肠–脑轴在溃疡性结肠炎中的研究进展
Advances in the Study of the Gut-Brain Axis in Ulcerative Colitis
DOI: 10.12677/acm.2024.1451719, PDF, HTML, XML, 下载: 36  浏览: 57 
作者: 艾 静:内蒙古医科大学第一临床医学院,内蒙古 呼和浩特;陈 平*:内蒙古医科大学附属医院消化内科,内蒙古 呼和浩特
关键词: 炎症性肠病肠–脑轴肠道微生物群治疗Inflammatory Bowel Disease Gut-Brain Axis Gut Microbiota Treatment
摘要: 炎症性肠病(inflammatory bowel disease, IBD)是一种以肠道持续的慢性炎症和周期性发作为特征的复杂疾病,尽管相关研究越来越多,但其详细的发病机制至今仍未阐明。近年来,肠–脑轴在IBD发病机制中的作用受到了广泛的关注,肠–脑轴是指由中枢神经系统和肠道构成的双向通信系统,对于维持健康具有重要的意义。研究表明,IBD患者肠道微生物组及其代谢产物水平的改变可能通过影响肠道免疫反应和屏障功能,进一步对中枢神经系统产生作用,参与调节患者的情绪和行为模式,而情绪作为IBD重要的触发因素,一定程度的情绪变化可能通过激活下丘脑–垂体–肾上腺轴(HPA轴)和自主神经系统,加剧结肠的炎症,因此通过调节肠道菌群平衡或采取心理干预措施可能改善IBD的临床症状。本文就肠–脑轴在IBD中作用及其研究进展作一综述。
Abstract: Inflammatory bowel disease (IBD) is a complex disease characterized by persistent chronic inflammation and periodic flare-ups in the intestinal tract, and its detailed pathogenesis has not been elucidated so far, despite an increasing number of related studies. In recent years, the role of the gut-brain axis in the pathogenesis of IBD has received widespread attention. The gut-brain axis refers to a bidirectional communication system consisting of the central nervous system and the gut, which is important for maintaining health. Research has shown that changes in the levels of the gut microbiome and its metabolites in IBD patients may, through affecting intestinal immune response and barrier function, further influence the central nervous system and participate in regulating the mood and behavioral patterns of patients. Emotions, as an important trigger for IBD, and a certain degree of emotional changes may exacerbate inflammation in the colon by activating the hypothalamo-pituitary-adrenal axis (HPA axis) and the autonomic nervous system. Therefore, regulating the balance of intestinal flora or taking psychological intervention measures may help improve the clinical symptoms of IBD. This article summarizes the role of the gut-brain axis in IBD and its research progress.
文章引用:艾静, 陈平. 肠–脑轴在溃疡性结肠炎中的研究进展[J]. 临床医学进展, 2024, 14(5): 2552-2556. https://doi.org/10.12677/acm.2024.1451719

1. 前言

炎症性肠病(inflammatory bowel disease, IBD)是一种以免疫异常介导的慢性炎症为特征的疾病,其病因尚不明确 [1] 。随着全球城市化和生活水平的提高,UC的发病率、患病率呈增长趋势,这可能与生活方式、饮食习惯以及环境因素的改变有关,此外,儿童的发病率也逐年升高,对社会造成了一定的负担,引起了广泛的关注 [2] [3] [4] 。现临床上主要通过使用氨基水杨酸类药物、皮质类固醇类、非甾体抗炎药以及生物制剂等药物控制炎症、缓解症状、维持缓解状态,但其昂贵且可能出现副作用,使其可能并不适用于所有患者 [5] 。因此,基于目前的形势,开发更好的补充和替代治疗手段尤为重要。

