遗传预测血液代谢物与中耳、鼻腔及鼻窦良性肿瘤的因果关系——两样本双向孟德尔随机化研究
Genetic Prediction of Causality between Blood Metabolites and Benign Tumors of the Middle Ear, Nasal Cavity, and Paranasal Sinuses—Two-Sample Bidirectional Mendelian Randomization Study
DOI: 10.12677/acm.2024.1451725, PDF, HTML, XML, 下载: 39  浏览: 93 
作者: 陈庆泳:滨州医学院第二临床医学院,山东 烟台;陈志鹏, 林立强, 邵 强, 吕怀庆*:临沂市人民医院耳鼻咽喉头颈外科,山东 临沂
关键词: 血液代谢物孟德尔随机化良性肿瘤因果关系Blood Metabolites Mendelian Randomization Benign Tumors Causality
摘要: 目的:利用孟德尔随机化分析(Mendelian randomization, MR)方法,探究1400种血液代谢物和中耳、鼻腔及鼻窦良性肿瘤的因果关系。方法:本研究采用两样本双向孟德尔随机化分析,利用全基因组关联研究(Genome-wide Association study, GWAS)数据库获得血液代谢物和中耳、鼻腔及鼻窦良性肿瘤相关数据。使用R软件和TwoSampleMR软件包进行分析。研究采用逆方差加权法(IVW)为主,结合MR-Egger回归、加权中位数法(WM)、简单模型法(Simple mode)及加权模型法(Weighted mode)作为补充分析血液代谢物和中耳、鼻腔及鼻窦良性肿瘤的因果关系。为进一步增强结果的可靠性和稳定性通过Cochran Q检验、MR-Egger回归检验、MR-PRESSO综合检验以及MR Egger截距检测异质性及水平多效性。由于样本过大,为了结果更加严谨对结果进行错误发现率(FDR)矫正。反向MR分析以中耳、鼻腔及鼻窦良性肿瘤为暴露因素,将正向筛选得到的血液代谢物作为结局变量进行效应分析和敏感性分析。结果:分析结果显示,发现1种血液代谢物为棕榈油酸(16:1n-7)升高与中耳、鼻腔及鼻窦良性肿瘤风险增高显著相关(IVW:OR = 1.971, 95% CI: 1.392~2.789, P < 0.001),而反向MR提示中耳、鼻腔及鼻窦良性肿瘤与棕榈油酸(16:1n-7)无显著相关性(IVW:OR = 1.027, 95% CI: 0.980~1.076, P = 0.269)。通过Cochran Q检验、MR-Egger回归检验、MR-PRESSO综合检验以及MR Egger截距检测结果显示工具变量之间不存在异质性及水平多效性,同时,通过留一法检验分析证实,单个SNPs对整体结果没有显著影响,进一步增强了结果的可靠性和稳定性。结论:在1400种血液代谢物种发现1种棕榈油酸(16:1n-7)与中耳、鼻腔及鼻窦良性肿瘤发病存在正向因果关联,可为中耳、鼻腔及鼻窦良性肿瘤发病机制及早期筛检和治疗提供参考。
Abstract: Objective: To explore the causal relationship between 1400 blood metabolites and benign tumors of middle ear, nasal cavity and paranasal sinus by using Mendelian randomization (MR) method. Methods: Two-sample bi-directional Mendelian randomization analysis was used in this study, and the data related to blood metabolites and benign tumors of middle ear, nasal cavity and paranasal sinus were obtained from Genome-wide Association study (GWAS) database. R software and Two Sample MR software package were used for analysis. The inverse variance weighting (IVW) method was used as the main method, and MR-Egger regression, weighted median (WM), simple mode and weighted mode were used as supplementary methods to analyze the causal relationship between blood metabolites and benign tumors of middle ear, nasal cavity and paranasal sinus. To further enhance the reliability and stability of the results, Cochran Q test, MR-Egger regression test, MR-PRESSO comprehensive test and MR Egger intercept were used to detect heterogeneity and horizontal pleiotropy. Due to the large sample size, the results were corrected by false detection rate (FDR) for more rigorous results. The reverse MR analysis took benign tumors of middle ear, nasal cavity and paranasal sinus as the exposure factor, and the blood metabolites obtained by positive screening were used as outcome variables for effect analysis and sensitivity analysis. Results: The results showed that the increase of palmitic acid (16:1n-7) was significantly associated with the risk of benign tumors of middle ear, nasal cavity and paranasal sinus (IVW:OR = 1.971, 95% CI: 1.392~2.789, P < 0.001), while reverse MR showed no significant correlation between benign tumors of middle ear, nasal cavity and paranasal sinus and palmitic acid (16:1n-7) (IVW:OR = 1.027, 95% CI: 0.980~1.076, P = 0.269). The results of Cochran Q test, MR-Egger regression test, MR-PRESSO comprehensive test and MR Egger intercept test showed that there was no heterogeneity and horizontal pleiotropy between the instrumental variables. At the same time, the analysis of one-way ANOVA confirmed that a single SNP had no significant effect on the overall results, further enhancing the reliability and stability of the results. Conclusions: Among 1400 blood metabolites, there is a positive causal relationship between palmitic acid (16:1n-7) and the incidence of benign tumors of middle ear, nasal cavity and paranasal sinus, which can provide reference for the pathogenesis, early screening and treatment of benign tumors of middle ear, nasal cavity and paranasal sinus.
文章引用:陈庆泳, 陈志鹏, 林立强, 邵强, 吕怀庆. 遗传预测血液代谢物与中耳、鼻腔及鼻窦良性肿瘤的因果关系——两样本双向孟德尔随机化研究[J]. 临床医学进展, 2024, 14(5): 2602-2612. https://doi.org/10.12677/acm.2024.1451725

