基因高度保守且在血液中稳定,并能通过调节靶基因的表达参与脑卒中的发生和进展。因此,miRNAs有望作为缺血性脑卒中诊断和预后的生物标志物。miRNAs通过减弱炎症反应,抑制氧化应激,抑制细胞凋亡,促进血管生成等途径来发挥脑保护作用,随着对miRNAs在AIS脑保护机制不断深入研究,它们潜在的治疗靶点可能成为新的治疗途径。
Abstract: MicroRNAs (miRNAs) are a class of non coding RNA molecules that play an important role in post transcriptional regulation of acute ischemic stroke (AIS). Due to the high conservation and stability of miRNAs genes in the bloodstream, they can participate in the occurrence and progression of stroke by regulating the expression of target genes. Therefore, miRNAs are expected to serve as biomarkers for the diagnosis and prognosis of ischemic stroke. MiRNAs exert neuroprotective effects by reducing inflammatory response, inhibiting oxidative stress, inhibiting cell apoptosis, and promoting angiogenesis. With further research on the neuroprotective mechanisms of miRNAs in AIS, their potential therapeutic targets may become new therapeutic approaches.
文章引用:韦建琦, 樊宇. 循环miRNAs作为急性缺血性卒中生物标记物和脑保护机制的研究进展[J]. 临床医学进展, 2024, 14(6): 25-30. https://doi.org/10.12677/acm.2024.1461740

1. 引言

急性缺血性卒中(AIS)是由脑组织缺血、缺氧引起的神经功能障碍疾病。AIS是导致死亡的第二原因,也是致残的首要原因 [1] 。影像检查对早期AIS敏感性低,且耗时长,亟待解决。miRNAs是一类非编码RNA分子,在基因转录后发挥调节作用。其在外周血中高稳定性可用作诊断或预后生物标志物 [2] 。随着对miRNAs在AIS脑保护机制不断深入研究,miRNAs在保护神经系统、脑损伤发挥重要作用,它们潜在的治疗靶点可能成为新的治疗途径。

2. miRNAs介绍

循环miRNAs的特点和作用机制

miRNAs是一类长度约19~24个核苷酸的非编码RNA分子,在进化中高度保守,广泛存在于动植物及病毒中 [3] 。miRNAs在血液中非常稳定,是潜在的血清标志物 [2] 。miRNAs参与调控细胞增殖、分化、凋亡、应激反应 [4] [5] [6] [7] 等过程,其过程如下,miRNAs控制多个靶mRNA的表达,miRNA的5'区域跟mRNA的3'端非翻译区(UTR)特异性结合,调节蛋白翻译过程 [8] [9] 。miRNA基因首先在细胞核内由RNA聚合酶II转录成初级miRNA,再转化成前体miRNA,经历细胞核和细胞质加工,并在剪切酶作用下,变成成熟的miRNA,接着加载到RISC (RNA诱导的沉默复合物)上发挥生物学功能 [10] 。

3. 循环miRNAs作为AIS生物标记物的应用

3.1. 诊断生物标志物

急性脑梗塞的早期诊断,识别非常重要,让医生快速做出临床决策。目前以AIS超急性期(6 h内)、急性期(1~3 d)的研究较充分。一项对80名发病5小时内的AIS患者研究分析,根据脑梗死面积大小,将患者分为大、中、小梗塞组。根据美国国立卫生研究院中风量表(NHISS)评分不同,分为轻度、中度、重度组。同组比较显示,大梗死组的血浆miR-409-3p水平显著增高;中度组水平较高,重度组最高,其ROC曲线下面积(AUC)为0.835,敏感性为89.5% [11] 。王琦等 [12] 对88名AIS患者研究证实血清miR-9-5p水平与急性脑梗死存在明显关联,由于样本队列小,需要多中心进一步验证。为了提高诊断率,程秀丽等 [13] 发现miRNAs组合检测具有更高的AUC值。miR-124、miR-155和miR-23的组合评估对超急性期梗死面积和神经损伤更有效 [14] 。此外,miR-125a-5p,miR-125b-5p和miR-143-3p的组合更容易区分AIS患者和健康人群 [15] ,miRNAs联合检测具有更高的诊断价值。

3.2. 预后生物标志物

脑梗死具有高致残率、高死亡率,早发现并治疗具有重要意义 [16] 。研究人员使用改良Rankin量表(mRS)对AIS患者进行评估,mRS ≤ 2表示预后良好,mRS > 2表示预后不良。根据出院时间,分为短期和长期预后。

