锰铈钛纳米管复合催化剂低温SCR活性和抗SO2性能研究
Research on Low-Temperature SCR Activity and SO2 Resistance Performance of Manganese-Cerium-Titanium Nanotube Composite Catalysts
摘要: 本文采用溶胶凝胶法水热法相结合的方法制备TiO2纳米管(TiNTs)为载体MnOx-CeO2为活性组分的MnOx-CeO2/TiNTs催化剂(记作MnCe/TiNTs)用于NH3-SCR反应。结果表明,水热温度为150℃、水热时间为24 h是MnCe/TiNTs催化剂水热阶段的最佳工况。MnCe/TiNTs催化剂具有优异的低温活性和较宽的温度窗口,在150~350℃范围内NO脱除效率达95%以上。一方面,归因于TiNTs的大比表面积能促进催化剂活性组分在其内外壁面高度分散,提高催化剂氧化还原能力;另一方面,TiNTs的量子尺寸效应能使催化剂活性组分中更多原子由晶相内部暴露于表面,增加催化剂表面活性位点;此外,TiNTs的毛细作用能使反应物分子进入其管道内部,增强催化剂对反应物的捕获能力,促进NH3-SCR反应。
Abstract: In this paper, MnOx-CeO2/TiNTs catalysts (denoted as MnCe/TiNTs) with TiO2 nanotubes (TiNTs) as the carrier and MnOx-CeO2 as the active component were prepared by a combination of the sol-gel method and the hydrothermal method for the NH3-SCR reaction. The results showed that the MnCe/TiNTs catalysts with a hydrothermal temperature of 150 ˚C and a hydrothermal time of 24 h exhibited the best low-temperature catalytic activity and resistance to sulfur poisoning. The NO removal efficiency was above 95% in the temperature range of 150~350 °C. This is mainly attributed to the more significant enhancement of the low-temperature activity of the catalyst by TiNTs as a carrier. On the one hand, the large specific surface area of TiNTs can promote the high dispersion of catalyst active components on its inner and outer wall surfaces, which improves the redox ability of the catalyst; On the other hand, the quantum size effect of TiNTs can make more atoms in the catalyst active components exposed on the surface from the inside of the crystalline phase, which increases the active sites on the surface of the catalyst; In addition, the capillarity of TiNTs can make it easy for the reactant molecules to enter into its tubular channels, which this enhances the catalyst’s ability to capture the reactants and accelerates the catalytic reaction rate.
文章引用:刘峰, 王秋麟, 黄升俞, 刘占鑫, 项锐. 锰铈钛纳米管复合催化剂低温SCR活性和抗SO2性能研究[J]. 物理化学进展, 2024, 13(2): 200-209. https://doi.org/10.12677/japc.2024.132024

1. 介绍

氮氧化物(NOx)是化石能源燃烧产生的重要污染物之一,它会引起一系列环境污染问题,例如酸雨、光化学烟雾、臭氧层破坏等 [1] 。以NH3为还原剂的选择性催化还原技术(即NH3-SCR),已被证明是目前最行之有效的烟气脱硝技术。商用V2O5-WO3/TiO2催化剂活性温度窗口较窄(300~400˚C) [2] [3] 。为避免催化剂腐蚀及磨损,催化装置常被布置于脱硫及除尘之后,此处烟温仅为150~170℃,因此需对烟气进行加热以保证较高的脱硝效率。该方法需增设加热设备又消耗额外能量。此外,金属钒具有生物毒性,废弃钒基催化剂被我国列为危废,其后续处理仍是难题 [4] 。因此,研制环境友好且具有高低温活性的非钒基催化剂具有巨大经济效益和广阔应用前景。

锰氧化物(MnOx)价格低廉且环境友好,在低温脱硝 [5] 、挥发性有机污染物(VOCs) [6] 和持久性有机污染物(POPs) [7] 氧化分解等方面均表现出优异的低温活性,是低温催化剂的研究热点。然而,MnOx对烟气中酸性气体(如SO2和HCl)较为敏感,易被硫化而中毒。金属掺杂是提高MnOx抗SO2中毒性能有效手段之一 [8] 。氧化铈(CeO2)由于具有优异储氧/释氧能力常被选为SCR催化剂的促进剂或活性组分 [9] 。MnOx与CeO2结合形成MnOx-CeO2复合催化剂,能将两者的氧化还原循环耦合,加快催化剂内部金属原子高低价态转变速率,进而提高催化剂整体性能 [10] 。课题组前期研究发现MnOx-CeO2催化剂中CeO2作为牺牲剂,优先与SO2相互作用,从而避免活性中心金属原子Mn被硫酸化 [9] 。

