IgA肾病的发病机制及诊治相关的生物标志物
Biomarkers Related to Pathogenesis, Diagnosis and Treatment of IgA Nephropathy
DOI: 10.12677/acm.2024.1451718, PDF, HTML, XML, 下载: 15  浏览: 34 
作者: 钟玉珍, 杨 妍, 刘璠娜*:暨南大学第一临床医学院,广东 广州;暨南大学附属第一医院(广州华侨医院)肾内科,广东 广州
关键词: IgA肾病机制无创诊断标志物预后和进展标志物IgA Nephropathy Mechanism Noninvasive Diagnostic Markers Prognostic and Progression Markers
摘要: IgA肾病(IgA nephropathy, IgAN)是肾小球源性血尿最常见的病因,也是导致终末期肾病(end-stage renal disease, ESRD)的主要病因之一。含半乳糖缺陷的IgA1表达水平升高,并被相应抗体识别形成免疫复合物,在系膜沉积时诱导系膜增生性肾小球损伤,是IgAN发病机制的关键因素。肾活检的解剖病理学分析对于IgAN的诊断至关重要,然而肾活检具有有创性且在评估疾病进展有局限性,因此迫切需要可能适用于常规临床实践的可靠无创生物标志物。本文综述了近年来与IgAN诊断和进展预后作用相关的生物标志物,包括补体蛋白、细胞因子、核酸类等的研究进展,为IgAN的诊断及诊治提供新的思路。
Abstract: The most frequent cause of glomerular hematuria and a major contributor to end-stage nephropathy (ESRD) is IgA nephropathy (IgAN). The expression level of IgA1 containing galactose deficiency is increased, and it is recognized by corresponding antibodies to form immune complexes, which induce mesangial proliferative glomerular damage during mesangial deposition, which is the key factor in the pathogenesis of IgAN. Anatomic pathological analysis of renal biopsies is essential for the diagnosis of organs, however, the invasive nature of renal biopsies and their limitations in assessing disease progression has created a pressing need for trustworthy noninvasive biomarkers that might be used in clinical practice. This article reviews recent research advances in biomarkers, including complement proteins, cytokines, and nucleic acids, that are relevant to the diagnostic and prognostic roles of IgAN, providing new ideas for diagnosing and managing IgAN.
文章引用:钟玉珍, 杨妍, 刘璠娜. IgA肾病的发病机制及诊治相关的生物标志物[J]. 临床医学进展, 2024, 14(5): 2541-2551. https://doi.org/10.12677/acm.2024.1451718

1. IgA肾病

IgA肾病是一组免疫病理学诊断名称,以IgA或IgA沉积为主的免疫复合物不同程度局限性或弥漫性沉积于肾小球系膜区或毛细血管壁引起一系列临床及病理改变 [1] [2] [3] 。临床上最常见的症状是反复肉眼血尿或镜下血尿,可伴不同程度的蛋白尿,部分患者可以出现严重高血压或者肾功能不全,据报道,精算肾脏10年生存率为57%~91% [4] 。其临床表现多样,几乎涵盖了所有肾小球肾炎的临床特征。目前IgAN确诊依赖于肾活检病理,病理表现病变类型包括局灶节段性病变、毛细血管内增生性病变、系膜增生性病变、新月体病变及硬化性病变等,病变程度轻重不一 [5] [6] 。其病因和发病机制均尚未完全清楚。

肾活检的解剖病理学分析对于IgAN的诊断至关重要,然而肾活检具有有创性且在评估疾病进展有局限性 [7] 。近年来,利用蛋白质组学、代谢组学、基因组学等技术和方法检测血和尿中反映IgAN病变程度、类型、预后、治疗效果的特异性生物标志物,为IgAN的诊断、疾病进展和预后预测、治疗效果评估提供无创、快捷、方便、准确的方法 [8] [9] 。本文综述了近年来与IgAN诊断和进展预后作用相关的生物标志物,包括补体蛋白、细胞因子、核酸类等的研究进展,为IgAN的诊断及诊治提供新的思路。

2. IgA肾病的发病机制

2.1. 四重打击学说

有关研究表明IgAN是一种多基因、多因素决定的复杂性疾病 [9] ,最为广泛接受的是“四重打击”学说(如图1所示)。循环半乳糖缺陷的IgA1 (Gd-IgA1)表达水平升高(第一重打击),被特异性自身抗体识别(第二重打击),形成由Gd-IgA1和IgG自身抗体组成的循环免疫复合物(第三重打击)。其中一些免疫复合物沉积在肾脏中,从而导致系膜激活,增强系膜细胞增殖,最终导致肾损伤(第四重打击) [10] [11] (如图1)。

循环半乳糖缺乏IgA1 (Gd-IgA1) (打击一)被特异性自身抗体(打击二)识别形成循环免疫复合物,包括Gd-IgA1-IgG循环免疫复合物和Gd-IgA1-Scd89循环免疫复合物(打击三)。其中一些免疫复合物沉积在肾脏中,从而导致系膜激活,增强系膜细胞的增殖,并最终导致肾脏损伤(打击四)。MBL:凝集素。

2.2. 肠–肾轴机制

粘膜免疫是促进IgAN发生的重要机制,有关肠–肾轴机制已经不断的被证实是存在的,肠道作为重要的免疫器官,参与着人体许多的免疫反应,特别是肠道产生的分泌性IgA (sIgA)更是与IgA肾病的发生存在不可分割的联系 [12] [13] 。最新的一项随机对照研究显示:肠道靶向肠粘膜与布地奈德可减少IgA肾病介导的蛋白尿。但是在现有的研究中,肠道如何介导产生大量Gd-IgA1的具体机制暂时还不明确。