1) 短期预后:张晓旋等 [17] 对82例患者进行1个月的观察发现,预后不良组血清miRNA-27a-3p水平降低,miRNA-210水平升高,两者AUC值分别为0.892和0.704,灵敏度分别为90.82%和71.5%。郭春轩 [18] 证实血清miRNA-185和miRNA-42表达增加与预后不良密切相关。Sara等 [19] 使用Logistic回归模型分析显示,miR-125b-5p增加一个单位,预后良好概率降低0.095。miR-103与AIS患者90天预后功能相关 [20] 。苏显都等 [21] 发现血清miR-17-5p和同型半胱氨酸(Hcy)联合检测能提高预后评估准确率。张蕊 [22] 证实联合检测确实提高预后评估准确率。

2) 长期预后:在一项为期1年的随访中,miR-210和miR-137低表达组的1年生存率明显增多,而miR-153低表达组则明显下降。它们是潜在长期预后标志物 [23] 。陈南耀等 [24] 发现预后不良组血清miR-124和miR-182显著升高,两者联合诊断为阳性的患者1年的死亡率明显升高。

4. 循环miRNAs在AIS发病后脑保护机制

研究证实了AIS发生后miRNAs表达谱发生变化,miRNAs可能与缺血病理生理有关 [25] 。miRNA通过减弱炎症反应、抑制氧化应激、抑制细胞凋亡,促进血管生成发挥AIS脑保护机制 [4] ,其具体过程细节如下:

4.1. 减弱炎症反应

当脑缺血损伤发生时,受损的神经元、小胶质、星形胶质细胞被激活,然后释放促炎细胞因子、趋化因子、第二信使和活性氧,引发炎症反应 [26] 。一方面,miR-210降低促炎细胞因子TNF-α、IL-6β、IL-2和趋化因子CCL3、CCL10的表达 [27] ,减弱炎症反应。另一方面,miR-126增强内皮干细胞的功能抑制炎症反应 [28] 。同时也发现,miR-124通过促进小胶质细胞M2极化来减少炎症细胞因子的产生 [29] 。此外,miR-29b通过增强血脑屏障完整性减弱炎症反应 [30] 。

4.2. 抑制氧化应激

当活性氧(ROS)在神经细胞中产生过量或降解受损,可引发氧化反应,从而损伤神经细胞功能。NADPH氧化酶(NOX)是活性氧(ROS)的主要来源,研究发现,miR-652显着降低小鼠脑组织中NOX2的表达和ROS的产生 [5] 。miR-126a-3p和miR-138-5p通过靶向NOX2来抑制氧化应激 [31] 。叶西红等 [32] 发现miR-361-3p可以通过靶向NACC1减少ROS的产生,从而防止氧化应激。

4.3. 抑制细胞凋亡

AIS发病后,神经元进行程序性死亡增多,也是细胞凋亡。研究发现,miR-29b通过抑制PC12细胞,增加Bcl-2表达,抑制细胞凋亡 [6] 。AIS小鼠模型中发现miR-582-5p的表达减少,miR-582-5p的过表达抑制Rho通路,继而下调PAR-1,从而减少神经元凋亡 [33] 。娜薇等 [34] 证实了miRNAs在缺血性脑损伤的神经元凋亡中起到关键作用。

4.4. 促进血管生成

脑卒中发生后,生长因子和抑制剂协同作用,诱导和维持内皮细胞的迁移和增殖,促进血管生成。研究发现,miRNA-26a可以介导VEGF的转录活性并激活AKT和ERK1通路,促使内皮细胞管腔形成 [7] 。miR-126不仅调节内皮细胞功能,还能促进血管生成 [35] 。张烨等 [36] 人发现miR-181b通过靶向PTEN调控新生血管。

5. 循环miRNAs在AIS潜在的临床治疗应用

5.1. 靶向治疗

miRNAs可与靶基因的3'-非编码区(3'-UTR)结合,进而抑制或激活靶基因的表达 [37] [38] 。薛伟舒等 [39] 发现miR-145通过MAPK通路发挥保护神经干细胞,可用于治疗小鼠脑卒中疾病,对预后有明显改善效果。左美玲 [5] 发现miR-652通过靶向NOX2来降低NOX2含量保护小鼠免受脑缺血损伤。miR-103通过靶基因WDR59的表达增强引发AIS预后不良 [20] ,可见抑制该靶基因能改善预后。miR-23a通过激活靶基因改善AIS预后 [40] ,因此,可增强该靶基因表达来改善预后。未来可干预miRNAs靶向基因的调控使其向有利的方向改变。