此外,载体对催化剂低温活性和抗中毒性能的优化调控作用不容忽视。相较于TiO2纳米颗粒,TiNTs作为载体对催化剂低温活性具有更显著的提升作用 [11] [12] [13] 。前期研究 [14] 发现,MnOx-CeO2/TiNTs催化剂活性温度窗口显著拓宽,在150~400℃温度范围内脱硝效率均维持在80~100%;而MnOx-CeO2/TiO2催化剂仅在200~250℃温度区间脱硝效率保持在90%左右,400℃时脱硝效率仅有20%不到。

溶胶凝胶法能够进一步加强活性组分与载体的相互作用,促进活性组分在载体表面高度分散且形成更多无定形的MnCeOx固溶体,从而达到提高低温催化活性的目的 [15] [16] 。本文创新性地先采用溶胶凝胶法制备MnCe/TiO2样品,再将其在水热环境中卷曲成具有纳米中空管状结构的MnCe/TiNTs催化剂,以进一步提高催化剂低温活性及抗硫中毒性能;研究了水热时间以及水热温度对MnCe/TiNTs催化剂脱硝活性影响,并对MnCe/TiNTs催化剂的抗硫性能进行评价。

2. 材料和方法

2.1. 催化剂制备与表征

本文先用溶胶凝胶法制备MnCe/TiO2样品,再在不同水热工况下将其卷曲成纳米管状的MnCe/TiNTs催化剂。首先,以硝酸锰(1.34 g)、六水合硝酸铈(0.27 g)、钛酸正丁酯(0.2 mol)为前驱体,采用溶胶凝胶法 [5] 制成MnCe/Ti样品;随后,将该MnCe/Ti样品与10 mol/L NaOH溶液超声混合;然后,将该混合物移入高压水热反应釜150℃条件下反应24 h后冷却至室温,再用去离子水洗涤;之后,在0.1 mol/L HCl溶液中室温陈化12 h,再用去离子水洗涤至中性;接着,将样品在100℃下干燥12 h后研磨过筛(40~60目);最后,在400℃空气中煅烧2.5 h得到MnCe/TiNTs150-24催化剂。改变水热温度和水热时间得到一系列MnCe/TiNTs催化剂如表1所示。X射线衍射(XRD)、透射扫描电镜(TEM)、比表面积及孔容孔径测试(BET)、NH3-程序升温脱附(NH3-TPD)、H2-程序升温还原(H2-TPR)、热重差式扫描热量法(TG-DSG)、X射线光电子能谱(XPS)等手段被用于表征催化剂物理化学性质。

Table 1. Catalyst labeling and preparation conditions

表1. 催化剂标记与制备工况

2.2. 催化剂活性测试

催化剂性能测试在石英管反应器(内径 × 长度 = 10 mm × 500 mm)内进行。固定有2.5 g的催化剂粉末置于石英管反应器内并由管式炉加热,反应温度控制在150~400℃内。模拟烟气由NO (500 ppm)、NH3 (500 ppm)、O2 (11 vol.%)、SO2 (50~200 ppm)和N2组成,总气体流量由质量流量控制计控制在1000 ml/min,空速为30,000 h−1。每组测试均在各项参数稳定1 h后进行,并进行重复实验以确保数据可靠性。NO的进口浓度(NOin)和出口浓度(NOout)由烟气分析仪(德国MRU公司,Delta 2000CD-IV)测得,NO转化率定义为

NO ( % ) = ( NO in NO out ) / NO in × 100 % (1)

