红景天苷促进脑缺血/再灌注后内源性神经再生的作用涉及神经营养因子
The Effect of Salidroside in Promoting Endogenous Neural Regeneration after Cerebral Ischemia/Reperfusion Involves Neurotrophic Factors
DOI: 10.12677/tcm.2024.135156, PDF, HTML, XML, 下载: 31  浏览: 53  科研立项经费支持
作者: 张继州, 蒋 畅, 韩 静*:福建省中医药科学院药物研究所,福建 福州
关键词: 红景天苷脑缺血/再灌注缺血性中风神经再生BDNFSalidroside Cerebral Ischemia/Reperfusion Ischemic Stroke Neural Regeneration BDNF
摘要: 背景:红景天苷是红景天的主要生物活性物质和药理活性物质,有报道称其对脑缺血/再灌注(I/R)具有神经保护作用。然而,红景天苷是否可以增强脑I/R后的神经再生尚不清楚。本研究探讨了红景天苷对脑I/R后内源性神经再生的影响及相关机制。方法:通过短暂性大脑中动脉闭塞/再灌注(MCAO/R)诱导大鼠局灶性I/R。为了评估神经元的存活率,对缺血半球中的神经核抗原(NeuN)进行免疫组织化学染色。此外,对缺血半球侧脑室下区(SVZ)和纹状体中的增殖性神经祖细胞生物标志物进行免疫荧光双标或三标染色,以研究神经再生情况。此外,使用逆转录聚合酶链式反应(RT-PCR)和酶联免疫吸附测定(ELISA)检测神经营养因子(NTFs)脑源性神经营养因子(BDNF)和神经生长因子(NGF)的表达。结果:红景天苷使I/R损伤后NeuN阳性细胞的损失得以恢复。脑I/R损伤显著增加了5-溴脱氧尿苷(BrdU)和doublecotin (DCX)的表达,增加了SVZ中BrdU/Nestin/DCX共同标记细胞的数量,以及纹状体中BrdU/Nestin/胶质纤维酸性蛋白(GFAP)共同标记细胞的数量。红景天苷治疗进一步促进了BrdU/DCX标记的神经母细胞和BrdU/Nestin/GFAP标记的活性星形胶质细胞的增殖。此外,红景天苷还提高了缺血周边区域BDNF和NGF的mRNA表达和蛋白浓度。结论:红景天苷可促进脑I/R后的内源性神经再生,其作用机制可能涉及对BDNF/NGF的调节。
Abstract: Background: Salidroside is the major bioactive and pharmacological active substance in Rhodiola rosea L. It has been reported to have neuroprotective effects on cerebral ischemia/reperfusion (I/R). However, whether salidroside can enhance neural regeneration after cerebral I/R is still unknown. This study investigated the effects of salidroside on the endogenous neural regeneration after cerebral I/R and the related mechanism. Methods: Focal cerebral I/R was induced in rats by transient middle cerebral artery occlusion/reperfusion (MCAO/R). To evaluate the survival of neurons, immunohistochemical staining of Neuronal Nuclei (NeuN) in the ischemic hemisphere were conducted. Also, immunofluorescence double or triple staining of the biomarkers of proliferating neural progenitor cells in Subventricular Zone (SVZ) and striatum of the ischemia hemisphere were performed to investigate the neurogenesis. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the expression of neurotrophic factors (NTFs) brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Results: Salidroside treatment ameliorated I/R induced neurobehavioral impairment, and reduced infarct volume. Salidroside also restored NeuN positive cells loss after I/R injury. Cerebral I/R injury significantly increased the expression of 5-Bromo-2'-Deoxyuridine (BrdU) and doublecotin (DCX), elevated the number of BrdU/Nestin/DCX triple-labeled cells in SVZ, and BrdU/Nestin/glial fibrillary acidic protein (GFAP) triple-labeled cells in striatum. Salidroside treatment further promoted the proliferation of BrdU/DCX labeled neuroblasts and BrdU/Nestin/GFAP labeled reactive astrocytes. Furthermore, salidroside elevated the mRNA expression and protein concentration of BDNF and NGF in ischemia periphery area, as well. Conclusions: Salidroside enhances the endogenous neural regeneration after cerebral I/R. The mechanism of the effect may involve the regulation of BDNF/NGF.
文章引用:张继州, 蒋畅, 韩静. 红景天苷促进脑缺血/再灌注后内源性神经再生的作用涉及神经营养因子[J]. 中医学, 2024, 13(5): 1013-1025. https://doi.org/10.12677/tcm.2024.135156

