Ritz神经网络求解微分方程的数值比较及敏感性分析
Numerical Comparison and Sensitivity Analysis of Differential Equations Solved by Ritz Neural Network
摘要: Ritz神经网络已经被广泛用来求解微分方程,其中关键一步是近似损失函数中所涉及的定积分, 因此求积方法的选取对神经网络逼近解尤为重要。 本文通过一些例子进行数值比较分析。 首先, 我们引入Dirichlet和Neumann边界的边值问题模型。 其次,构造神经网络进行模型训练。 另外, 详细介绍复合楝形求积、 复合Simpson求积、 三点Gauss求积以及蒙特卡罗求积法。 然后,对算 例进行数值比较分析,结果表明三点Gauss求积方法更好。 最后对神经网络参数敏感性做进一步 研究,神经网络的精度随着训练集的增大而提高,当神经元数量达到4 时,再增加神经元数量并不 能明显提高精度,而增加隐藏层数量和更换激活函数并没有太大的影响。
Abstract: Ritz neural networks have been widely used to solve differential equations, in which the key step is to approximate the definite integral involved in the loss function, so the selection of quadrative methods is particularly important for neural networks to approximate the solution. In this paper, some examples are used for numerical comparison. First, we introduce the boundary value problem model of Dirichlet and Neumann boundaries. Secondly, the neural network is constructed to train the model. In addition, the methods of compound trapezoidal quadrature, compound Simpson quadrature, three-point Gauss quadrature and Monte Carlo quadrature are introduced in detail. Then, the numerical comparison and analysis of the examples show that the three-point Gauss quadrature method is better. Finally, the sensitivity of neural network parameters was further studied, and the accuracy of neural network was improved with the increase of training set. When the number of neurons reached 4, increasing the number of neurons could not significantly improve the accuracy, while increasing the number of hidden layers and changing the activation function had no significant impact.
文章引用:史正梅, 刘云美, 范小林. Ritz神经网络求解微分方程的数值比较及敏感性分析[J]. 应用数学进展, 2024, 13(5): 2380-2391. https://doi.org/10.12677/AAM.2024.135226

参考文献

[1] 李金甲, 陈都鑫, 柴人杰, 等. 基于人工智能的蛋白质属性预测的潜能与应用[J]. 药学进展, 2023, 47(10): 733-740.
[2] 荣国光, 等. 医疗保健中的人工智能一一综述与预测性案例研究[J]. 工程(英文), 2020, 6(3): 189-211.
[3] 王弈, 李传富. 人工智能方法在医学图像处理中的研究新进展[J]. 中国医学物理学杂志, 2013, 30(3): 4138-4143.
[4] 吴毅, 张小勤. 人工智能在医学图像处理中的研究进展与展望[J]. 第三军医大学学报, 2021, 43(18): 1707-1712.
[5] 马鹏�. 基于深度学习的语音识别研究[J]. 信息与电脑(理论版), 2021, 33(18): 178-180.
[6] 李道伦, 卢德唐, 孔祥言, 等. BP神经网络隐式法在测井数据处理中的应用[J]. 石油学报, 2007, 28(3): 105-108.
[7] 李道伦, 刘旭亮, 查文舒, 等. 基于卷积神经网络的径向复合油藏自动试井解释方法[J]. 石油勘探与开发, 2020, 47(3): 583-591.
[8] Mai-Duy, N. (2005) Solving High Order Ordinary Differential Equations with Radial Basis Function Networks. International Journal for Numerical Methods in Engineering, 62, 824-852.
https://doi.org/10.1002/nme.1220
[9] Ruthotto, L. and Haber, E. (2020) Deep Neural Networks Motivated by Partial Differential Equations. Journal of Mathematical Imaging and Vision, 62, Article 111722.
https://doi.org/10.1007/s10851-019-00903-1
[10] McClenny, L.D. and Braga-Neto, U.M. (2023) Self-Adaptive Physics-Informed Neural Net- works. Journal of Computational Physics, 474, Article 111722.
https://doi.org/10.1016/j.jcp.2022.111722
[11] Lagaris, I.E., Likas, A. and Fotiadis, D.I. (1998) Artificial Neural Networks for Solving Ordi- nary and Partial Differential Equations. IEEE Transactions on Neural Networks, 9, 987-1000.
https://doi.org/10.1109/72.712178
[12] Raissi, M., Perdikaris, P. and Karniadakis, G.E. (2019) Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. Journal of Computational Physics, 378, 686-707.
https://doi.org/10.1016/j.jcp.2018.10.045
[13] Weinan, E. and Yu, B. (2018) The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics, 6, 1-12.
https://doi.org/10.1007/s40304-018-0127-z
[14] Sheng, H. and Yang, C. (2021) PFNN: A Penalty-Free Neural Network Method for Solving a Class of Second-Order Boundary-Value Problems on Complex Geometries. Journal of Compu- tational Physics, 428, Article 110085.
https://doi.org/10.1016/j.jcp.2020.110085
[15] Chen, J., Du, R., Li, P. and Lyu, L. (2021) Quasi-Monte Carlo Sampling for Solving Partial Differential Equations by Deep Neural Networks. Numerical Mathematics, 14, 377-404.
https://doi.org/10.4208/nmtma.OA-2020-0062
[16] Taylor, J.M., Pardo, D. and Muga, I. (2023) A Deep Fourier Residual Method for Solving PDEs Using Neural Networks. Computer Methods in Applied Mechanics and Engineering, 405, Article 115850.
https://doi.org/10.1016/j.cma.2022.115850
[17] Mishra, S. and Molinaro, R. (2023) Estimates on the Generalization Error of Physics-Informed Neural Networks for Approximating PDEs. IMA Journal of Numerical Analysis, 43, 1-43.
https://doi.org/10.1093/imanum/drab093
[18] 李荣华. 偏微分方程数值解法(第二版) [M]. 北京: 高等教育出版社, 2010: 11.
[19] Rivera, J.A., Taylor, J.M., Pardo, D., et al. (2022) On Quadrature Rules for Solving Partial Differential Equations Using Neural Networks. Computer Methods in Applied Mechanics and Engineering, 393, Article 114710.
https://doi.org/10.1016/j.cma.2022.114710
[20] 杨一都. 数值计算方法[M]. 北京: 高等教育出版社, 2008: 4.
[21] Caflisch, R.E. (1998) Monte Carlo and Quasi-Monte Carlo Methods. Acta Numerica, 7, 1-49.
https://doi.org/10.1017/S0962492900002804
[22] 雷挂妓. 关于蒙特卡罗及拟蒙特卡罗方法的若干研究[D]: [博士学位论文]. 杭州: 浙江大学, 2003.
[23] 张艳. 利用蒙特卡罗方法求解数值积分[J]. 高等数学研究, 2023, 26(1): 44-46+61.
[24] Remi Hernandez. 神经网络算法求解微分方程的参数敏感性研究[D]: [硕士学位论文]. 厦门: 厦门大学, 2020.