Figure 1. Pathogenesis of IgA nephropathy

图1. IgA肾病的发病机制

2.3. 补体途径

同时,在IgAN的发病机制中,补体是不可忽视的存在。在IgAN活检样本发现补体相关蛋白在肾小球中大量沉积,这说明补体激活途径是参加IgAN的发病机制的,其中最相关的是是旁路、MBL途径 [14] 。并且肾小球补体途径所产生的沉积物与疾病严重程度之间存在联系 [15] [16] 。最近一项西班牙IgAN队列的分析显示,活检证据显示肾小球C4d沉积越明显,IgAN患者活检时蛋白尿、随访期间蛋白尿以及疾病发作次数都会明显增加,同时肾小球滤过率(eGFR)更快丧失和肾衰竭发生率更高。更有研究指出,C5b-9沉积程度与局灶性肾小球硬化程度是存在正相关的 [17] ,说明IgAN的进展和补体激活途径是不可以分割开来谈论的,但是免疫复合物具体是怎样激活补体的机制尚不十分的明确。

3. IgAN诊断相关标志物

尽管肾活检仍是肾脏疾病诊断的金标准,但根据最近的报道,肾活检有可能被血清、血浆和尿液中的新型生物标记物所取代,从而为这类肾小球肾炎疾病的诊断、治疗和前景提供绝佳的数据。识别和诊断IgAN的生物标志物如图2

3.1. 半乳糖缺乏型IgA1 (Gd-IgA1)及抗Gd-IgA1抗体

Gd-IgA1是疾病发生的必不可缺少的一环,Gd-IgA1不仅是疾病的触发点,也是IgAN的一个诊断指标。Hastings等人发现,IgAN患者血清Gd-IgA1明显高于健康及患有其他肾小球疾病的对照组,其诊断敏感性和特异性分别为63%和93%,阳性预测值为96% [18] 。Barchi等人研究证实与非IgA肾小球疾病和健康对照组相比,IgAN患者的血清Gd-IgA1水平更高,具有良好的阳性诊断预测价值 [19] 。此外,一

Figure 2. Diagnostic biomarker

图2. 诊断生物标志物

项亚洲队列研究发现IgAN患者的尿Gd-IgA1水平显著高于疾病对照组,且与组织病理学参数的严重程度相关 [20] 。目前表明血清KM55 Gd-IgA1水平升高与组织病理学晚期IgAN相关,可作为移植后复发性IgAN诊断和活性评估的生物标志物 [21] 。

IgA1分子O-聚糖的半乳糖基化缺陷是IgAN的致病因素之一。Chen等人在35个血浆样品中发现,健康人组的唾液酸较多的O-糖肽含量较高,而IgAN组中唾液酸含量较低的O-糖肽含量较高,二者存在明显差异,提示特异性O-糖肽可能是IgAN生物标志物。但是该研究样本量较小其敏感性和特异性有待进一步研究 [22] 。

多重打击学说中,第二重打击是形成针对Gd-IgA1的末端含GalNAc的铰链区的聚糖特异性IgG或IgA1自身抗体。Suzuki等人通过dot-blot杂交测定抗Gd-IgA1抗体,该检测方法能够以88%的特异性和95%的灵敏度将IgAN患者与健康对照组区分开来,同时IgAN患者血清中该抗体水平升高与蛋白尿相关 [23] 。

3.2. 核酸类

MicroRNAs (miRNA)是一类小RNA物质,能在转录水平上调节基因表达,并参与着细胞生长、凋亡、迁移、细胞分化,以及自噬等各种细胞生物学活动 [24] [25] [26] 。血液和尿液中的miRNA已被证实参与IgAN的发生发展,在IgAN中发挥重要作用。在一项回顾性国际研究中,Sernio等人检测了IgAN患者和健康人的血清样本中两种miRNA (let-7b和miR-148b)的表达,结果显示这两种miRNA的组合具有极高的诊断价值,在受试者工作特征(ROC)曲线分析中,AUC为0.82,临界值为0.19 (灵敏度为76%,特异性为75%)。该结果在验证队列中进行了验证,AUC为0.78。因此,let-7b和miR-148b是诊断IgAN的潜在标志物 [27] 。Wang等人研究发现IgAN患者尿液中miR-146a和miR-155的表达水平显着升高,其上调程度与疾病的临床和组织学严重程度相关 [28] 。另一项研究证实miR-150、miR-204、miR-431和miR-55可区分IgAN患者与正常对照组,在ROC曲线分析中AUC均有价值,其中miR-204AUC最高(0.976),临界值高于1.70单位时,尿miR-204诊断IgAN的敏感性和特异性分别为100%和55.5%,而低于0.34单位时则敏感性和特异性分别为90.9% 100% [29] 。因此,miRNA可能具有良好的诊断IgAN的潜力,但仍需进一步得到临床验证。

3.3. 补体蛋白

IgAN肾活检免疫荧光显微镜特征是补体蛋白与IgA在肾小球普遍沉积,以C3含量最高,血清补体水平也已作为诊断工具进行研究。在一项包括757名IgAN患者和338名非IgAN患者的研究中,IgAN组的IgA/C3比率显着高于非IgAN组,是区分IgAN与其他肾小球疾病的良好诊断标志物 [30] 。另一项研究发现,与非IgAN肾小球疾病患者相比,IgAN患者的血清C3水平降低,并与IgA/C3牛津总分呈显著正相关 [31] 。