3. 结果和讨论

3.1. 催化剂制备参数优化及其脱硝活性评价

目前普遍认为水热法制备TiNTs的原理为颗粒状纳米TiO2与NaOH浓溶液在高温高压下相互作用先形成钛酸盐纳米片;纳米片在水热条件下卷曲成纳米短管;纳米短管再通过溶解–再沉淀机理(dissolution-reprecipitation mechanism)逐渐生长成形貌完整的长纳米管 [17] [18] 。如图1(a)所示,当水热时间由24 h缩短至16 h或延长至32 h,150℃时MnCe/TiNTs催化剂脱硝效率由98%下降至80%和50%;同时,催化剂活性温度窗口明显变窄。该现象的原因可解释为:水热时间过短时,MnCe/TiO2纳米颗粒与浓NaOH溶液反应停留于纳米片阶段,还未卷曲成具有纳米管状的MnCe/TiNTs催化剂;水热时间过长时,MnCe/TiNTs催化剂过度生长而发生团聚和破裂,甚至向纳米线或纳米带转变 [19] 。MnCe/TiNTs150-32催化剂脱硝活性比MnCe/TiNTs150-16催化剂更低,表明水热时间过长对催化剂微观结构的破坏作用更严重。水热温度也是影响MnCe/TiNTs成品微观结构的重要因素之一。根据图1(b),水热反应最佳温度为150℃,水热温度进一步降低(130℃)或升高(180℃)均会导致催化剂脱硝活性下降。这可能是由于水热温度过低,MnCe/Ti混合晶体与NaOH溶液反应不充分,致使MnCe/TiNTs生长不完全,仍主要以纳米残片或纳米颗粒等中间产物形式存在;而继续升高水热温度,则使MnCe/TiNTs过度生长,加剧纳米管破裂及团聚,形成较多短管甚至纳米棒或纳米线结构 [20] 。上述实验结果与我们前期由P25 TiO2制备TiNTs获得的最佳条件类似 [14] 。但本文所采用的制备方法中最佳水热温度由130℃升高至150℃。这可能归因于溶胶凝胶法先将Mn和Ce原子与TiO2相融合,使其成管难度增大,需要更高温度来驱动水热成管反应。基于上述筛选研究,本文选择脱硝活性最佳的MnCe/TiNTs150-24 (后续简写成MnCe/TiNTs)进行抗硫中毒特性测试和催化剂表征。

Figure 1. Effect of hydrothermal time (a) and thermal temperature (b) on denitrification activity of MnCe/TiNTs catalysts

图1. 水热时间(a)和热温度(b)对MnCe/TiNTs催化剂脱硝活性影响

3.2. 催化剂抗硫中毒性能对比研究

酸性气体SO2对NH3-SCR脱硝反应有负面影响,表现在 [21] :(1) SO2会与NH3、NO竞争催化剂表面吸附位;(2) SO2与NH3发生反应消耗了还原剂,同时在催化剂表面形成硫酸铵或硫酸氢铵,覆盖活性中心,堵塞催化剂孔道;(3)催化剂表面活性组分被硫酸化形成活性极低的金属硫酸盐,导致催化剂失活。如图2所示,在150℃条件下通入50 ppm SO2,MnCe/TiNTs和MnCe/TiO2催化剂脱硝活性几乎不受影响,脱硝效率可稳定在98%左右。升高SO2浓度至100 ppm时,MnCe/TiO2催化剂脱硝效率从97%下降至84%,而MnCe/TiNTs催化剂脱硝效率仍能维持在95%。这归因于TiNTs拥有的大比表面积能促进活性组分在催化剂表面高度分散,暴露更多的Ce原子,有效避免活性Mn物种硫酸化;同时缓解了SO2与反应物之间的竞争吸附并减少了硫酸铵或硫酸氢铵的沉积 [14] 。进一步将SO2浓度提升至200 ppm时,MnCe/TiO2催化剂脱硝效率从84%下降至45%,而MnCe/TiNTs催化剂的脱硝效率仅从95%下降至70%左右。关闭SO2,MnCe/TiO2催化剂脱硝效率进一步下降,而MnCe/TiNTs催化剂脱硝活性则能恢复至85%左右,表明TiNTs可缓解SO2引起的不可逆失活。这可能归因于TiNTs表面丰富的OH基团与SO2相互作用,在一定程度上阻碍了SO2对催化剂表面活性组分的毒害。