1. 引言

中风是工业化国家死亡率和发病率的主要原因 [1] ,缺血性中风占所有中风病例的近85% [2] 。该疾病的极高残疾率和死亡率给家庭和社会带来了极其沉重的负担。组织型纤溶酶原激活剂(t-PA)是目前美国食品和药物管理局(FDA)批准用于缺血性中风治疗的唯一治疗药物。然而,它的治疗时间窗仅为发病后3~4.5小时 [3] ,以至于大量患者无法在第一时间得到救治。减少梗死体积和促进受损大脑中新神经元的产生是中风治疗的关键方法。然而,目前尚未开发出有效的药物。越来越多的证据表明,在特定的脑区如室管膜下区(SVZ)和海马齿状回存在神经干细胞,它们具有自我更新和多能性 [4] 。据报道,缺血/缺氧等刺激会增强这些区域的神经发生 [5] 。促进内源性神经再生已成为中风治疗的关键策略 [6] 。

红景天苷是从红景天的根和根茎中提取的主要活性成分,在其他物种中如女贞 [7] 、桂花 [8] 、和非洲槲寄生 [9] 等也有发现。近年来,红景天苷因其在许多器官系统中具有广泛的药理作用而越来越受到关注 [10] [11] [12] [13] 。特别是,体外或体内实验证实,红景天苷对神经系统疾病有很好的治疗作用 [14] 。近年来,许多研究人员报道了红景天苷对脑缺血损伤的影响。研究发现,红景天苷对缺血/再灌注(I/R)损伤具有高度的神经保护作用,治疗时间窗较宽 [15] [16] ,主要通过抗氧化和抗炎作用对脑缺血发挥神经保护作用 [17] [18] [19] [20] 。在我们之前的研究中,我们也报道了Nrf2通路参与红景天苷对脑缺血损伤的抗氧化作用 [21] 。我们还发现,红景天苷的神经保护作用与多巴胺能系统的调节有关 [22] 。

值得注意的是,有证据表明红景天苷可以促进阿尔茨海默病大鼠模型的神经发生 [23] [24] 。它诱导间充质干细胞(MSCs)分化为多巴胺能神经元 [25] 。此外,发现红景天苷可以保护大鼠神经干细胞免受缺氧诱导的损伤 [26] 。这些事实表明,红景天苷可能具有促进神经发生的作用。然而,到目前为止,红景天苷对脑缺血后内源性神经再生的影响尚未见报道。

本研究探讨了红景天苷对局灶性脑I/R大鼠模型神经康复和内源性神经再生的影响,并探讨了其相关机制。

2. 材料和方法

2.1. 动物

雄性Sprague-Dawley大鼠(8~10周龄),体重280~350 g,动物在12小时的光/暗循环下被关在笼子里,自由获得标准饮食和水。本研究方案符合国际动物实验法,并经福建省中医药科学院伦理委员会批准。(批准号:FJATCM-IAC2021008)

2.2. 短暂性大脑中动脉闭塞(MCAO)模型

根据我们先前研究 [13] 修改的方法进行局灶性脑I/R。大鼠用2%~3%异氟烷麻醉。麻醉后,在小型动物麻醉机上用1%~2%异氟烷维持动物。在颈部进行垂直中线切口,暴露并分离右颈总动脉(CCA)、颈外动脉(ECA)和颈内动脉(ICA)。对ECA的分支进行解剖、凝固和切割。将具有硅涂层尖端的尼龙线(对于280~350 g的大鼠,直径为0.38 mm)通过ECA残端插入ICA中,直到感觉到轻度阻力。此时,缝合线已向颈动脉分叉远端推进约17~18 mm,并闭塞大脑中动脉(MCA)。120分钟后,将缝线从ICA中取出,以允许MCA再灌注。然后立即对远端ICA进行凝固。在手术过程中,通过直肠监测体温,并使用加热垫将体温保持在36.5℃至37.0℃之间。假手术组的大鼠接受了所有的手术,但没有栓塞。

为了确认MCAO模型的成功,在再灌注后立即通过以下5点评分系统评估神经行为:0,无缺陷;1) 难以完全伸展对侧前肢;2) 难以直线行走;3) 向对侧旋转;4) 向对侧倾斜。评分低于3分的大鼠被纳入以下测试,并根据其行为评分进行分组,以确保实验开始时神经损伤水平的一致性。