2. 肠–脑轴的基本概念

肠–脑轴是指一个高度复杂的由胃肠道和中枢神经系统(central nervous system, CNS)构成的双向通讯系统 [6] 。CNS包括大脑和脊髓,通过下丘脑–垂体–肾上腺(HAP)轴和自主神经系统与肠道神经系统进行通信,从而精细调控肠道的各种功能,如肠道的运动、分泌和免疫反应 [7] 。胃肠道因拥有大约2亿到5亿个神经元和神经胶质细胞而被称为人体的“第二个大脑”,这些细胞构成了肠道神经系统(enteric nervous system, ENS),它们在肠道内独立地或者与CNS协同工作,影响着消化系统的整体功能 [8] 。此外,肠道内存在3.8*1013个细菌,以及病毒、真菌等其他微生物群,这对维持宿主整体的生态平衡起着至关重要的作用 [6] ,进一步研究发现肠道微生物不仅在局部发挥作用,还能通过神经传入回路、黏膜免疫反应或者直接作用于大脑,从而调节焦虑、抑郁、认知和疼痛等生理和心理状态,因此,肠–脑轴这一概念已经逐渐衍生为包括肠道微生物在内的微生物–肠–脑轴 [6] [7] ,这一理论为我们了解消化系统与整体健康之间的联系提供了新的视角,极有可能为疾病治疗开辟一个新的途径。

3. 肠–脑轴与IBD之间的关系

IBD不仅是一种局限于胃肠道的疾病,由于众多IBD患者常常伴有精神状态的改变 [9] ,有理由认为IBD与肠–脑轴之间存在紧密的联系,因此,它与肠–脑轴之间的关系日益受到重视。研究发现,在IBD的发生发展中,肠道炎症并非仅仅影响局部的生理功能,还有可能通过肠–脑轴作用于CNS,触发紧张、焦虑等一系列的情绪的改变,此外,心理压力和紧张焦虑的情绪也能通过肠–脑轴、HPA轴、自主神经系统和ENS反馈作用于肠道,破坏肠道屏障功能、扰乱肠道菌群平衡、引起肠道运动、分泌、免疫功能障碍 [10] ,形成一个恶性循环,加剧炎症的发展。因此,理解并干预肠–脑轴这一双向的作用机制有助于疾病的缓解,以下将分别从情绪改变、肠道微生物及其代谢产物的失调、自主神经紊乱如何影响肠–脑轴,进而影响疾病的进展展开叙述。

3.1. 焦虑抑郁状态和肠–脑轴

研究发现,在IBD患者中,焦虑和抑郁的发生率高于一般人群,这种心理状态的改变可能与肠道炎症直接相关 [11] [12] [13] [14] 。肠道炎症和ENS功能障碍破坏了肠道屏障的完整性,使得炎症因子和肠道内毒素能够穿过肠–血屏障,并且这些物质可以增加血脑屏障的通透性,并增强CNS的免疫活动,在这过程中神经胶质细胞会发生一些变化,进一步影响患者的大脑神经生物学和情绪状态 [12] [15] 。Kornelsen J等人的研究表明,与健康对照组相比,UC患者的多个大脑区域的灰质体积更大,这为UC患者肠–脑轴发生的变化提供了证据 [16] 。此外,葡聚糖硫酸钠(dextran Sulfate Sodium, DSS)诱导的结肠炎会通过自下而上的方式引发神经炎,并且在不同大脑区域的炎症相关标记物出现显著的差异,这些差异与大脑区域和暴露时间明显相关 [5] [17] ,Jiang T等人的研究进一步证实了这一观点,他们发现在结肠炎的早期,除结肠区域出现轻微炎症外,下丘脑视旁核区域的神经元活化也会增加,活化的下丘脑视旁核神经元能通过激活HPA轴或交感神经释放调节激素,以实现自我保护 [18] 。因此,通过早期干预肠–脑轴来治疗疾病对于改善IBD患者的情绪状态和生活质量具有重要意义,并且通过改善焦虑、抑郁、压力等状态也可以在一定程度上阻止疾病的进展。