Figure 2. Sulfur resistance curves of MnCe/TiO2 and MnCe/TiNTs catalysts

图2. MnCe/TiO2和MnCe/TiNTs催化剂抗硫性能曲线

3.3. 催化剂表征分析

3.3.1. XRD和BET分析

Figure 3. XRD patterns of MnCe/TiO2 and MnCe/TiNTs catalysts

图3. MnCe/TiO2和MnCe/TiNTs催化剂的XRD图

对MnCe/TiO2和MnCe/TiNTs催化剂进行XRD表征分析,结果如图3所示。MnCe/TiO2催化剂中TiO2晶相结构主要以锐钛矿型(PDF#21-1272)为主。位于37.1˚和55.1˚处的衍射峰分别归属于MnO2(100)晶面(PDF#30-0820)和Mn2O3(440)晶面(PDF#41-1422) [5] 。对于MnCe/TiNTs催化剂,TiNTs主要以偏钛酸(H2Ti3O7)结构存在,且归属于H2Ti3O7的衍射峰强度较弱。这可能是由于本文所采用的制备方法,使Mn原子和Ce原子充分融入TiNTs晶体结构中,导致TiNTs偏钛酸结构发生畸变。另外,MnCe/TiNTs催化剂中归属于MnO2和Mn2O3的衍射峰变弱,这是由于TiNTs独特的中空管状结构和大比表面积促进活性组分在催化剂表面高度分散所致。根据表2,MnCe/TiNTs催化剂拥有更大的比表面积(165.5 m2/g)和总孔容(0.33 cm2/g),表明TiNTs作为载体能提高催化剂比表面积并丰富孔结构。

Table 2. MnCe/TiO2和MnCe/TiNTs催化剂比表面积和孔结构信息

表2. Specific surface area and pore structure information of MnCe/TiO2 and MnCe/TiNTs catalysts

注:a由N2吸附脱附测得。

3.3.2. TEM分析

MnCe/TiO2和MnCe/TiNTs催化剂的TEM图如图4所示。结果显示,本文制备所得的MnCe/TiNTs催化剂,其外径为10~20 nm、壁厚为3~4 nm、管长在300~500 nm范围内。同时,观察到H2Ti3O7(110)晶面(晶面间距为0.36 nm)和Mn2O3(220)晶面(晶面间距为0.27 nm)相互重叠,表明Mn原子与载体TiNTs高度融合。而MnCe/TiO2催化剂主要呈颗粒状,粒径在10~20 nm之间。锐钛矿型TiO2(101)晶面(晶面间距为0.35 nm)与MnO2(100)晶面(晶面间距为0.24 nm)重叠,表明MnOx成功负载在TiO2表面。然而,图中并未检测到CeO2晶体,这可能是由于CeO2含量较少或与MnOx物种结合导致难以被检测到 [14] 。

Figure 4. TEM images of MnCe/TiO2 and MnCe/TiNTs catalysts

图4. MnCe/TiO2和MnCe/TiNTs催化剂的TEM图

3.3.3. NH3-TPD和H2-TPR分析

催化剂表面酸性位数量和强度是影响催化剂活性的重要因素。如图5(a)所示,位于200℃左右和400℃左右处的峰分别归因于NH3从弱酸性位和中强酸上的脱附。通常地,弱酸性位和强酸性位被认为是Brønsted酸性位和Lewis酸性位。相比于MnCe/TiO2催化剂,MnCe/TiNTs催化剂表面Brønsted酸性位和Lewis酸性位对应峰面积均变大,表明TiNTs作为载体能丰富催化剂表面酸性位数量。一方面归因于TiNTs具有大比表面积能促进催化剂活性组分在其内外壁面高度分散,从而增加了催化剂表面酸性位;另一方面归因于TiNTs表面拥有丰富的OH基团可作为Brønsted酸性位。