5.2. 个体化治疗

miRNAs个体化治疗是通过检测miRNAs表达谱来识别miRNAs的异常表达,针对性治疗,主要依据每个个体的差异去治疗,这样能避免常规用药副作用 [41] 。根据预后标志物对AIS患者进行个体化治疗,最大限度地提高疗效,减少伤害,达到最理想治疗效果。

6. 结论和展望

目前,循环miRNAs的研究已取得初步成果。现有数据证实miRNAs对AIS的诊断、预后和治疗具有广泛的影响,miRNAs通过减弱炎症反应,抑制氧化应激,抑制细胞凋亡,促进血管生成等途径来发挥脑保护作用。目前研究也存在缺点,如缺乏长期研究结果、血清与血浆之间的差异尚未探索;偏倚风险高,且样本量小,未来需要多中心大规模进一步证实。经过探索,相信未来会产生更多有价值的证据,转化为更有效治疗方法。通过靶向治疗技术的发展和个体化治疗指导,AIS患者的预后将进一步改善。

NOTES

*通讯作者。

参考文献

[1] Katan, M. and Luft, A. (2018) Global Burden of Stroke. Seminars in Neurology, 38, 208-211.
https://doi.org/10.1055/s-0038-1649503
[2] Wang, J., Chen, J. and Sen, S. (2016) MicroRNA as Biomarkers and Diagnostics. Journal of Cellular Physiology, 231, 25-30.
https://doi.org/10.1002/jcp.25056
[3] Liu, Z., et al. (2022) Gene Regulation in Animal miRNA Biogenesis. Epigenomics, 14, 1197-1212.
https://doi.org/10.2217/epi-2022-0214
[4] Specjalski, K. and Jassem, E. (2019) MicroRNAs: Potential Biomarkers and Targets of Therapy in Allergic Diseases? Archivum Immunologiae et Therapiae Experimentalis, 67, 213-223.
https://doi.org/10.1007/s00005-019-00547-4
[5] Zuo, M.L., Wang, A.P. and Song, G.L. (2020) MiR-652 Protects Rats from Cerebral Ischemia/Reperfusion Oxidative Stress Injury by Directly Targeting NOX2. Biomedicine & Pharmacotherapy, 124, Article ID: 109860.
https://doi.org/10.1016/j.biopha.2020.109860
[6] Ma, Y.H., Deng, W.J. and Luo, Z.Y. (2022) Inhibition of MicroRNA-29b Suppresses Oxidative Stress and Reduces Apoptosis in Ischemic Stroke. Neural Regeneration Research, 17, 433-439.
https://doi.org/10.4103/1673-5374.314319
[7] Liang, Z., Chi, Y.J., Lin, G.Q., et al. (2018) MiRNA-26a Promotes Angiogenesis in a Rat Model of Cerebral Infarction via PI3K/AKT and MAPK/ERK Pathway. European Review for Medical and Pharmacological Sciences, 22, 3485-3492.
[8] Rhoades, M.W., Reinhart, B.J., Lim, L.P., et al. (2002) Prediction of Plant MicroRNA Targets. Cell, 110, 513-520.
https://doi.org/10.1016/S0092-8674(02)00863-2
[9] Lai, E.C. (2002) Micro RNAs Are Complementary to 3’UTR Sequence Motifs That Mediate Negative Post-Transcriptional Regulation. Nature Genetics, 30, 363-364.
https://doi.org/10.1038/ng865
[10] Michlewski, G. and Cáceres, J.F. (2019) Post-Transcriptional Control of miRNA Biogenesis. RNA, 25, 1-16.
https://doi.org/10.1261/rna.068692.118
[11] Song, X.D., Li, S.X. and Zhu, M. (2021) Plasma MiR-409-3p Promotes Acute Cerebral Infarction via Suppressing CTRP3. The Kaohsiung Journal of Medical Sciences, 37, 324-333.
https://doi.org/10.1002/kjm2.12327
[12] Wang, Q., Wang, F. and Fu, F. (2021) Diagnostic and Prognostic Value of Serum MiR-9-5p and MiR-128-3p Levels in Early-Stage Acute Ischemic Stroke. Clinics, 76, e2958.
https://doi.org/10.6061/clinics/2021/e2958
[13] Cheng, X., Kan, P. and Ma, Z. (2018) Exploring the Potential Value of MiR-148b-3p, MiR-151b and MiR-27b-3p as Biomarkers in Acute Ischemic Stroke. Bioscience Reports, 38, BSR20181033.