1. 引言

中耳、鼻腔及鼻窦良性肿瘤是耳鼻咽喉头颈外科常见的一种疾病,种类较多且常需手术治疗 [1] 。中耳良性肿瘤最常见为中耳胆脂瘤,虽然为良性疾病,但具有较强的破坏性,早期病情隐匿,随着病情的发展主要表现为持续性耳流脓、耳内钝痛、耳闷塞感、听力下降、眩晕及面瘫等 [2] 。鼻腔及鼻窦良性肿瘤近年来发病率逐渐增加 [3] ,其中以鼻内翻性乳头状瘤、纤维血管瘤最为常见,鼻腔累及较鼻窦多见,早期可无任何症状,随着肿瘤体积的增大及对邻近组织压迫的加重,主要表现为鼻塞流涕、头晕、嗅觉障碍及无法缓解的头痛等不适,严重影响患者生活质量 [4] 。目前,其发病机制尚未完全明确 [5] 。

血液代谢物作为功能中间体,往往可以反映个体遗传组成和疾病发展的潜在生物学联系 [6] 。近年来,随着代谢组学技术的不断发展,通过代谢组学能够发现潜在的代谢标志物和改变代谢途径以增强预测疾病发生机制的理解 [7] 。但是,许多代谢物往往只能提供和疾病的关联性,无法确定其是否存在因果关系 [8] 。孟德尔随机化(MR)是近年来被广泛应用的因果推理方法,以遗传变异作为工具变量(IV)来推断暴露因素和研究结果之间的因果关系 [9] 。目前,尚未有MR研究评估血液代谢物和中耳、鼻腔及鼻窦良性肿瘤的因果关系。本研究采用两样本双向孟德尔随机化分析方法,分析1400种代谢物和中耳、鼻腔及鼻窦良性肿瘤之间的因果关系,并筛选与中耳、鼻腔及鼻窦良性肿瘤具有直接因果关系的血液代谢物,为中耳、鼻腔及鼻窦良性肿瘤提供新的生物标志物,并为早期筛查和治疗提供帮助。