MnCe/TiNTs和MnCe/TiO2催化剂的H2-TPR谱图如图5(b)所示。对于MnCe/TiO2催化剂,在100-750℃范围内出现两个还原峰,分别对应于Mn4+到Mn3+以及Mn3+到Mn2+的还原 [5] 。图中未检测到Ce4+到Ce3+的单独还原峰,可能归因于MnCeOx固溶体的形成导致Mn4+到Mn3+的还原峰与Ce4+到Ce3+的还原峰发生重叠 [22] 。MnCe/TiNTs催化剂还原峰向高温区偏移,与本课题组前期研究结果类似 [14] 。该现象的出现归因于MnCe/TiNTs催化剂表面活性氧物种与TiNTs载体相互作用更为牢固,难以被提供与H2发生氧化反应 [23] 。正是由于TiNTs作为载体对催化剂氧化还原能力的适当调控,缓解了催化剂对NH3的过度氧化,从而拓宽了催化剂脱硝活性温度窗口。

Figure 5. NH3-TPD (a) and H2-TPR (b) curves of MnCe/TiO2 and MnCe/TiNTs catalysts

图5. MnCe/TiO2和MnCe/TiNTs催化剂的NH3-TPD (a)和H2-TPR (b)曲线

3.3.4. XPS分析

MnCe/TiO2和MnCe/TiNTs催化剂的XPS结果如图6所示。Mn 2p图谱中,位于652.2 eV (或640.7 eV)、653.5 eV (或642.1 eV)和655.3 eV (或645.5 eV)处的去卷积峰,分别对应于Mn2+、Mn3+、Mn4+。Ce 3d图谱中,位于904.7 eV和885.7 eV处的特征峰对应于Ce3+特征峰,其余则归属于Ce4+ [9] 。催化剂中Mn4+和Ce3+相对含量越高,低温活性越强 [24] 。MnCe/TiNTs催化剂表面Mn4+ (30.8%)和Ce3+ (27.3%)含量要高于MnCe/TiO2催化剂Mn4+ (26.0%)和Ce3+ (21.7%)。这主要归因于TiNTs具有独特的中空管状结构及更大的比表面积,促进了活性组分在其内外壁面的高度分散,从而增强了活性组分和载体之间的电子转移。

O 1s图谱中位于531.5 eV和530.0 eV处的峰,分别对应于化学吸附氧(Oα)和表面晶格氧(Oβ)。其中,Oα移动性强,与催化剂表面金属原子之间相互作用弱,更易参与氧化还原反应 [25] 。因此,Oα/(Oα + Oβ)是反映催化剂活性的重要指标之一。MnCe/TiNTs催化剂表面Oα占比(27.5%)要高于MnCe/TiO2催化剂(22.4%),同时Oβ峰向更高的结合能移动。该结果表明TiNTs作为载体可提高催化剂储氧能力及表面晶格氧移动性 [14] 。进一步表明MnCe/TiNTs催化剂的H2-TPR曲线中还原峰向高温区偏移,可能归因于TiNTs管内氧物种移动性较低。

(a) (b) (c)

Figure 6. Mn 2p (a) Ce 3d (b) O 1s (c) XPS curves for MnCe/TiO2 and MnCe/TiNTs catalysts

图6. MnCe/TiO2和MnCe/TiNTs催化剂的Mn 2p (a) Ce 3d (b) O 1s (c) XPS曲线

4. 结论

本文先采用溶胶凝胶法制备颗粒状MnCe/TiO2样品,再通过水热法制备具有纳米管状结构的MnCe/TiNTs催化剂用于NH3-SCR脱硝反应。结果发现,150℃水热条件下处理24 h是将MnCe/TiO2制成MnCe/TiNTs催化剂的最佳水热工况。MnCe/TiNTs催化剂具有优异的低温脱硝活性及较宽的活性温度窗口,在150~350℃范围内脱硝效率维持在95%以上。此外,TiNTs作为载体显著缓解了SO2所引起的不可逆失活并增强了催化剂抗硫性能。TiNTs对催化剂性能提升作用,主要归因于其独特的中空管状结构、大比表面积和丰富的表面OH基团,增强了催化剂捕获反应物能力以及对催化剂氧化还原能力的适当调控。

参考文献

[1] Li, J., Chang, H., Ma, L., et al. (2011) Low-Temperature Selective Catalytic Reduction of NOx with NH3 over Metal Oxide and Zeolite Catalysts—A Review. Catalysis Today, 175, 147-156.
https://doi.org/10.1016/j.cattod.2011.03.034
[2] Zengel, D., Stehle, M., Deutschmann, O., et al. (2021) Impact of Gas Phase Reactions and Catalyst Poisons on the NH3-SCR Activity of a V2O5-WO3/TiO2 Catalyst at Pre-Turbine Position. Applied Catalysis B: Environmental, 288, Article ID: 119991.
https://doi.org/10.1016/j.apcatb.2021.119991
[3] Yates, M., Martín, J.A., Martín-Luengo, M.Á., Suárez, S., Blanco, J., et al. (2005) N2O Formation in the Ammonia Oxidation and in the SCR Process with V2O5-WO3 Catalysts. Catalysis Today, 107-108, 120-125.
https://doi.org/10.1016/j.cattod.2005.07.015
[4] Li, Y., Cheng, H., Li, D., et al. (2008) ChemInform Abstract: WO3/CeO2-ZrO2, a Promising Catalyst for Selective Catalytic Reduction (SCR) of NOx with NH3 in Diesel Exhaust. ChemInform, 39, 1470-1472.
https://doi.org/10.1002/chin.200825015
[5] Lin, F., Wang, Q., Zhang, J., et al. (2019) Mechanism and Kinetics Study on Low-Temperature NH3-SCR over Manganese-Cerium Composite Oxide Catalysts. Industrial & Engineering Chemistry Research, 58, 22763-22770.
https://doi.org/10.1021/acs.iecr.9b04780
[6] Jia, H., Xing, Y., Zhang, L., et al. (2023) Progress of Catalytic Oxidation of Typical Chlorinated Volatile Organic Compounds (CVOCs): A Review. Science of the Total Environment, 865, Article ID: 161063.
https://doi.org/10.1016/j.scitotenv.2022.161063
[7] Luo, Y.J., Lin, D.F., Zheng, Y.B., Feng, X.S., et al. (2015) MnO2 Nanoparticles Encapsuled in Spheres of Ce-Mn Solid Solution: Efficient Catalyst and Good Water Tolerance for Low-Temperature Toluene Oxidation. Applied Surface Science, 504, Article ID: 144481.
https://doi.org/10.1016/j.apsusc.2019.144481
[8] Qiu, L., Pang, D., Zhang, C., et al. (2015) In Situ IR Studies of Co and Ce Doped Mn/TiO2 Catalyst for Low-Temperature Selective Catalytic Reduction of NO with NH3. Applied Surface Science, 357, 189-196.
https://doi.org/10.1016/j.apsusc.2015.08.259
[9] Wang, Q., Zhou, J., Zhang, J., et al. (2020) Effect of Ceria Doping on the Catalytic Activity and SO2 Resistance of MnOx/TiO2 Catalysts for the Selective Catalytic Reduction of NO with NH3 at Low Temperatures. Taiwan Association for Aerosol Research, 20, 477-488.
https://doi.org/10.4209/aaqr.2019.10.0546
[10] Wu, Z., Jin, R., Wang, H., et al. (2009) Effect of Ceria Doping on SO2 Resistance of Mn/TiO2 for Selective Catalytic Reduction of NO with NH3 at Low Temperature. Catalysis Communications, 10, 935-939.
https://doi.org/10.1016/j.catcom.2008.12.032
[11] Nam, K.B., Kwon, D.W., Hong, S.C., et al. (2017) DRIFT Study on Promotion Effects of Tungsten-Modified Mn/Ce/Ti Catalysts for the SCR Reaction at Low-Temperature. Applied Catalysis A, 542, 55-62.
https://doi.org/10.1016/j.apcata.2017.05.017
[12] Wang, P., Wang, H., Chen, X., et al. (2014) Novel SCR Catalyst with Superior Alkaline Resistance Performance: Enhanced Self-Protection Originated from Modifying Protonated Titanate Nanotubes. Journal of Materials Chemistry A, 3, 680-690.
https://doi.org/10.1039/C4TA03519D
[13] Xiong, L., Zhong, Q., Chen, Q., Zhang, S., et al. (2013) TIO2 Nanotube-Supported V2O5 Catalysts for Selective NO Reduction by NH3. Korean Journal of Chemical Engineering, 30, 836-841.