https://doi.org/10.1042/BSR20181033
[14] 张立娜, 王海虹, 王适达. 血清miR-124、miR-155联合miR-23检测在超早期脑梗死诊断中的应用价值[J]. 国际检验医学杂志, 2021, 42(20): 2478-2481, 2486.
[15] Tiedt, S., Prestel, M. and Malik, R. (2017) RNA-Seq Identifies Circulating MiR-125a-5p, MiR-125b-5p, and MiR-143-3p as Potential Biomarkers for Acute Ischemic Stroke. Circulation Research, 121, 970-980.
https://doi.org/10.1161/CIRCRESAHA.117.311572
[16] Naess, H., Kurtz, M. and Thomassen, L. (2016) Serial NIHSS Scores in Patients with Acute Cerebral Infarction. Acta Neurologica Scandinavica, 133, 415-420.
https://doi.org/10.1111/ane.12477
[17] 张晓璇, 马征, 窦志杰, 等. 血清miRNA-27a-3p、miRNA-210水平与ACI患者神经功能改善的关系[J]. 脑与神经疾病杂志, 2022, 30(3): 154-159.
[18] Guo, C., Yao, Y. and Li, Q. (2022) Expression and Clinical Value of MiR-185 and MiR-424 in Patients with Acute Ischemic Stroke. International Journal of General Medicine, 15, 71-78.
https://doi.org/10.2147/IJGM.S340586
[19] Mostafa, S., Al Masry, H. and Hussein, M. (2023) The Potential Role of Micro-RNA 125b-5p Level in Predicting Outcome from Thrombolytic Therapy in Patients with Acute Ischemic Stroke. Journal of Thrombosis and Thrombolysis, 56, 275-282.
https://doi.org/10.1007/s11239-023-02831-9
[20] 韩旭东, 梁志刚, 阎志慧, 等. 血清miR-103、sCD40L对急性缺血性脑卒中治疗效果及预后评估的价值[J]. 山东医药, 2022, 62(10): 25-29.
[21] 苏显都, 林明利, 符步远, 等. 血清miR-17-5p与Hcy水平联合预测急性缺血性脑卒中患者预后的价值[J]. 中国神经免疫学和神经病学杂志, 2020, 27(4): 298-302.
[22] 晋霞, 等. 急性脑梗死患者血清miR-29c-3p、MDM2水平与预后的关系[J]. 疑难病杂志, 2023, 22(6): 595-599, 606.
[23] Tian, H., Zhao, Y. and Du, C. (2021) Expression of MiR-210, MiR-137, and MiR-153 in Patients with Acute Cerebral Infarction. Research International, 2021, Article ID: 4464945.
https://doi.org/10.1155/2021/4464945
[24] 陈南耀, 余丹. 联合检测血清miR-124与miR-182的表达水平对急性脑梗死诊断与预后评估的价值[J]. 中国动脉硬化杂志, 2019, 27(6): 502-506.
[25] Zhu, X., Liu, X. and Liu, Y. (2020) Uncovering the Potential Differentially Expressed miRNAs and MRNAs in Ischemic Stroke Based on Integrated Analysis in the Gene Expression Omnibus Database. European Neurology, 83, 404-414.
https://doi.org/10.1159/000507364
[26] Slota, J.A. and Booth, S.A. (2019) MicroRNAs in Neuroinflammation: Implications in Disease Pathogenesis, Biomarker Discovery and Therapeutic Applications. Non-Coding RNA, 5, Article 35.
https://doi.org/10.3390/ncrna5020035
[27] Huang, L., Ma, Q. and Li, Y. (2018) Inhibition of MicroRNA-210 Suppresses Pro-Inflammatory Response and Reduces Acute Brain Injury of Ischemic Stroke in Mice. Experimental Neurology, 300, 41-50.
https://doi.org/10.1016/j.expneurol.2017.10.024
[28] Ebrahimi, V., Rastegar-Moghaddam, S.H. and Mohammadipour, A. (2023) Therapeutic Potentials of MicroRNA-126 in Cerebral Ischemia. Molecular Neurobiology, 60, 2062-2069.
https://doi.org/10.1007/s12035-022-03197-4