2.3. 实验分组和5-溴-2'-脱氧尿苷(BrdU)注射

为了评估红景天苷对神经行为恢复的影响,将52只大鼠分为5组:假手术组(Sham, n = 12)、载体组(IscVeh, n = 12)和3个红景天苷治疗组(分别为IscSal20、IscSal40和IscSal80,n = 8、12和8)。在脑I/R后第7天处死它们以进行进一步分析。另外15只大鼠分为3组:假手术组(Sham, n = 5)、溶剂载体组(IscVeh, n = 5),和红景天苷治疗组(IscSal40, n = 5)。在手术后第3天处死它们,制备脑切片用于免疫荧光和免疫组织化学染色,以检测红景天苷对脑I/R后神经再生的影响。IscSal20、IscSal40和IscSal80组的大鼠腹膜内给药20、40、80 mg/kg红景天苷,每天一次,在脑I/R后立即开始,并持续指定的时间段。同时,溶剂载体组和假手术组大鼠给予生理盐水。

对于用于检测神经再生的大鼠,在I/R后第1天和第2天腹腔注射BrdU (Sigma, 50 mg/kg),以标记增殖细胞。

2.4. 荧光和免疫组织化学染色

再灌注后3或7天,最后一次红景天苷给药结束后2小时,用异氟烷对动物进行深度麻醉,然后用0.9%生理盐水和4%多聚甲醛溶液从左心室灌注,直到四肢静止。取出大脑,在4%多聚甲醛中后固定,并在蔗糖梯度中脱水至少48小时。然后,用冷冻切片机将30 μm厚的冷冻冠状切片切片,置于防冻缓冲液中,在−20℃下保存,然后染色。

免疫荧光和免疫组织化学染色使用我们先前研究 [14] 中的方法进行。选择包含皮层、SVZ和纹状体的切片(前囟−2.0至−1.0 mm;Paxinos和Watson,2005)。在漂浮切片上进行免疫荧光染色。对于5-溴-2'-脱氧尿苷(BrdU)染色,切片在含有10%甲酰胺的2 × SSC溶液中在65℃下孵育2小时。在2 × SSC溶液中冲洗后,将切片在2 N盐酸中于37℃下孵育30分钟,并在0.1 M硼酸溶液(pH 8.5)中冲洗两次。在0.01M磷酸盐缓冲盐水(PBS)中洗涤后,将切片在封闭试剂(0.01M PBS与5%牛血清白蛋白和0.5%Triton X-100)中在室温下孵育1小时以阻断非特异性结合。之后,用抗BrdU抗体和特定细胞标志物的抗体对切片进行双重标记。将脑切片在稀释的抗体中孵育,将其在0.01M PBS中用封闭试剂在4℃下稀释过夜。然后,用PBS洗涤切片,并在第二抗体中在37℃的加湿室中孵育1小时。在共聚焦激光扫描显微镜上观察载玻片。

为了定量,选择每只大鼠的2个不连续的切片,并拍摄每个切片的5个不重叠的视野进行测量。BrdU和DCX的免疫荧光强度用整张照片的积分光密度(IOD)表示,使用Image-J 1.51K软件对其进行分析。根据大鼠所有照片的平均IOD计算一只大鼠的免疫荧光强度。BrdU+/Nestin+/DCX+或BrdU+/-Nestin+/GFAP+细胞数的定量由对实验分组不知情的观察者进行。

对于免疫组织化学染色,将切片在3%过氧化氢酶中孵育10分钟以抑制内源性过氧化物酶活性。之后,用NeuN抗体在4℃下标记切片过夜。然后将切片与HRP-聚合物抗兔IgG工作溶液孵育15分钟,并用二氨基联苯胺(DAB)染色5分钟。之后,用二甲苯清洗切片,用中性树胶固定在载玻片上。在倒置显微镜上观察。为了定量,选择每只大鼠的2个不连续的切片,并拍摄每个切片的5个不重叠的视野进行测量。使用Image-J 1.51K软件对NeuN+细胞数进行计数。

2.5. 酶联免疫吸附测定法

为了确定红景天苷对脑组织神经营养因子的影响,在脑I/R后7天处死大鼠。在冰上解剖梗死周围区域的脑组织,并在盐水中匀浆(10% w/v)。脑源性神经营养因子(BDNF)和神经生长因子(NGF)的浓度根据制造商的说明书使用ELISA试剂盒测量。将所有样品装载在96孔板中,并在37℃下孵育40分钟。然后洗涤孔板,用生物素化抗体处理,然后在37℃下用链霉亲和素-HRP处理。最后加入TMB基质并使用硫酸(2N)停止反应。使用酶标仪在450 nm处测量孔的吸光度。