3.2. 肠道微生物群及其代谢产物与肠–脑轴

肠道微生物群及其代谢产物通过肠–脑轴作用于大脑,调节宿主的行为、情绪和认知能力 [19] 。研究显示,肠道微生物群对于小鼠的社会行为发展起着至关重要的作用,无菌小鼠的应激反应较强烈,同时表现出类抑郁症状,但通过补充益生菌或者通过粪便微生物移植,可减少应激诱导的生理和行为反应 [7] [20] ,Taft TH等人用益生菌EF-2001干预DSS小鼠模型,可以发现直肠和海马中的炎性因子显著减少,并且通过NF-κB p65/XIAP途径来预防小鼠类抑郁行为,由此证明调节肠道微生物平衡对于改善IBD患者的心理状态具有积极作用 [20] 。此外,肠道微生物群的代谢物如短链脂肪酸、γ-氨基丁酸、谷氨酸也可以通过肠–脑轴用作用于大脑 [6] [7] [21] 。临床缓解期的UC患者使用丁酸灌肠剂后通过微生物组转录分析提示丁酸盐诱导了脂肪酸氧化、电子传递链和氧化应激途径中基因的差异性表达 [7] 。由丁酸盐、醋酸盐、丁酸盐等组成的短链脂肪酸可以增加增加紧密连接蛋白claudin-5和occludin的产生,从而增强血脑屏障的完整性,阻止不必要的代谢物进入人体 [7] [21] 。谷氨酸是一种兴奋性的神经调节剂和神经递质,不仅作用于ENS,还会通过血液影响CNS,因此,谷氨酸受体的分布及功能可以影响肠道和大脑的正常生理反应 [6] 。色氨酸及其代谢物对于CNS和ENS的发育极为重要,因此色氨酸及其代谢产物水平的失调很有可能造成精神状态的改变,而肠道微生物在色氨酸代谢的过程中发挥着重要的作用,因此通过肠道微生物群调节色氨酸的代谢可以作为IBD过程中的又一个靶点 [22] [23] 。这些证据强调了在疾病早期调节肠道微生物及其代谢产物的重要性,这对于延缓IBD的进展和改善患者的整体健康状况具有潜在的治疗效果。

3.3. 迷走神经与肠–脑轴

肠–脑轴中的关键组成部分之一是自主神经系统,包括迷走神经,其已经被证明可以调节肠道的神经反射并参与IBD的发生发展 [24] 。研究发现,完整的迷走神经可以通过胆碱能途经抵御IBD的发生,胆碱能途经即指迷走神经通过释放乙酰胆碱这一神经递质来发挥抗炎的作用 [24] 。因此刺激迷走神经或者补充胆碱代谢物可以利用肠–脑轴的机制来诱导抗炎反应,这不仅缓解IBD患者的肠道炎症,还可以改善与疾病相关的情绪障碍 [24] [25] [26] [27] 。通过靶向作用于迷走神经或其释放的活性物质为IBD的临床治疗开辟了新的研究方向,可以作为一种强有力的辅助手段治疗疾病,进一步提升患者的生活质量和治疗效果。

4. 展望

综上所述,调节肠道微生物平衡及其代谢物水平、刺激迷走神经以及改善情绪障碍可以有效地作用于肠–脑轴,从而改善IBD患者的临床症状并提升患者的生活质量。肠–脑轴作为IBD患者新的治疗靶点展现出巨大的潜力和前景。尽管如此,未来仍需更大规模的前瞻性研究探索其有限性及安全性。未来研究的重点应放在如何精确应用这些治疗方法、确定最佳的治疗疗程,以及如何最大化地利用这些手段为患者带来益处,通过努力,研究者们有望为IBD患者提供更加个体化和全面的治疗,以期得到更好的治疗效果。