3.4. Toll样受体

Toll样受体(TLRs)是先天免疫受体,TLR的作用机制基于识别双重信号的能力,第一种基于对病原体相关分子模式(pathogen-associated molecular patterns, PAMPs)的检测,而第二种则基于对人体自身细胞损伤(danger-associated molecular patterns, DAMPs)的检测 [32] [33] 。目前的研究表明,Toll样受体(TLR)可以介导多种肾小球疾病的发生,比如IgA肾病、膜性肾病以及其他的继发性肾病,目前发现人类有10种类型的TLR受体,小鼠中有3种类型的TLR受体。一项收集了2762例IgAN病例和5803例对照个体的多项全基因组关联研究(GWAS)表明,TLR9的激活可以导致IgA免疫的过度激活从而导致疾病的进展 [34] ,这种现象在小鼠实验也是中可以观察到的,Yoyk等人发现一方面TLR9激活会增强小鼠脾细胞和人类Gd-IgA1的产生,同时也可以刺激增殖诱导配体(APRIL)和白介素6 (IL-6)的产生,而APRIL和IL-6的产生会再一次的加剧Gd-IgA1的产生,形成肾脏损害的恶性循环 [35] ;有报道称切除扁桃体的IgAN患者的血清中仍可以观察到高表达的Toll样受体9mRNA (TLR9mRNA) [36] 。郑等人在不同病理分型的IgAN患者中发现,TLR7蛋白于IgAN患者的肾脏中高表达,并且与与肾功能损伤相关 [37] 。刘等人发现,与健康对照组相比,IgAN患者TLR4与IgA1的浓度和IgA1的糖基化水平有关,但是有趣的是,这是通过IgAN患者切除的扁桃体做出的相关性分析,这似乎强烈提示着我们,扁桃体-TLR-IgAN之间存在着不可忽视的联系 [38] 。

综上所述,尽管已有不同类型的生物标志物在诊断IgAN中得到应用,但仍不可用于作为单独诊断的指标,联合多种标志物进行模型预测将是未来的关注重点。

4. IgAN疾病进展和预后相关标志物

4.1. 补体调节蛋白

越来越多的研究证实,补体调节蛋白在IgAN的发病机制中发挥重要作用。IgAN患者肾组织活检中可发现C3、C4、备解素(properdin)、甘露糖结合凝集素(MBL)的沉积。这些补体蛋白通过补体旁路激活途径和MBL途径参与了IgAN的发生发展,如图3

4.1.1. 旁路途径

IgAN中肾小球C3沉积主要是由补体通过旁路途径激活引起的。一项针对136名IgAN患者的回顾性研究证实C3沉积明显的患者蛋白尿水平较高,eGFR较低,肾脏病理性病变严重,间质炎性细胞浸润较多,进一步的Cox回归分析显示,较高强度的肾小球C3沉积是血清肌酐倍增和终末期肾病的独立预测因子 [39] 。杨等人发现C4沉积患者的血清C4水平较高,并且与肾脏生存率低显着相关,因此肾小球系膜C4沉积是IgAN患者预后不良的独立预测因素 [40] 。基于已有的研究结果,潘等人对712名IgAN患者进行回顾性研究,进一步分析C3/C4比值预测IgAN肾脏结局的价值,结果显示肾活检时的C3/C4比值在预测和识别不良肾脏结局方面优于与血清C3或C4水平对应的单一指标,是IgAN患者肾脏结局的强独立预测指标 [41] 。补体因子H (FH)是通过补体旁路途径激活补体C3的重要负调节因子,补体因子H相关蛋白(FHR)可竞争性拮抗FH与C3b结合从而增强C3沉积。研究发现,IgAN中FHR-5水平升高,较高的FHR-5与较低的eGFR,高血压以及严重的Oxford-T和Oxford-C评分有关 [42] 。此外,FHR-1水平和FHR-1/FH在IgAN进展期的患者中比值最高,可能会降低IgAN的补体调节水平 [43] 。

Figure 3. Progress and prognostic markers

图3. 进展及预后标志物

4.1.2. MBL途径

MBL补体激活在IgAN的作用存在争议。刘等人对131名IgAN患者研究发现,肾小球MBL沉积的IgAN患者肾活检时出现更严重的蛋白尿、肾功能下降、血清白蛋白水平较低且高血压的可能性更大,说明MBL沉积可能是IgAN预后的重要组织学预测指标 [44] 。一项日本研究发现MBL缺陷的IgAN患者有改善蛋白尿和肾功能的趋势。有趣的是,郭等人测定了749名IgAN患者和219名健康对照的MBL表达水平,发现IgAN的MBL水平与肾脏结局之间存在非线性关联,MBL缺乏(<100 ng/mL)和高水平的MBL (>3540 ng/mL)都是IgAN肾脏结局不良的危险因素,前者发生前驱感染和血尿机率高于后者,而后者出现蛋白尿更严重,新月体比例更高 [45] 。

除补体调节蛋白外,其他蛋白如肾损伤分子-1 (KIM-1)和中性粒细胞明胶酶相关脂质运载蛋白(NGAL)也是有希望的潜在生物标志物。KIM-1是一种L型跨膜糖蛋白,在重度系膜增生、新月体形成或毛细血管内增生的患者中,尿KIM-1浓度较高,较高的KIM-1表达与IgAN患者疾病进展和肾脏不良结局的发生有关,因此,KIM-1可能为IgAN的诊断和预后提供有意义的信息 [46] 。NGAL属于脂质运载蛋白家族,肾小管损伤会导致其释放水平增高,血清和尿液 NGAL 水平升高可作为IgAN患者肾病进展为ERSD的潜在生物标志物 [47] 。