[29] Yang, Y., Ye, Y. and Kong, C. (2019) MiR-124 Enriched Exosomes Promoted the M2 Polarization of Microglia and Enhanced Hippocampus Neurogenesis after Traumatic Brain Injury by Inhibiting TLR4 Pathway. Neurochemical Research, 44, 811-828.
https://doi.org/10.1007/s11064-018-02714-z
[30] Ma, X., Yun, H.J. and Elkin, K. (2022) MicroRNA-29b Suppresses Inflammation and Protects Blood-Brain Barrier Integrity in Ischemic Stroke. Mediators of Inflammation, 2022, Article ID: 1755416.
https://doi.org/10.1155/2022/1755416
[31] Liu, Z., Tuo, Y.H. and Chen, J.W. (2017) NADPH Oxidase Inhibitor Regulates microRNAs with Improved Outcome after Mechanical Reperfusion. Journal of NeuroInterventional Surgery, 9, 702-706.
https://doi.org/10.1136/neurintsurg-2016-012463
[32] Ye, X., Song, H. and Hu, H. (2022) MiR-361-3p Alleviates Cerebral Ischemia-Reperfusion Injury by Targeting NACC1 through the PINK1/Parkin Pathway. Journal of Molecular Histology, 53, 357-367.
https://doi.org/10.1007/s10735-021-10049-3
[33] Ding, H., Gao, S. and Wang, L. (2019) Overexpression of MiR-582-5p Inhibits the Apoptosis of Neuronal Cells after Cerebral Ischemic Stroke through Regulating PAR-1/Rho/Rho Axis. Journal of Stroke and Cerebrovascular Diseases, 28, 149-155.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.09.023
[34] Wei, N., Xiao, L. and Xue, R. (2016) MicroRNA-9 Mediates the Cell Apoptosis by Targeting Bcl2l11 in Ischemic Stroke. Molecular Neurobiology, 53, 6809-6817.
https://doi.org/10.1007/s12035-015-9605-4
[35] Wang, S., Aurora, A.B. and Johnson, B.A. (2008) The Endothelial-Specific MicroRNA MiR-126 Governs Vascular Integrity and Angiogenesis. Developmental Cell, 15, 261-271.
https://doi.org/10.1016/j.devcel.2008.07.002
[36] 张烨, 庄雪明, 王静, 等. miR-181b通过靶向PTEN调控缺血性脑卒中后血管新生的作用和机制研究[J]. 生物医学工程与临床, 2023, 27(3): 359-366.
[37] Kong, Y., Li, S. and Cheng, X. (2020) Brain Ischemia Significantly Alters microRNA Expression in Human Peripheral Blood Natural Killer Cells. Frontiers in Immunology, 11, Article 759.
https://doi.org/10.3389/fimmu.2020.00759
[38] Hao, L., Liu, M. and Gu, S. (2022) Retraction Note: Sedum Sarmentosum Bunge Extract Ameliorates Lipopolysaccharide-and D-Galactosamine-Induced Acute Liver Injury by Attenuating the Hedgehog Signaling Pathway via Regulation of MiR-124 Expression. BMC Complementary Medicine and Therapies, 22, Article No. 305.
https://doi.org/10.1186/s12906-022-03796-7
[39] Xue, W.S., Wang, N. and Wang, N.Y. (2019) MiR-145 Protects the Function of Neuronal Stem Cells through Targeting MAPK Pathway in the Treatment of Cerebral Ischemic Stroke Rat. Brain Research Bulletin, 144, 28-38.
https://doi.org/10.1016/j.brainresbull.2018.08.023
[40] 王鑫, 薛莉, 崔长富, 等. 血清miR-23a表达水平与急性脑梗死患者预后的相关性[J]. 南昌大学学报(医学版), 2021, 61(4): 44-48, 54.
[41] 马一杰, 陈小兵,罗素霞. miRNA指纹图谱及其在结直肠癌个体化治疗中的应用[J]. 胃肠病学和肝病学杂志, 2012, 21(11): 994-996.