https://doi.org/10.1007/s11814-013-0008-9
[14] Jiang, Z.P., Wang, Q.L., Cai, Y.Z., et al. (2022) Enhanced Catalytic Activity and SO2/H2O Tolerance for Selective Catalytic Reduction of NOx with NH3 over Titanate Nanotubes Supported MnOx-CeO2 Catalyst at Low Temperature. Catalysis Surveys from Asia, 26, 161-173.
https://doi.org/10.1007/s10563-022-09356-w
[15] Xing, Y., Hong, C., Cheng, B., Zhang, K., et al. (2013) Preparation of Mn-Based Selective Catalytic Reduction Catalysts by Three Methods and Optimization of Process Conditions. PLOS ONE, 8, e73237.
https://doi.org/10.1371/journal.pone.0073237
[16] Sun, J.X., Chen, H., Wu, H., Zhou, C.S., Yang, H.M., et al. (2019) Enhanced Low-Temperature Selective Catalytic Reduction (SCR) of NOx by CuO-CeO2-MnOx/γ-Al2O3 Mixed Oxide Catalysts. Canadian Journal of Chemical Engineering, 97, 2498-2504.
https://doi.org/10.1002/cjce.23483
[17] Weng, L.Q., Song, S.H., Hodgson, S., et al. (2006) Synthesis and Characterisation of Nanotubular Titanates and Titania. Journal of the European Ceramic Society, 26, 1405-1409.
https://doi.org/10.1016/j.jeurceramsoc.2005.01.058
[18] Liu, P.R., Zhang, H.M., Liu, H.W., et al. (2011) A Facile Vapor-Phase Hydrothermal Method for Direct Growth of Titanate Nanotubes on a Titanium Substrate via a Distinctive Nanosheet Roll-Up Mechanism. Journal of the American Chemical Society, 133, 19032-19035.
https://doi.org/10.1021/ja207530e
[19] Seo, H.K., Kim, G.S., Ansari, S.G., et al. (2008) A Study on the Structure/Phase Transformation of Titanate Nanotubes Synthesized at Various Hydrothermal Temperatures. Solar Energy Materials & Solar Cells, 92, 1533-1539.
https://doi.org/10.1016/j.solmat.2008.06.019
[20] Ma, Y.T., Lin, Y., Xiao, X.R., et al. (2006) Sonication-Hydrothermal Combination Technique for the Synthesis of Titanate Nanotubes from Commercially Available Precursors. Materials Research Bulletin, 41, 237-243.
https://doi.org/10.1016/j.materresbull.2005.08.020
[21] Xu, G., Guo, X., Cheng, X., et al. (2021) A Review of Mn-Based Catalysts for Low-Temperature NH3-SCR: NOx Removal and H2O/SO2 Resistance. Nanoscale, 13, 7052-7080.
https://doi.org/10.1039/D1NR00248A
[22] Fan, X., Qiu, F., Yang, H., Wei, T., Zhang, X., et al. (2011) Selective Catalytic Reduction of NOx with Ammonia over Mn-Ce-Ox/TiO2-Carbon Nanotube Composites. Catalysis Communications, 12, 1298-1301.
https://doi.org/10.1016/j.catcom.2011.05.011
[23] Chen, X.B., Wang, P.L., Fang, P., et al. (2017) Tuning the Property of Mn-Ce Composite Oxides by Titanate Nanotubes to Improve the Activity, Selectivity and SO2/H2O Tolerance in Middle Temperature NH3-SCR Reaction. Fuel Processing Technology, 167, 221-228.
https://doi.org/10.1016/j.fuproc.2017.07.018
[24] Wang, Z., Jiao, M., Chen, Z., et al. (2021) Effects of Montmorillonite and Anatase TiO2 Support on CeO2 Catalysts during NH3-SCR Reaction. Microporous and Mesoporous Materials, 320, Article ID: 111072.
https://doi.org/10.1016/j.micromeso.2021.111072
[25] Zhang, J., Li, Y., Wang, L., Zhang, C., He, H., et al. (2015) Catalytic Oxidation of Formaldehyde over Manganese Oxides with Different Crystal Structures. Catalysis Science & Technology, 5, 2305-2313.
https://doi.org/10.1039/C4CY01461H