NOTES

*通讯作者。

参考文献

[1] Szandruk-Bender, M., Wiatrak, B., Dzimira, S., et al. (2022) Targeting Lineage-Specific Transcription Factors and Cytokines of the Th17/Treg Axis by Novel 1,3,4-Oxadiazole Derivatives of Pyrrolo[3,4-d] Pyridazinone Attenuates TNBS-Induced Experimental Colitis. International Journal of Molecular Sciences, 23, Article 9897.
https://doi.org/10.3390/ijms23179897
[2] Mak, W.Y., Zhao, M., Ng, S.C., et al. (2020) The Epidemiology of Inflammatory Bowel Disease: East Meets West. Journal of Gastroenterology and Hepatology, 35, 380-389.
https://doi.org/10.1111/jgh.14872
[3] Weidner, J., Kern, I., Reinecke, I., et al. (2024) A Systematic Review and Meta-Regression on International Trends in the Incidence of Ulcerative Colitis in Children and Adolescents Associated with Socioeconomic and Geographic Factors. European Journal of Pediatrics, 183, 1723-1732.
https://doi.org/10.1007/s00431-024-05428-3
[4] Feingold, J.H., Kaye-Kauderer, H., Mendiolaza, M., et al. (2021) Empowered Transitions: Understanding the Experience of Transitioning from Pediatric to Adult Care among Adolescents with Inflammatory Bowel Disease and Their Parents Using Photovoice. Journal of Psychosomatic Research, 143, Article 110400.
https://doi.org/10.1016/j.jpsychores.2021.110400
[5] Ryma, T., Samer, A., Soufli, I., et al. (2021) Role of Probiotics and Their Metabolites in Inflammatory Bowel Diseases (IBDs). Gastroenterology Insights, 12, 56-66.
https://doi.org/10.3390/gastroent12010006
[6] Mohajeri, M.H., Brummer, R.J.M., Rastall, R.A., et al. (2018) The Role of the Microbiome for Human Health: From Basic Science to Clinical Applications. European Journal of Nutrition, 57, 1-14.
https://doi.org/10.1007/s00394-018-1703-4
[7] Guo, G., Tan, Z., Liu, Y., et al. (2022) The Therapeutic Potential of Stem Cell-Derived Exosomes in the Ulcerative Colitis and Colorectal Cancer. Stem Cell Research & Therapy, 13, Article No. 138.
https://doi.org/10.1186/s13287-022-02811-5
[8] Sun, L., Wang, X., Zou, Y., et al. (2023) Cold Stress Induces Colitis-Like Phenotypes in Mice by Altering Gut Microbiota and Metabolites. Frontiers in Microbiology, 14, Article 1134246.
https://doi.org/10.3389/fmicb.2023.1134246
[9] Stengel, A. and Taché, Y. (2024) Editorial: Community Series in Neurogastroenterology—Focus on the Gut-Brain Axis, Volume II. Frontiers in Psychiatry, 14, Article 1339557.
https://doi.org/10.3389/fpsyt.2023.1339557
[10] Sun, Y., Li, L., Xie, R., et al. (2019) Stress Triggers Flare of Inflammatory Bowel Disease in Children and Adults. Frontiers in Pediatrics, 7, Article 432.
https://doi.org/10.3389/fped.2019.00432
[11] Fairbrass, K.M., Lovatt, J., Barberio, B., Yuan, Y., Gracie, D.J. and Ford, A.C. (2022) Bidirectional Brain-Gut Axis Effects Influence Mood and Prognosis in IBD: A Systematic Review and Meta-Analysis. Gut, 71, 1773-1780.
https://doi.org/10.1136/gutjnl-2021-325985
[12] Craig, C.F., Filippone, R.T., Stavely, R., Bornstein, J.C., Apostolopoulos, V. and Nurgali, K. (2022) Neuroinflammation as an Etiological Trigger for Depression Comorbid with Inflammatory Bowel Disease. Journal of Neuroinflammation, 19, Article No. 4.
https://doi.org/10.1186/s12974-021-02354-1
[13] Bartocci, B., Dal Buono, A., Gabbiadini, R., et al. (2023) Mental Illnesses in Inflammatory Bowel Diseases: Mens sana in corpore sano. Medicina, 59, Article 682.
https://doi.org/10.3390/medicina59040682