2. 研究方法与资料

2.1. 数据来源

血液代谢物基于2014年Shin等 [10] 通过非靶向代谢组学的GWAS对遗传对人类代谢的影响进行了全面探索,从两个欧洲人群队列中招募了7824名参与者,经过严格的质量控制,共分析了486种对人类具有遗传影响的代谢物,其中包括309种已知代谢物和177种未知代谢物。在最新的研究中,2023年Chen等 [11] 发表于Nature Genetics上的全基因组关联分析数据,对1091种血液代谢物和309种代谢物的比值进行了GWAS。数据可以从GWAS Catalog数据库中获得。1400种血液代谢物的目录编号为GCST90199621-GCS90201020。中耳、鼻腔及鼻窦良性肿瘤患者为欧洲人群,样本量为429 209,共有约164万个单核苷酸多态性(SNPs)位点用于关联分析,数据集为“finn-b-CD2_BENIGN_EAR_NASAL_SINUS”,可在FinnGen数据库(https://gwas.mrcieu.ac.uk/)中获取。

2.2. 工具变量的选择

工具变量的选择应满足3个基本假设 [12] :① 相关性假设:工具变量应与暴露因素(即血液代谢物)相关;② 独立性假设:工具变量应与结局(中耳、鼻腔及鼻窦良性肿瘤)无关;③ 排他性假设:不存在水平多效性,即工具变量除暴露外不能从其他方面影响结果。为满足相关性假设,选择与血液代谢物的全基因组显著相关,筛选条件设定为P < 1.0 × 10−5,将连锁不平衡阈值设定为r2 = 0.001,kb = 10000,以保证SNPs的独立性。使用F统计量评估SNPs是否受弱工具变量的影响,若F值 < 10提示工具变量效应较弱,因此将F值 ≥ 10的工具变量纳入MR分析 [13] 。

2.3. 统计学分析

2.3.1. MR分析

所有数据分析均使用R软件(4.3.2版本)。以逆方差加权法 [14] (IVW)作为本研究的主要分析方法,以P < 0.05为筛选条件,系统评价SNPs的Wald比值。使用TwoSampleMR软件包筛选和分析与中耳、鼻腔及鼻窦良性肿瘤及其相关指标相关的代谢物。进一步的分析筛选五种方法(逆方差加权法、MR-Egger回归 [15] 、加权中位数法 [16] 、简单模型法及加权模型法 [17] )所得结果方向一致的代谢物,表明该代谢物和中耳、鼻腔及鼻窦良性肿瘤的因果关系是稳定可靠的 [18] 。以筛选出的血液代谢物为结局变量,中耳、鼻腔及鼻窦良性肿瘤为暴露因素进行反向MR分析,进一步明确其因果关系。

2.3.2. 异质性检验

主要来源于来自工具变量的水平多效性的不同、暴露和结果样本性质的不同、以及比例测量导致的估计的因果参数的不同等方面,同时由于不同分析平台、实验条件、入选人群的以及SNPs的差异,两样本MR分析法可能存在异质性,从而对因果效应的估计产生偏倚 [19] 。使用IVW中的Cochran Q检验和MR-Egger回归检验评估各工具变量之间的异质性,若P < 0.05则表明研究中工具变量存在异质性 [20] 。如果检测到显著的异质性,我们采用随机效应IVW模型;否则采用固定效应IVW模型。

2.3.3. 水平多效性检验

水平多效性也被称为遗传多态性,是MR分析检验工具变量的重要组成部分。MR分析工具变量三大假设之一排他性假设,工具变量SNPs只能通过暴露因素(血液代谢物)影响结局变量,若通过暴露因素以外途径影响结局变量则不满足MR分析原则,即研究需排除工具变量的水平多效性。本使用MR-Egger法计算截距评估工具变量的水平多效性,以满足MR分析的排他性假设并提高因果关系的准确性,若P > 0.05可认为工具变量水平多效性不会影响研究结果的准确性。

2.3.4. 敏感性分析

本研究除了采用MR-Egger回归、加权中位数法、简单模型法及加权模型法来检验结果的可靠性和稳定性。还采用留一法检验分析研究数据的稳定性,即逐渐移除单个SNPs后计算剩余SNPs合并效应,用以评估是否存在单个SNPs对MR结果产生显著影响 [21] 。用MR多效性残差和异质性检测(MR pleiotropy residual sum and outlier, MR-PRESSO)法检验SNPs异常值,若P < 0.05,则表明存在单个SNPs离群值,需将其剔除并重新进行分析,从而确保MR分析结果的可靠性和稳健性,并检测和纠正潜在的离群 [22] 。对结果进行FDR < 0.2矫正,使得结果更加严谨可靠。构建散点图、森林图和漏斗图对MR分析的水平多效性进行可视化分析。