2.6. 实时逆转录定量聚合酶链式反应(RT-qPCR)分析

使用超纯RNA试剂盒从脑梗塞周围区域的脑组织中提取总RNA。在NanoDrop 2000中测量总RNA的浓度和纯度。使用HiFi-MMLV cDNA试剂盒产生互补DNA (cDNA)。将RNA稀释至最终浓度为100~500 ng/μl。定量RT-PCR在ABI 7500实时荧光定量PCR装置上使用UltraSYBR混合物(With ROX)试剂盒进行。扩增程序设置如下:95℃预变性10分钟,(95℃15秒→60℃60秒) × 45圈和65℃→95℃(每15s升温0.3℃)进行溶出曲线测定。NCBI BLAST设计的寡核苷酸引物序列如下:BDNF (152 bp),正向:CTACGAGACAAGTGTAATC,反向:TTATGAATCGCCAGCCAAT;NGF (226 bp),正向:GAGCGCATCGCTCCTT,反向:GAGCGCATCGCTCTCCTT;GADPH (138 bp),正向:TGGAGTCTACTGGCGTCTT,反向:TGTCATATTTCTCGTTCA。对所有样品进行三次分析,并使用2-ΔΔCT方法对相对基因表达进行量化,使用GADPH作为内参基因。

2.7. 统计分析

数据以平均值 ± SEM表示。所有分析均使用SPSS 20.0软件进行。多组比较通过单向方差分析进行评估,然后在数据正态分布且符合方差同质性时进行LSD检验。当数据正态分布且不符合方差齐性时,采用Games-Howell后热检验。p值小于0.05被认为具有统计学意义。

3. 结果

3.1. 红景天苷提高神经元的存活率

NeuN是一种神经元特异性核蛋白,可在整个神经系统的大多数类型的神经元细胞中观察到其表达。因此,我们使用NeuN作为生物标志物来研究神经元细胞的总体存活率(图1)。MCAO手术后,缺血性纹状体中的NeuN+细胞数量显著减少,NeuN表达的阳性区域缩小(图1(A),图1(B),p < 0.001)。在红景天苷处理后,NeuN+细胞数量显著增加。此外,与IscVeh组相比,NeuN表达的阳性区域扩大(在不同时间点p < 0.05或p < 0.01)。这些结果表明,红景天苷可能促进脑I/R后神经元细胞的存活。

Figure 1. Salidroside increased the numbers of NeuN+ cells, and the immunoreactivity area of NeuN expression in ischemic striatum after MCAO. (A) NeuN IHC staining in striatum, 3 days or 7 days after MCAO. The dotted line showed the barrier of NeuN+ areas. Scare bar, 100 µm; (B) NeuN+ cell numbers. Data are expressed as mean ± SEM (n = 5 in the sham, IscVeh, IscSal40 groups). Multiple group comparisons were assessed by one-way analysis of variance, followed by LSD-t test. ###: p < 0.001 compared to the sham group. *: p < 0.05, **: p < 0.01, compared to the IscVeh group

图1. 红景天苷增加MCAO后缺血性纹状体中NeuN+细胞的数量和NeuN表达的阳性面积。(A) MCAO后3天或7天纹状体NeuN-IHC染色。虚线显示了NeuN+区域的边界。比例尺:100 µm。(B) NeuN+细胞数。数据表示为平均值 ± SEM (假手术组、IscVeh组和IscSal40组中n = 5)。通过单因素方差分析和LSD-t检验评估多组比较。###:与假手术组相比p < 0.001。*:与IscVeh组相比,p < 0.05,**:p < 0.01

3.2. 红景天苷促进I/R后神经再生

一些生物标志物可以用来显示神经再生和分化的情况。5-溴-2'-脱氧尿苷(BrdU)可以识别增殖细胞,巢蛋白被认为是神经干/祖细胞标志物,而双皮质素(DCX)是神经前体细胞的生物标志物,胶质纤维酸性蛋白(GFAP)是星形胶质细胞的生物标记物。我们研究了标记细胞,特别是双/三标记共定位细胞在缺血性纹状体和邻近的室下区(SVZ)中的表达和定位(图2图3)。

Figure 2. Effect of salidroside on BrdU/Nestin/DCX immunoreactivity in ischemic hemisphere. Red fluorescence from Cy3 indicates BrdU, blue fluorescence from FITC indicates Nestin, and green fluorescence from Alexa Fluor 488 indicates DCX. The arrows show the co-localization of BrdU/Nestin/DCX. Scale bars: 100 μm and 500 μm for enlarged images. (A) 3 days after MCAO; (B) 7 days after MCAO; (C) Quantification of immunofluorescence intensity of BrdU+ cells in the ischemic hemisphere; (D) Quantification of immunofluorescence intensity of DCX+ cells in the SVZ; (E) