具有Logistic源的三维趋化模型的适定性研究
Well-Posedness Study onThree-Dimensional ChemotaxisModel with Logistic Source
DOI: 10.12677/PM.2024.145195, PDF, 下载: 28  浏览: 51 
作者: 江昱邦, 彭红云:广东工业大学数学与统计学院,广东 广州
关键词: 趋化模型Logistic源能量估计全局适定性Chemotaxis System Logistic Source Energy Estimate Global Well-Posedness
摘要: 本文研究了一类在全空间ℝ3上具有奇性和Logistic源的趋化模型的整体适定性。 通过Cole-Hopf型变换,将带奇性的趋化系统转化为非奇性的趋化系统,然后通过能量估计的方法建立该系统解的全局适定性。
Abstract: In this thesis, we study the global well-posedness of a singular chemotaxis system with logistic source in three dimensional whole spaces. Through the Cole-Hopf type transformation, the singular chemotaxis is converted into a non-singular hyperbolic system, and then the global well-posedness of the transformed model solution is established through the energy estimation method.
文章引用:江昱邦, 彭红云. 具有Logistic源的三维趋化模型的适定性研究[J]. 理论数学, 2024, 14(5): 394-408. https://doi.org/10.12677/PM.2024.145195

参考文献

[1] Zeng, Y. and Zhao, K. (2020) Recent Results for the Logarithmic Keller-Segel-Fisher/Kpp System. Boletim da Sociedade Paranaense de Matematica, 38, 37-48.
https://doi.org/10.5269/bspm.v38i7.44494
[2] Stevens, A. and Othmer, H.G. (1997) Aggregation, Blowup, and Collapse: The ABC's of Taxis in Reinforced Random walks. SIAM Journal on Applied Mathematics, 57, 1044-1081.
https://doi.org/10.1137/S0036139995288976
[3] Bellomo, N., Bellouquid, A., Tao, Y. and Winkler, M. (2015) Toward a Mathematical Theory of Keller-Segel Models of Pattern Formation in Biological Tissues. Mathematical Models and Methods in Applied Sciences, 25, 1663-1763.
https://doi.org/10.1142/S021820251550044X
[4] Hillen, T. and Painter, K.J. (2009) A User's Guide to PDE Models for Chemotaxis. Journal of Mathematical Biology, 58, 183-217.
https://doi.org/10.1007/s00285-008-0201-3
[5] Horstmann, D. (2004) From 1970 Until Present: The Keller-Segel Model in Chemotaxis and Its Consequences. Jahresbericht der Deutschen Mathematiker-Vereinigung, 51, 103-165.
[6] Kalinin, Y.V., Jiang, L., Tu, Y. and Wu, M. (2009) Logarithmic Sensing in Escherichia coli Bacterial Chemotaxis. Biophysical Journal, 96, 2439-2448.
https://doi.org/10.1016/j.bpj.2008.10.027
[7] Keller, E.F. and Segel, L.A. (1971) Traveling Bands of Chemotactic Bacteria: A Theoretical Analysis. Journal of Theoretical Biology, 30, 235-248.
https://doi.org/10.1016/0022-5193(71)90051-8
[8] Levine, H.A., Sleeman, B.D. and Nilsen-Hamilton, M. (2000) A Mathematical Model for the Roles of Pericytes and Macrophages in the Initiation of Angiogenesis. I. The Role of Protease Inhibitors in Preventing Angiogenesis. Mathematical Biosciences, 168, 77-115.
https://doi.org/10.1016/S0025-5564(00)00034-1
[9] Sleeman, B.D. and Levine, H.A. (1997) A System of Reaction Diffusion Equations Arising in the Theory of Reinforced RandomWalks. SIAM Journal on Applied Mathematics, 57, 683-730.
https://doi.org/10.1137/S0036139995291106
[10] Wang, Z. and Hillen, T. (2008) Shock Formation in a Chemotaxis Model. Mathematical Meth- ods in the Applied Sciences, 31, 45-70.
https://doi.org/10.1002/mma.898
[11] Zeng, Y. and Zhao, K. (2019) On the Logarithmic Keller-Segel-Fisher/Kpp System. Discrete & Continuous Dynamical Systems: Series A, 39, 5365-5402.
https://doi.org/10.3934/dcds.2019220
[12] Zeng, Y. and Zhao, K. (2020) Optimal Decay Rates for a Chemotaxis Model with Logistic Growth, Logarithmic Sensitivity and Density-Dependent Production/Consumption Rate. Journal of Differential Equations, 268, 1379-1411.
https://doi.org/10.1016/j.jde.2019.08.050
[13] Wang, Z.-A., Xiang, Z. and Yu, P. (2016) Asymptotic Dynamics on a SINGULAR Chemotaxis System Modeling Onset of Tumor Angiogenesis. Journal of Differential Equations, 260, 2225- 2258.
https://doi.org/10.1016/j.jde.2015.09.063
[14] Li, D., Li, T. and Zhao, K. (2011) On a Hyperbolic-Parabolic System Modeling Chemotaxis. Mathematical Models and Methods in Applied Sciences, 21, 1631-1650.
https://doi.org/10.1142/S0218202511005519
[15] Fefferman, C.L., McCormick, D.S., Robinson, J.C. and Rodrigo, J.L. (2014) Higher Order Commutator Estimates and Local Existence for the Non-resistive MHD Equations and Related Models. Journal of Functional Analysis, 267, 1035-1056.
https://doi.org/10.1016/j.jfa.2014.03.021
[16] Tello, J.I. and Winkler, M. (2007) A Chemotaxis System with LOGISTIC Source. Communi- cations in Partial Differential Equations, 32, 849-877.
https://doi.org/10.1080/03605300701319003
[17] Winkler, M. (2008) Chemotaxis with Logistic Source: Very Weak Global Solutions and Their Boundedness Properties. Journal of Mathematical Analysis and Applications, 348, 708-729.
https://doi.org/10.1016/j.jmaa.2008.07.071
[18] Winkler, M. (2014) How Far Can Chemotactic Cross-Diffusion Enforce Exceeding Carrying Capacities. Journal of Nonlinear Science, 24, 809-855.
https://doi.org/10.1007/s00332-014-9205-x
[19] Cao, X. (2014) Boundedness in a Quasilinear Parabolic-Parabolic Keller-Segel System with Logistic Source. Journal of Mathematical Analysis and Applications, 412, 181-188.
https://doi.org/10.1016/j.jmaa.2013.10.061
[20] Cao, X. and Zheng, S. (2014) Boundedness of Solutions to a Quasilinear Parabolic-Elliptic Keller-Segel System with Logistic Source. Mathematical Methods in the Applied Sciences, 37, 2326-2330.
https://doi.org/10.1002/mma.2992
[21] Winkler, M. (2010) Boundedness in the Higher-Dimensional Parabolic-Parabolic Chemotaxis System with Logistic Source. Communications in Partial Differential Equations, 35, 1516-1537.
https://doi.org/10.1080/03605300903473426