2.3.5. 反向MR分析

基于以上标准,将筛选出的血液代谢物为结局变量,以中耳、鼻腔及鼻窦良性肿瘤相关的SNPs作为工具变量(暴露因素)进行反向MR分析,进一步分析中耳、鼻腔及鼻窦良性肿瘤是否会对上述代谢物产生影响。

3. 结果

3.1. 工具变量筛选

首先根据关联性分析和去除连锁不平衡的SNPs设定条件,筛选出1400种血液代谢物,共有34,844个符合条件SNPs的作为血液代谢物的工具变量。将34,844个SNPs进行去除弱工具变量(F检验),SNPs最小F值为19.5,最大F值为5308.4,所得结果均符合F值 > 10的要求,提示研究受弱工具变量影响的可能性较小。

3.2. MR分析

本研究采用IVW作为评估血液代谢物和中耳、鼻腔及鼻窦良性肿瘤因果关系的“金标准”,筛选得到与中耳、鼻腔及鼻窦良性肿瘤密切相关的代谢物1种,为已知代谢物棕榈油酸(16:1n-7)且呈正向关系(IVW:OR = 1.971, 95% CI: 1.392~2.789, P < 0.001),而反向MR提示中耳、鼻腔及鼻窦良性肿瘤与棕榈油酸(16:1n-7)无显著相关性(IVW:OR = 1.027, 95% CI: 0.980~1.076, P = 0.269)。如图1图2

Figure 1. Forest plot of MR analysis of the effect of metabolite palmitoleic acid (16:1n-7) on benign tumors of the middle ear, nasal cavity and paranasal sinuses

图1. MR分析森林图代谢物棕榈油酸(16:1n-7)对中耳、鼻腔及鼻窦良性肿瘤影响的森林图

Figure 2. Inverse MR Forest plot of the reverse effect of benign tumors in the middle ear, nasal cavity and paranasal sinuses on metabolite palmitoleic acid (16:1n-7)

图2. 反向MR森林图中耳、鼻腔及鼻窦良性肿瘤对代谢物棕榈油酸(16:1n-7)反向影响森林图

3.3. 结果可靠性和稳定性评估

IVW中的Cochran Q检验(Q = 15.31 P = 0.928 > 0.05)和MR-Egger回归检验(Q = 14.74 P = 0.934 > 0.05),表明研究结果不存在异质性;Egger-intercept (P = 0.456 > 0.05)结果表明不存在水平多效性;MR-PRESSO综合检验结果(P = 0.96 > 0.05),表明纳入的工具变量没有明显的异常值和或离群值,进一步增强本研究MR分析结果的可靠性和稳定性(表1);圈图结果显示,通过筛选与中耳、鼻腔及鼻窦良性肿瘤的5种研究方法(IVW、MR-Egger回归、加权中位数法、简单模型法及加权模型法)满足其一P > 0.05的血液代谢物(图3)。森林图结果显示所纳入SNPs(MR-Egger、IVW)综合效应值大于0,提示代谢物棕榈油酸(16:1n-7)是结局变量的危险因素(图4)。留一法检验分析显示代谢物棕榈油酸(16:1n-7)与中耳、鼻腔及鼻窦良性肿瘤之间的联系不是单一SNPs所主导的,在逐一排除法中未发现对因果关联估计值影响较大的SNPs (图5)。漏斗图结果显示纳入的SNPs呈对称分布,MR分析未显示多效性和异质性(图6)。散点图使用5种算法(IVW、MR-Egger回归、加权中位数法、简单模型法及加权模型法)对代谢物SNPs进行回归,表明棕榈油酸(16:1n-7)和中耳、鼻腔及鼻窦良性肿瘤具有显著的正向因果关系,所纳入研究的SNPs具有稳定性(图7)。

Table 1. Sensitivity analysis of the MR Study

表1. MR研究敏感性分析

Figure 3. Circle diagram preliminary screening of blood metabolites that meet one of the five research methods for benign tumors of the middle ear, nasal cavity and paranasal sinuses

图3. 圈图初步筛选满足与中耳、鼻腔及鼻窦良性肿瘤5种研究方法之一的血液代谢物

Figure 4. Shows the comprehensive effect forest plot of palmitoleic acid (16:1n-7) associated SNPs on benign tumors of the middle ear, nasal cavity and paranasal sinuses

图4. 表明棕榈油酸(16:1n-7)相关SNPs对中耳、鼻腔及鼻窦良性肿瘤综合效应森林图

Figure 5. Forest map of the analysis results of metabolite palmitoleic acid (16:1n-7) leave-one-out method

图5. 代谢物棕榈油酸(16:1n-7)留–法检验分析结果森林图

Figure 6. Funnel plot of Mendelian randomization analysis of palmitic acid (16:1n-7)

图6. 棕榈油酸(16:1n-7)孟德尔随机化分析漏斗图

Figure 7. Scatter plot of the risk of benign tumors in the middle ear, nasal cavity, and paranasal sinuses for the metabolite palmitoleic acid (16:1n-7).

图7. 代谢物棕榈油酸(16:1n-7)对中耳、鼻腔及鼻窦良性肿瘤风险散点图

4. 讨论

中耳、鼻腔及鼻窦良性肿瘤是临床上常见的耳鼻咽喉科疾病,尽管这些肿瘤大多数情况下是良性的,但耳、鼻作为人的感觉器官随着疾病症状的出现常伴有听力下降、耳闷耳鸣、鼻塞流涕、头面部疼痛等不适,对患者的心理和生理健康产生严重的影响 [1] 。目前,对于这些肿瘤的病因和发病机制仍未完全明确。近年来越来越的研究表明,血液代谢物的变化可能与其发生和发展有关 [23] 。Bachert等研究表明 [24] ,前列腺素D2在鼻腔鼻窦息肉的发生中高表达。因此,需要一种生物代谢标志物,对中耳、鼻腔及鼻窦良性肿瘤早期筛查和治疗至关重要。基于此本研究通过公开数据及大规模全基因组关联分析数据(GWAS),进行两样本双向孟德尔随机化分析方法探究1400种血液代谢物与三种良性肿瘤(中耳、鼻腔及鼻窦)之间因果关系。筛选出1种代谢物为棕榈油酸(16:1n-7)与本研究三种良性肿瘤存在直接因果关系,且该代谢物可能会增加中耳、鼻腔及鼻窦良性肿瘤患病风险(IVW: OR = 1.971, 95% CI: 1.392~2.789, P < 0.001),否认了中耳、鼻腔及鼻窦良性肿瘤与棕榈油酸(16:1n-7)之间的双向因果关系。

棕榈油酸是一种常见的单不饱和功能性脂肪酸。近年来,在小鼠模型和细胞系中越来越的研究证实棕榈油酸与代谢综合征(糖尿病、心血管疾病、肥胖)和炎症性疾病(克罗恩病、溃疡性结肠炎、慢性阻塞性肺病)等具有一定的预防作用,然而在人类中的作用上未完全了解,且存在着争议 [25] 。Szustak等 [26] 研究发现棕榈油酸能够过通过血液循环刺激胰岛素分泌,降低胰岛素抵抗来影响葡萄糖代谢,从而降低糖尿病发生的风险。Cavallero等 [27] 通过硬脂酰辅酶A去饱和酶1催化饱和脂肪酸形成代谢产物油酸和棕榈油酸,研究发现这两种代谢产物的升高能够降低低密度脂蛋白,降低炎性体激活和细胞器应激来预防动脉粥样硬化、心肌梗塞等心血管疾病,对血管内皮具有保护作用。研究证实,棕榈油酸能够增加安全储存部位(脂肪组织)的脂肪生成来改善循环脂质谱并改善脂肪肝疾病,减少病理性或毒性脂质储存部位(肌肉和肝脏)的脂肪生成 [28] 。其研究机制是Yang等 [29] 人以2型糖尿病小鼠为研究对象发现棕榈油酸降低了肝脂质的积累,并且能够将白色脂肪组织中脂肪细胞基因(TNF-a、抵抗素)和肝脏中脂肪生成基因(SREBP1、FAS) mRNA的表达下调。同时有研究发现,棕榈油酸能够抑制肝脏脂肪代谢关键酶–硬脂酰辅酶A去饱和酶-1,因此较高的可以预防饮食诱导的肥胖、非酒精性脂肪肝和糖耐量 [30] 。2023年Papsdorf于Nature Cell Biol发表通过秀丽隐杆线虫实验发现顺式单不饱和脂肪酸能够上调的脂滴预测剩余寿命 [31] 。但研究发现棕榈油酸同时也存在一定的消极作用,具有有丝分裂活性,能促进肿瘤细胞增殖 [23] 。李杰萍等 [32] 研究表明棕榈油酸能够通过mTOR信号通路促使癌细胞侵袭和转移,其占比升高会增加子宫内膜癌的发病风险。颜清 [33] 等在恶性胸腔积液中发现棕榈油酸较良性胸腔积液中增高。也有研究证实,棕榈油酸水平升高会导致肺癌、胰腺癌、乳腺癌及前列腺癌患病风险增加 [34] 。

目尚未有关于血液代谢物和中耳、鼻腔及鼻窦良性肿瘤之间潜在关联的研究报道。本研究通过MR分析,发现在最新研究报道1400种血液代谢物中只筛选出1中代谢物棕榈油酸与中耳、鼻腔及鼻窦良性肿瘤呈正向因果关系,即血液代谢物棕榈油酸升高能增加中耳、鼻腔及鼻窦良性肿瘤的发生风险。本研究优势在于从分子机制角度出发,以血液代谢物为暴露因素探讨代谢物与中耳、鼻腔及鼻窦良性肿瘤风险的因果关系具有坚实的理论基础和重要的临床研究价值;同时,我们采用对棕榈油酸和中耳、鼻腔及鼻窦良性肿瘤的因果关系进行双向MR分析,为两者的关系提供了基因层面的证据。

本研究也存在一定的局限性。首先,所用的1400血液代谢物和中耳、鼻腔及鼻窦良性肿瘤GWAS数据均来自欧洲人群,因此需要涉及不同种族群体的综合研究;其次,本研究仅对因果关系作出初步判断,未进一步探讨其潜在机制;最后,缺乏个体血液代谢物棕榈油酸水平数据,且无法对年龄和性别进行分层分析。

5. 结论

综上,本研究揭示了血液代谢物与中耳、鼻腔及鼻窦良性肿瘤之间的因果关系。深化对中耳、鼻腔及鼻窦良性肿瘤的理解、提高早期诊断的准确性以及开发新的治疗方法具有重要意义。在进一步的研究中,应进一步探索这些代谢物变化在本研究三种良性肿瘤发生和发展中的作用,以及它们作为潜在生物标志物的应用价值,有利于中耳、鼻腔及鼻窦良性肿瘤的早期发现和及时干预。

NOTES

*通讯作者。

参考文献

[1] Tatekawa, H., Shimono, T., Ohsawa, M., et al. (2018) Imaging Features of Benign Mass Lesions in the Nasal Cavity and Paranasal Sinuses According to the 2017 WHO Classification. Japanese Journal of Radiology, 36, 361-381.
https://doi.org/10.1007/s11604-018-0739-y
[2] 罗万洁, 张天虹. 骨吸收机制在中耳胆脂瘤中的研究进展[J]. 中华耳科学杂志, 2023, 21(5): 711-715.
[3] Luong, T.T. and Yan, C.H. (2023) Benign Paranasal Sinus Tumors. Current Otorhinolaryngology Reports, 11, 332-343.
https://doi.org/10.1007/s40136-023-00466-1
[4] Gibson, T.N., McNaughton, D.P. and Hanchard, B. (2017) Sinonasal Malignancies: Incidence and Histological Distribution in Jamaica, 1973-2007. Cancer Causes & Control, 28, 1219-1225.
https://doi.org/10.1007/s10552-017-0916-9
[5] Barnes, L. (2019) Diseases of the Nasal Cavity, Paranasal Sinuses, and Nasopharynx. In: Surgical Pathology of the Head and Neck, CRC Press, Boca Raton, 353-432.
[6] Wang, Z., Chen, S., Zhu, Q., et al. (2021) Using a Two-Sample Mendelian Randomization Method in Assessing the Causal Relationships between Human Blood Metabolites and Heart Failure. Frontiers in Cardiovascular Medicine, 8, Article ID: 695480.
https://doi.org/10.3389/fcvm.2021.695480
[7] Johnson, C.H., Ivanisevic, J. and Siuzdak, G. (2016) Metabolomics: Beyond Biomarkers and Towards Mechanisms. Nature Reviews Molecular Cell Biology, 17, 451-459.
https://doi.org/10.1038/nrm.2016.25
[8] Wang, Z. and Yang, Q. (2024) The Causal Relationship between Human Blood Metabolites and the Risk of Visceral Obesity: A Mendelian Randomization Analysis. Lipids in Health and Disease, 23, Article No. 39.
https://doi.org/10.1186/s12944-024-02035-x
[9] Yang, J., Yan, B., Zhao, B., et al. (2020) Assessing the Causal Effects of Human Serum Metabolites on 5 Major Psychiatric Disorders. Schizophrenia Bulletin, 46, 804-813.
https://doi.org/10.1093/schbul/sbz138
[10] Shin, S.Y., Fauman, E.B., Petersen, A.K., et al. (2014) An Atlas of Genetic Influences on Human Blood Metabolites. Nature Genetics, 46, 543-550.
https://doi.org/10.1038/ng.2982
[11] Chen, Y., Lu, T., Pettersson-Kymmer, U., et al. (2023) Genomic Atlas of the Plasma Metabolome Prioritizes Metabolites Implicated in Human Diseases. Nature Genetics, 55, 44-53.
https://doi.org/10.1038/s41588-022-01270-1
[12] Fu, R. and Kim, S.J. (2021) Inferring Causality from Observational Studies: The Role of Instrumental Variable Analysis. Kidney International, 99, 1303-1308.
https://doi.org/10.1016/j.kint.2021.03.018
[13] Sanderson, E., Glymour, M.M., Holmes, M.V., et al. (2022) Mendelian Randomization. Nature Reviews Methods Primers, 2, Article No. 6.
https://doi.org/10.1038/s43586-021-00092-5
[14] Burgess, S., Butterworth, A. and Thompson, S.G. (2013) Mendelian Randomization Analysis with Multiple Genetic Variants Using Summarized Data. Genetic Epidemiology, 37, 658-665.
https://doi.org/10.1002/gepi.21758
[15] Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias Detection through Egger Regression. International Journal of Epidemiology, 44, 512-525.
https://doi.org/10.1093/ije/dyv080
[16] Bowden, J., Davey Smith, G., Haycock, P.C., et al. (2016) Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genetic Epidemiology, 40, 304-314.
https://doi.org/10.1002/gepi.21965
[17] Hartwig, F.P., Davey Smith, G. and Bowden, J. (2017) Robust Inference in Summary Data Mendelian Randomization via the Zero Modal Pleiotropy Assumption. International Journal of Epidemiology, 46, 1985-1998.
https://doi.org/10.1093/ije/dyx102
[18] Yin, Y., Shan, C., Han, Q., et al. (2023) Causal Effects of Human Serum Metabolites on Occurrence and Progress Indicators of Chronic Kidney Disease: A Two-Sample Mendelian Randomization Study. Frontiers in Nutrition, 10, Article ID: 1274078.
https://doi.org/10.3389/fnut.2023.1274078
[19] 王子贤, 赖伟华, 钟诗龙. 两样本孟德尔随机化方法分析血液代谢物与冠心病的因果关系[J]. 南方医科大学学报, 2021, 41(2): 272-278.
[20] Luo, P., Yuan, Q., Wan, X., et al. (2023) A Two-Sample Mendelian Randomization Study of Circulating Lipids and Deep Venous Thrombosis. Scientific Reports, 13, Article No. 7432.
https://doi.org/10.1038/s41598-023-34726-3
[21] 魏熙翔, 杨晖, 尹雪, 等. 基于双样本孟德尔随机化的特应性皮炎与圆锥角膜因果关系研究[J]. 中华眼视光学与视觉科学杂志, 2023, 25(11): 860-865.
https://doi.org/10.3760/cma.j.cn115909-20230601-00181
[22] Xu, W., Zhang, F., Shi, Y., et al. (2022) Causal Association of Epigenetic Aging and COVID-19 Severity and Susceptibility: A Bidirectional Mendelian Randomization Study. Frontiers in Medicine, 9, Article ID: 989950.
https://doi.org/10.3389/fmed.2022.989950
[23] Cyriac, R. and Lee, K. (2024) Glutaminase Inhibition as Potential Cancer Therapeutics: Current Status and Future Applications. Journal of Enzyme Inhibition and Medicinal Chemistry, 39, Article ID: 2290911.
https://doi.org/10.1080/14756366.2023.2290911
[24] Bachert, C., Hörmann, K., Mösges, R., et al. (2003) An Update on the Diagnosis and Treatment of Sinusitis and Nasal Polyposis. Allergy, 58, 176-191.
https://doi.org/10.1034/j.1398-9995.2003.02172.x
[25] Bermúdez, M.A., Pereira, L., Fraile, C., et al. (2022) Roles of Palmitoleic Acid and Its Positional Isomers, Hypogeic and Sapienic Acids, in Inflammation, Metabolic Diseases and Cancer. Cells, 11, Article No. 2146.
https://doi.org/10.3390/cells11142146
[26] Szustak, M., Korkus, E., Madaj, R., et al. (2024) Lysophosphatidylcholines Enriched with Cis and Trans Palmitoleic Acid Regulate Insulin Secretion via GPR119 Receptor. ACS Medicinal Chemistry Letters, 15, 197-204.
https://doi.org/10.1021/acsmedchemlett.3c00263
[27] Cavallero, S., Roustaei, M., Satta, S., et al. (2024) Exercise Mitigates Flow Recirculation and Activates Metabolic Transducer SCD1 to Catalyze Vascular Protective Metabolites. Science Advances, 10, Eadj7481.
https://doi.org/10.1126/sciadv.adj7481
[28] Cetin, E., Porter, L.M. and Burak, M.F. (2024) Protocol for a Randomized Placebo-Controlled Clinical Trial Using Pure Palmitoleic Acid to Ameliorate Insulin Resistance and Lipogenesis in Overweight and Obese Subjects with Prediabetes. Frontiers in Endocrinology, 14, Article ID: 1306528.
https://doi.org/10.3389/fendo.2023.1306528
[29] Yang, Z.H., Takeo, J. and Katayama, M. (2013) Oral Administration of Omega-7 Palmitoleic Acid Induces Satiety and the Release of Appetite-Related Hormones in Male Rats. Appetite, 65, 1-7.
https://doi.org/10.1016/j.appet.2013.01.009
[30] Matthan, N.R., Dillard, A., Lecker, J.L., et al. (2009) Effects of Dietary Palmitoleic Acid on Plasma Lipoprotein Profile and Aortic Cholesterol Accumulation Are Similar to Those of Other Unsaturated Fatty Acids in the F1B Golden Syrian Hamster. The Journal of Nutrition, 139, 215-221.
https://doi.org/10.3945/jn.108.099804
[31] Papsdorf, K., Miklas, J.W., Hosseini, A., et al. (2023) Lipid Droplets and Peroxisomes Are Co-Regulated to Drive Lifespan Extension in Response to Mono-Unsaturated Fatty Acids. Nature Cell Biology, 25, 672-684.
https://doi.org/10.1038/s41556-023-01136-6
[32] 李杰萍, 邹建平, 江絮萍, 等. 子宫内膜癌患者外周血红细胞膜脂肪酸组分变化及其与发病风险的关系[J]. 山东医药, 2023, 63(35): 5-9.
[33] 颜清, 杨紫伟, 戴锦娜. 游离单不饱和脂肪酸对胸腔积液良恶性的鉴别诊断[J]. 中华实用诊断与治疗杂志, 2018, 32(8): 751-754.
https://doi.org/10.13507/j.issn.1674-3474.2018.08.007
[34] Snaebjornsson, M.T., Janaki-Raman, S. and Schulze, A. (2020) Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer. Cell Metabolism, 31, 62-76.
https://doi.org/10.1016/j.cmet.2019.11.010