4.2. 细胞因子

肾脏病变会产生各种细胞因子和生长因子,它们充当肾脏损伤的介质,刺激细胞增殖并增加系膜基质的产生。白细胞介素类(L)是免疫细胞间相互作用的淋巴因子,在IgAN的发生、发展中起重要作用。IL-6是一种多效细胞因子,在许多炎症及自身免疫性疾病中发挥重要作用。研究发现,IgAN与IL-6血浆浓度升高和Gd-IgA1血浆浓度升高有关 [48] [49] [50] 。邓等人发现,IgAN患者血浆IL-7显著降低,IL-7表达下降与肾小管萎缩/间质纤维化和较差的肾脏结局相关,免疫结果显示IL-7在肾小管上皮细胞中过表达,并通过mTORl信号抑制自噬来保护肾近端肾小管上皮细胞免受细胞纤维化。这些结果表明,IL-7可能是预测IgAN进展的非侵入性生物标志物 [51] 。石等人研究发现IgAN患者的血清IL-18水平显著升高,与尿蛋白排泄量(r = 0.494, P = 0.002),Scr (r = 0.61, P < 0.001)和eGFR (r = −0.598, P < 0.001)显著相关。Cox分析进一步证实血清IL-18水平是肾脏预后的独立预测指标(β = 1.98, P = 0.003) [52] 。

尿液中各种细胞因子排泄也能反映IgAN的组织学变化,有助于评估肾脏结局。既往研究表明,尿中单核细胞趋化蛋白-1 (MCP-1)反映了IgAN的疾病活动度、蛋白尿和肾脏改变的严重程度,可独立预测肾脏生存率 [53] 。一项研究显示,TGFβ1和MCP-1在高蛋白尿和低eGFR的IgAN患者中表达高度上调,同时TGFβ1能够刺激MCP-1表达,MCP-1水平与激素治疗的疗效相关 [54] 。表皮生长因子(EGF)是一种对细胞分化和再生至关重要的肾小管特异性蛋白质,在预测慢性肾脏病进展风险的作用已得到证实 [52] 。Alfons等人测定了58名IgAN患者尿液中IL-6、EGF、MCP-1和TGFβ1的水平,IL-6、TGFβ1和MCP-1与局灶性肾小球硬化和间质纤维化扩展有关,EGF与间质纤维化呈负相关。另一项研究发现,与健康对照组相比,IgAN患者的尿MCP-1和IL-6水平显着增加,而EGF排泄减少。随访结果表明尿液EGF水平随疾病进展而明显下降,降低0.05 pg/mg尿肌酐水平可以区分进展者和非进展者。尿液EGF水平可能是肾功能结局的预测标志物 [55] 。

4.3. 核酸类

肾脏间质纤维化大多发生在慢性肾脏病进展期,也是预测肾脏预后的重要指标,研究证实miRNA在 IgAN肾间质纤维化过程中异常表达。易等人在人和大鼠的肾间质纤维化模型中发现miR-29表达下调,并可通过激活缺氧诱导因子-α (HIF-α)来恢复,进一步验证显示,IgAN患者实质性间质纤维化程度与细胞外基质基因(TPM1和COL2A1)水平成正比,miR-29c可靶向并抑制TPM1和COL2A1从而减轻纤维化 [56] 。王等人发现IgAN患者肾组织中miR-146a与miR-155表达明显高于正常健康对照组,二者表达与蛋白尿程度呈正相关,与GFR呈负相关,miR-155表达水平与肾间质纤维化呈正相关 [28] 。另一项大型研究通过将IgAN患者miRNA表达数据与与不良临床结局相关的经典临床参数相关联分析,确定miR-146b-5p,miR-150-5p和miR-155-5p与肾纤维化进展相关,而miR-135a-5p与不良预后风险降低有关。其中miR-150-5p与进展风险相关性最密切,ROC曲线较好地显示IgAN进展者和非进展者的区分效果(AUC: 0.8),其主要在肾间质纤维化区域的淋巴细胞(主要是T细胞)高表达,miR-150-5p可能是肾纤维化的潜在功能介质,在预测IgAN进展发挥重要功能 [57] 。

梁等人比较了52名IgAN患者和25名健康人的尿液miRNA表达,IgAN组的尿miR-34a、miR-205和miR-155显著降低,但miR-21水平高于对照组。ROC显示miR-205 ≤ 0.125和miR-21 ≥ 0.891可以区分重度肾小管萎缩/间质纤维化患者和轻度肾小管萎缩/间质纤维化患者。因此,miR-21和miR-205可用作评估 IgAN肾小管间质损伤的潜在预后标志物。尿液miR-196a主要在肾脏中表达,并通过下调TGF-β受体II (TGFβR2)在肾纤维化的进展中发挥抑制作用 [58] 。

各种生物标志物在IgAN进展和预后中的作用的研究多为单中心研究,样本量较小,随访时间较短,缺乏验证队列和其他肾小球疾病对照。同时,对预后的判断缺乏硬性终点,目前仍取决于eGFR的降低率和尿蛋白的降低率。未来仍需更多的研究进一步证实标志物在诊断和预后领域的作用。

5. 小结

IgAN是全球最常见的肾小球疾病,其明确诊断仍依靠肾活检,但是肾活检作为有创性操作,有一定的禁忌症和并发症,对于临床上一些不适合进行肾活检的患者来说,发掘特异性高、敏感度高的无创性诊断标志物是十分重要的。

目前关于探索IgAN中的生物标记物的报道中发现已经明确,可以从IgAN患者的血清、血浆、尿液中分离出一些具有诊断或预测的生物标志物,如:Gd-IgA1、Toll样受体(TLR)、let-7b及miR-148b等主要应用于疾病的诊断;补体因子H (FH)及相关蛋白、MBL、肾损伤分子-1 (KIM-1)和中性粒细胞明胶酶相关脂质运载蛋白(NGAL)等可用于后续对疾病的预后的评估。因此,寻找新的特异性高的可作为该疾病明确诊断的标记物是下一步研究的重点,具有广阔的前景,需要进一步的研究。