[14] Seaton, N., Hudson, J., Harding, S., et al. (2023) Do Interventions for Mood Improve Inflammatory Biomarkers in Inflammatory Bowel Disease? A Systematic Review and Meta-Analysis. eBioMedicine, 100, Article 104910.
https://doi.org/10.1016/j.ebiom.2023.104910
[15] Carloni, S. and Rescigno, M. (2022) Unveiling the Gut-Brain Axis: Structural and Functional Analogies between the Gut and the Choroid Plexus Vascular and Immune Barriers. Seminars in Immunopathology, 44, 869-882.
https://doi.org/10.1007/s00281-022-00955-3
[16] Jennifer, K., Kelcie, W., Jennifer, L., et al. (2021) Brain Structure and Function Changes in Ulcerative Colitis. Neuroimage: Reports, 1, Article 100064.
https://doi.org/10.1016/j.ynirp.2021.100064
[17] Kornelsen, J., McIver, T., Uddin, N., et al. (2023) Altered Voxel-Based and Surface-Based Morphometry in Inflammatory Bowel Disease. Brain Research Bulletin, 203, Article 110771.
https://doi.org/10.1016/j.brainresbull.2023.110771
[18] Tao, J., Ruoxi, W., Wen, Y., et al. (2019) Hypothalamic Paraventricular Nucleus Neurons Activated by Estrogen GPER1 Receptors Promote Anti-Inflammation Effects in the Early Stage of Colitis. Acta Biochimica et Biophysica Sinica, 51, 1216-1222.
https://doi.org/10.1093/abbs/gmz122
[19] Tang, H., Chen, X., Huang, S., Yin, G., Wang, X. and Shen, G. (2023) Targeting the Gut-Microbiota-Brain Axis in Irritable Bowel Disease to Improve Cognitive Function—Recent Knowledge and Emerging Therapeutic Opportunities. Reviews in the Neurosciences, 34, 763-773.
https://doi.org/10.1515/revneuro-2022-0155
[20] Taft, T.H., Bedell, A., Craven, M.R., et al. (2019) Initial Assessment of Post-Traumatic Stress in a US Cohort of Inflammatory Bowel Disease Patients. Inflammatory Bowel Diseases, 25, 1577-1585.
https://doi.org/10.1093/ibd/izz032
[21] Gîlcă-Blanariu, G.E., Șchiopu, C.G., Ștefănescu, G., et al. (2023) The Intertwining Roads between Psychological Distress and Gut Microbiota in Inflammatory Bowel Disease. Microorganisms, 11, Article 2268.
https://doi.org/10.3390/microorganisms11092268
[22] Tavolieri, M.V., Young, S.D. and Bitzan, M. (2020) A Nod to Gut-Brain Signalling: Nod-Like Receptors Are Critical for Gut-Brain Axis Signalling in Mice. The Journal of Physiology, 598, 907-908.
https://doi.org/10.1113/JP279432
[23] William, R., Kimia, Z., Rushi, V., et al. (2021) Tryptophan Metabolism and Gut-Brain Homeostasis. International Journal of Molecular Sciences, 22, Article 2973.
https://doi.org/10.3390/ijms22062973
[24] Yohei, M., Junya, T., Hiroki, K., et al. (2021) Vagus Nerve-Mediated Intestinal Immune Regulation: Therapeutic Implications for Inflammatory Bowel Diseases. International Immunology, 34, 97-106.
https://doi.org/10.1093/intimm/dxab039
[25] Oliva, E.M.A., Ruiz, R., Soto, S.M., et al. (2024) Inflammatory Bowel Disease Induces Pathological α-Synuclein Aggregation in the Human Gut and Brain. Neuropathology and Applied Neurobiology, 50, e12962.
https://doi.org/10.1111/nan.12962
[26] Zhang, F., Guo, L., Shi, J., et al. (2023) Choline Metabolism in Regulating Inflammatory Bowel Disease-Linked Anxiety Disorders: A Multi-Omics Exploration of the Gut-Brain Axis. Neurobiology of Disease, 191, Article 106390.
https://doi.org/10.1016/j.nbd.2023.106390
[27] Hesampour, F., Bernstein, C.N. and Ghia, J.E. (2024) Brain-Gut Axis: Invasive and Noninvasive Vagus Nerve Stimulation, Limitations, and Potential Therapeutic Approaches. Inflammatory Bowel Disease, 30, 482-495.
https://doi.org/10.1093/ibd/izad211