NOTES

*通讯作者。

参考文献

[1] Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group (2021) KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney International, 100, S1-S276.
[2] Floege, J. and Barratt, J. (2021) IgA Nephropathy: A Perspective for 2021. Seminars in Immunopathology, 43, 625-626.
https://doi.org/10.1007/s00281-021-00890-9
[3] Perse, M. and Veceric-Haler, Z. (2019) The Role of IgA in the Pathogenesis of IgA Nephropathy. International Journal of Molecular Sciences, 20, Article 6199.
https://doi.org/10.3390/ijms20246199
[4] Coppo, R. (2019) Towards a Personalized Treatment for IgA Nephropathy Considering Pathology and Pathogenesis. Nephrology Dialysis Transplantation, 34, 1832-1838.
https://doi.org/10.1093/ndt/gfy338
[5] Pillebout, E. and Sunderkotter, C. (2021) IgA Vasculitis. Seminars in Immunopathology, 43, 729-738.
https://doi.org/10.1007/s00281-021-00874-9
[6] Trimarchi, H., Barratt, J., Cattran, D.C., Cook, H.T., Coppo, R., Haas, M., Liu, Z.-H., Roberts, I.S., Yuzawa, Y., Zhang, H. and Feehally, J. (2017) Oxford Classification of IgA Nephropathy 2016: An Update from the IgA Nephropathy Classification Working Group. Kidney International, 91, 1014-1021.
https://doi.org/10.1016/j.kint.2017.02.003
[7] Roberts, I.S.D. (2014) Pathology of IgA Nephropathy. Nature Reviews Nephrology, 10, 445-454.
https://doi.org/10.1038/nrneph.2014.92
[8] Maixnerova, D., Reily, C., Bian, Q., Neprasova, M., Novak, J. and Tesar, V. (2016) Markers for the Progression of IgA Nephropathy. Journal of Nephrology, 29, 535-541.
https://doi.org/10.1007/s40620-016-0299-0
[9] Moresco, R.N., Speeckaert, M.M. and Delanghe, J.R. (2015) Diagnosis and Monitoring of IgA Nephropathy: The Role of Biomarkers as an Alternative to Renal Biopsy. Autoimmunity Reviews, 14, 847-853.
https://doi.org/10.1016/j.autrev.2015.05.009
[10] Stamellou, E., Seikrit, C., Tang, S.C.W., Boor, P., Tesar, V., Floege, J., Barratt, J. and Kramann, R. (2023) IgA Nephropathy. Nature Reviews Disease Primers, 9, Article No. 67.
https://doi.org/10.1038/s41572-023-00476-9
[11] Suzuki, H. and Novak, J. (2021) IgA Glycosylation and Immune Complex Formation in IgAN. Seminars in Immunopathology, 43, 669-678.
https://doi.org/10.1007/s00281-021-00883-8
[12] Coppo, R. (2023) A Disease-Modifying Approach to the Treatment of IgA Nephropathy Targeting Mucosal IgA Synthesis and Beyond. Kidney International, 103, 258-261.
https://doi.org/10.1016/j.kint.2022.10.019
[13] Lafayette, R., Kristensen, J., Stone, A., Floege, J., Tesar, V., Trimarchi, H., Zhang, H., Eren, N., Paliege, A., Reich, H.N., Rovin, B.H. and Barratt, J. (2023) Efficacy and Safety of a Targeted-Release Formulation of Budesonide in Patients with Primary IgA Nephropathy (NefIgArd): 2-Year Results from a Randomised Phase 3 Trial. The Lancet, 402, 859-870.
https://doi.org/10.1016/S0140-6736(23)01554-4
[14] Medjeral-Thomas, N.R., Cook, H.T. and Pickering, M.C. (2021) Complement Activation in IgA Nephropathy. Seminars in Immunopathology, 43, 679-690.
https://doi.org/10.1007/s00281-021-00882-9
[15] Faria, B., Henriques, C., Matos, A.C., Daha, M.R., Pestana, M. and Seelen, M. (2015) Combined C4d and CD3 Immunostaining Predicts Immunoglobulin (Ig)A Nephropathy Progression. Clinical and Experimental Immunology, 179, 354-361.
https://doi.org/10.1111/cei.12461
[16] Roos, A., Rastaldi, M.P., Calvaresi, N., Oortwijn, B.D., Schlagwein, N., van Gijlswijk-Janssen, D.J., Stahl, G.L., Matsushita, M., Fujita, T., van Kooten, C. and Daha, M.R. (2006) Glomerular Activation of the Lectin Pathway of Complement in IgA Nephropathy Is Associated with More Severe Renal Disease. Journal of the American Society of Nephrology, 17, 1724-1734.
https://doi.org/10.1681/ASN.2005090923
[17] Zhang, Y., Yan, X., Zhao, T., Xu, Q., Peng, Q., Hu, R., Quan, S., Zhou, Y. and Xing, G. (2017) Targeting C3a/C5a Receptors Inhibits Human Mesangial Cell Proliferation and Alleviates Immunoglobulin A Nephropathy in Mice. Clinical and Experimental Immunology, 189, 60-70.
https://doi.org/10.1111/cei.12961
[18] Hastings, M.C., Moldoveanu, Z., Suzuki, H., Berthoux, F., Julian, B.A., Sanders, J.T., Renfrow, M.B., Novak, J. and Wyatt, R.J. (2013) Biomarkers in IgA Nephropathy: Relationship to Pathogenetic Hits. Expert Opinion on Medical Diagnostics, 7, 615-627.
https://doi.org/10.1517/17530059.2013.856878
[19] Bagchi, S., Lingaiah, R., Mani, K., Barwad, A., Singh, G., Balooni, V., Bhowmik, D. and Agarwal, S.K. (2019) Significance of Serum Galactose Deficient IgA1 as a Potential Biomarker for IgA Nephropathy: A Case Control Study. PLOS ONE, 14, e0214256.
https://doi.org/10.1371/journal.pone.0214256
[20] Fukao, Y., Suzuki, H., Kim, J.S., Jeong, K.H., Makita, Y., Kano, T., Nihei, Y., Nakayama, M., Lee, M., Kato, R., Chang, J.M., Lee, S.H. and Suzuki, Y. (2022) Galactose-Deficient IgA1 as a Candidate Urinary Marker of IgA Nephropathy. Journal of Clinical Medicine, 11, Article 3173.
https://doi.org/10.3390/jcm11113173
[21] Temurhan, S., Akgul, S.U., Caliskan, Y., Artan, A.S., Kekik, C., Yazici, H., Demir, E., Caliskan, B., Turkmen, A., Oguz, F.S. and Sever, M.S. (2017) A Novel Biomarker for Post-Transplant Recurrent IgA Nephropathy. Transplantation Proceedings, 541-545.
https://doi.org/10.1016/j.transproceed.2017.02.003
[22] Chen, H.-F., Kao, C.-C., Ka, S.-M., Wang, S.-Y., Chen, M.X., Chen, G.-Y., Weng, T.-I., Lai, R.-Y., Yeh, S.-C., Lin, Y.-C., Chen, H.-H., Chang, W.-C., Wu, M.-S. and Tsai, I.-L. (2022) Development of an Enrichment-Free One-Pot Sample Preparation and Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry Method to Identify Immunoglobulin A1 Hinge Region O-Glycoforms for Immunoglobulin A Nephropathy. Journal of Chromatography A, 1685, Article 463589.
https://doi.org/10.1016/j.chroma.2022.463589
[23] Suzuki, H., Fan, R., Zhang, Z., Brown, R., Hall, S., Julian, B.A., Chatham, W.W., Suzuki, Y., Wyatt, R.J., Moldoveanu, Z., Lee, J.Y., Robinson, J., Tomana, M., Tomino, Y., Mestecky, J. and Novak. J. (2009) Aberrantly Glycosylated IgA1 in IgA Nephropathy Patients Is Recognized by IgG Antibodies with Restricted Heterogeneity. The Journal of Clinical Investigation, 119, 1668-1677.
https://doi.org/10.1172/JCI38468
[24] Duan, Z.-Y., Bu, R., Liang, S., Chen, X.-Z., Zhang, C., Zhang, Q.-Y., Li, J.-J., Chen, X.-M. and Cai, G.-Y. (2024) Urinary miR-185-5p Is a Biomarker of Renal Tubulointerstitial Fibrosis in IgA Nephropathy. Frontiers in Immunology, 15, Article 1326026.
https://doi.org/10.3389/fimmu.2024.1326026
[25] Szeto, C.-C. and Li, P.K.-T. (2014) MicroRNAs in IgA Nephropathy. Nature Reviews Nephrology, 10, 249-256.
https://doi.org/10.1038/nrneph.2014.50
[26] Zhang, Q., Zhao, Y., Luo, Y., Guo, S., Hou, H., Han, X. and Zhou, Y. (2024) Urinary Exosomal miRNA-451a Can Be Used as a Potential Noninvasive Biomarker for Diagnosis, Reflecting Tubulointerstitial Damage and Therapeutic Response in IgA Nephropathy. Renal Failure, 46, Article 2319326.
https://doi.org/10.1080/0886022X.2024.2319326
[27] Serino, G., Pesce, F., Sallustio, F., De Palma, G., Cox, S.N., Curci, C., Zaza, G., Lai, K.N., Leung, J.C., Tang, S.C., Papagianni, A., Stangou, M., Goumenos, D., Gerolymos, M., Takahashi, K., Yuzawa, Y., Maruyama, S., Imai, E. and Schena, F.P. (2016) In a Retrospective International Study, Circulating miR-148b and Let-7b Were Found to Be Serum Markers for Detecting Primary IgA Nephropathy. Kidney International, 89, 683-692.
https://doi.org/10.1038/ki.2015.333
[28] Wang, G., Kwan, B.C.-H., Lai, F.M.-M., Chow, K.-M., Li, P.K.-T. and Szeto, C.-C. (2011) Elevated Levels of miR-146a and miR-155 in Kidney Biopsy and Urine from Patients with IgA Nephropathy. Disease Markers, 30, 171-179.
https://doi.org/10.1155/2011/304852
[29] Szeto, C.-C., Ng, J.K.-C., Fung, W.W.-S., Chan, G.C.-K., Luk, C.C.-W., Lai, K.-B., Wang, G., Chow, K.-M. and Lai, F.M.-M. (2022) Urinary mi-106a for the Diagnosis of IgA Nephropathy: Liquid Biopsy for Kidney Disease. Clinica Chimica Acta, 530, 81-86.
https://doi.org/10.1016/j.cca.2022.03.006
[30] Gong, W.-Y., Liu, M., Luo, D., Liu, F.-N., Yin, L.-H., Li, Y.-Q., Zhang, J. and Peng, H. (2019) High Serum IgA/C3 Ratio Better Predicts a Diagnosis of IgA Nephropathy among Primary Glomerular Nephropathy Patients with Proteinuria≤1 g/d: An Observational Cross-Sectional Study. BMC Nephrology, 20, Article No. 150.
https://doi.org/10.1186/s12882-019-1331-0
[31] Sirali, S.K. and Buberci, R. (2022) Correlation between IgAC3 Ratio and Oxford Score in IgA Nephropathy. Clinical and Experimental Nephrology, 26, 982-987.
https://doi.org/10.1007/s10157-022-02244-7
[32] Eleftheriadis, T. and Lawson, B.R. (2009) Toll-Like Receptors and Kidney Diseases. Inflammation & Allergy-Drug Targets, 8, 191-201.
https://doi.org/10.2174/187152809788680985
[33] Kaur, A., Baldwin, J., Brar, D., Salunke, D.B. and Petrovsky, N. (2022) Toll-Like Receptor (TLR) Agonists as a Driving Force Behind Next-Generation Vaccine Adjuvants and Cancer Therapeutics. Current Opinion in Chemical Biology, 70, Article 102172.
https://doi.org/10.1016/j.cbpa.2022.102172
[34] Wang, Y.-N., Gan, T., Qu, S., Xu, L.-L., Hu, Y., Liu, L.-J., Shi, S.-F., Lv, J.-C., Tsoi, L.C., Patrick, M.T., He, K., Berthier, C.C., Xu, H.-J., Zhou, X.-J. and Zhang, H. (2023) MTMR3 Risk Alleles Enhance Toll Like Receptor 9-Induced IgA Immunity in IgA Nephropathy. Kidney International, 104, 562-576.
https://doi.org/10.1016/j.kint.2023.06.018
[35] Makita, Y., Suzuki, H., Kano, T., Takahata, A., Julian, B.A., Novak, J. and Suzuki, Y. (2020) TLR9 Activation Induces Aberrant IgA Glycosylation via APRIL-and IL-6-Mediated Pathways in IgA Nephropathy. Kidney International, 97, 340-349.
https://doi.org/10.1016/j.kint.2019.08.022
[36] Suzuki, H., Suzuki, Y., Narita, I., Aizawa, M., Kihara, M., Yamanaka, T., Kanou, T., Tsukaguchi, H., Novak, J., Horikoshi, S. and Tomino, Y. (2008) Toll-Like Receptor 9 Affects Severity of IgA Nephropathy. Journal of the American Society of Nephrology, 19, 2384-2395.
https://doi.org/10.1681/ASN.2007121311
[37] Zheng, N., Xie, K., Ye, H., Dong, Y., Wang, B., Luo, N., Fan, J., Tan, J., Chen, W. and Yu, X. (2020) TLR7 in B Cells Promotes Renal Inflammation and Gd-IgA1 Synthesis in IgA Nephropathy. JCI Insight, 5, e136965.
[38] Liu, C., Ye, M.-Y., Yan, W.-Z., Peng, X.-F., He, L.-Y. and Peng, Y.-M. (2020) MicroRNA-630 Regulates Underglycosylated IgA1 Production in the Tonsils by Targeting TLR4 in IgA Nephropathy. Frontiers in Immunology, 11, Article 563699.
https://doi.org/10.3389/fimmu.2020.563699
[39] Wu, J., Hu, Z., Wang, Y., Hu, D., Yang, Q., Li, Y., Dai, W., Zhu, F., Yang, J., Wang, M., Zhu, H., Liu, L., He, X., Han, M., Yao, Y., Pei, G., Zeng, R. and Xu, G. (2021) Severe Glomerular C3 Deposition Indicates Severe Renal Lesions and a Poor Prognosis in Patients with Immunoglobulin A Nephropathy. Histopathology, 78, 882-895.
https://doi.org/10.1111/his.14318
[40] Yang, Y., Tang, X., Yang, Y., Li, X., Li, L., Huang, K., Li, Y., Li, J. and Fu, P. (2020) Glomerular C4 Deposition and Glomerulosclerosis Predict Worse Renal Outcomes in Chinese Patients with IgA Nephropathy. Renal Failure, 42, 629-637.
https://doi.org/10.1080/0886022X.2020.1786400
[41] Pan, M., Zhou, Q., Zheng, S., You, X., Li, D., Zhang, J., Chen, C., Xu, F., Li, Z., Zhou, Z. and Zhang, J. (2018) Serum C3/C4 Ratio Is a Novel Predictor of Renal Prognosis in Patients with IgA Nephropathy: A Retrospective Study. Immunologic Research, 66, 381-391.
https://doi.org/10.1007/s12026-018-8995-6
[42] Zhu, L., Guo, W.-Y., Shi, S.-F., Liu, L.-J., Lv, J.-C., Medjeral-Thomas, N.R., Lomax-Browne, H.J., Pickering, M.C. and Zhang, H. (2018) Circulating Complement Factor H-Related Protein 5 Levels Contribute to Development and Progression of IgA Nephropathy. Kidney International, 94, 150-158.
https://doi.org/10.1016/j.kint.2018.02.023
[43] Tortajada, A., Gutierrez, E., Goicoechea de Jorge, E., Anter, J., Segarra, A., Espinosa, M., Blasco, M., Roman, E., Marco, H., Quintana, L.F., Gutierrez, J., Pinto, S., Lopez-Trascasa, M., Praga, M. and Rodriguez de Cordoba, S. (2017) Elevated Factor H-Related Protein 1 and Factor H Pathogenic Variants Decrease Complement Regulation in IgA Nephropathy. Kidney International, 92, 953-963.
https://doi.org/10.1016/j.kint.2017.03.041
[44] Liu, L.-L., Liu, N., Chen, Y., Wang, L.-N., Jiang, Y., Wang, J., Li, X.-L., Yao, L. and Fan, Q.-L. (2013) Glomerular Mannose-Binding Lectin Deposition Is a Useful Prognostic Predictor in Immunoglobulin A Nephropathy. Clinical and Experimental Immunology, 174, 152-160.
https://doi.org/10.1111/cei.12154
[45] Guo, W.-Y., Zhu, L., Meng, S.-J., Shi, S.-F., Liu, L.-J., Lv, J.-C. and Zhang, H. (2017) Mannose-Binding Lectin Levels Could Predict Prognosis in IgA Nephropathy. Journal of the American Society of Nephrology, 28, 3175-3181.
https://doi.org/10.1681/ASN.2017010076
[46] Moresco, R.N., Bochi, G.V., Stein, C.S., De Carvalho, J.A.M., Cembranel, B.M. and Bollick, Y.S. (2018) Urinary Kidney Injury Molecule-1 in Renal Disease. Clinica Chimica Acta, 487, 15-21.
https://doi.org/10.1016/j.cca.2018.09.011
[47] Bolignano, D., Lacquaniti, A., Coppolino, G., Donato, V., Campo, S., Fazio, M.R., Nicocia, G. and Buemi, M. (2009) Neutrophil Gelatinase-Associated Lipocalin (NGAL) and Progression of Chronic Kidney Disease. Clinical Journal of the American Society of Nephrology, 4, 337-344.
https://doi.org/10.2215/CJN.03530708
[48] Groza, Y., Jemelkova, J., Kafkova, L.R., Maly, P. and Raska, M. (2022) IL-6 and Its Role in IgA Nephropathy Development. Cytokine & Growth Factor Reviews, 66, 1-14.
https://doi.org/10.1016/j.cytogfr.2022.04.001
[49] Harada, K., Akai, Y., Kurumatani, N., Iwano, M. and Saito, Y. (2002) Prognostic Value of Urinary Interleukin 6 in Patients with IgA Nephropathy: An 8-Year Follow-Up Study. Nephron, 92, 824-826.
https://doi.org/10.1159/000065465
[50] Zhao, W., Feng, S., Wang, Y., Wang, C., Ren, P., Zhang, J., Yu, L., Zhang, C., Bai, L., Chen, Y., Zhou, Q., Qu, L., Chen, J. and Jiang, H. (2023) Elevated Urinary IL-6 Predicts the Progression of IgA Nephropathy. Kidney International Reports, 8, 519-530.
https://doi.org/10.1016/j.ekir.2022.12.023
[51] Deng, Y.-J., Lin, X.-P., Li, X.-Q., Lu, P.-F., Cai, Y., Liu, L.-L., Pei, G.-C. and Han, M. (2021) Interleukin-7 Is Associated with Clinical and Pathological Activities in Immunoglobulin A Nephropathy and Protects the Renal Proximal Tubule Epithelium from Cellular Fibrosis. Current Medical Science, 41, 880-887.
https://doi.org/10.1007/s11596-021-2409-z
[52] Ju, W., Nair, V., Smith, S., Zhu, L., Shedden, K., Song, P.X.K., Mariani, L.H., Eichinger, F.H., Berthier, C.C., Randolph, A., Lai, J.Y., Zhou, Y., Hawkins, J.J., Bitzer, M., Sampson, M.G., Thier, M., Solier, C., Duran-Pacheco, G.C., Duchateau-Nguyen, G., Essioux, L., Schott, B., Formentini, I., Magnone, M.C., Bobadilla, M., Cohen, C.D., Bagnasco, S.M., Barisoni, L., Lv, J., Zhang, H., Wang, H.Y., Brosius, F.C., Gadegbeku, C.A. and Kretzler, M. (2015) Tissue Transcriptome-Driven Identification of Epidermal Growth Factor as a Chronic Kidney Disease Biomarker. Science Translational Medicine, 316, 316ra193.
https://doi.org/10.1126/scitranslmed.aac7071
[53] Torres, D.D., Rossini, M., Manno, C., Mattace-Raso, F., D’Altri, C., Ranieri, E., Pontrelli, P., Grandaliano, G., Gesualdo, L. and Schena, F.P. (2008) The Ratio of Epidermal Growth Factor to Monocyte Chemotactic Peptide-1 in the Urine Predicts Renal Prognosis in IgA Nephropathy. Kidney International, 73, 327-333.
https://doi.org/10.1038/sj.ki.5002621
[54] Han, S.Y., Jeong, K.H., Ihm, C.-G., Kang, Y.S. and Cha, D.R. (2021) Serum Interferon-Gamma and Urinary Monocyte Chemoattractant Peptide-1 Are Important Factors in the Pathogenesis of Immunoglobulin A Nephropathy. Kidney Research and Clinical Practice, 40, 69-76.
https://doi.org/10.23876/j.krcp.20.157
[55] Stangou, M., Alexopoulos, E., Papagianni, A., Pantzaki, A., Bantis, C., Dovas, S., Economidou, D., Leontsini, M. and Memmos, D. (2009) Urinary Levels of Epidermal Growth Factor, Interleukin-6 and Monocyte Chemoattractant Protein-1 May Act as Predictor Markers of Renal Function Outcome in Immunoglobulin A Nephropathy. Nephrology, 14, 613-620.
https://doi.org/10.1111/j.1440-1797.2008.01051.x
[56] Fang, Y., Yu, X., Liu, Y., Kriegel, A.J., Heng, Y., Xu, X., Liang, M. and Ding, X. (2013) miR-29c Is Downregulated in Renal Interstitial Fibrosis in Humans and Rats and Restored by HIF-Alpha Activation. American Journal of Physiology-Renal Physiology, 304, F1274-F1282.
https://doi.org/10.1152/ajprenal.00287.2012
[57] Pawluczyk, I.Z.A., Didangelos, A., Barbour, S.J., Er, L., Becker, J.U., Martin, R., Taylor, S., Bhachu, J.S., Lyons, E.G., Jenkins, R.H., Fraser, D., Molyneux, K., Perales-Paton, J., Saez-Rodriguez, J. and Barratt, J. (2021) Differential Expression of MicroRNA miR-150-5p in IgA Nephropathy as a Potential Mediator and Marker of Disease Progression. Kidney International, 99, 1127-1139.
https://doi.org/10.1016/j.kint.2020.12.028
[58] Liang, S., Cai, G.-Y., Duan, Z.-Y., Liu, S.-W., Wu, J., Lv, Y., Hou, K., Li, Z.-X., Zhang, X.-G. and Chen, X.-M. (2017) Urinary Sediment miRNAs Reflect Tubulointerstitial Damage and Therapeutic Response in IgA Nephropathy. BMC Nephrology, 18, Article No. 63.
https://doi.org/10.1186/s12882-017-0482-0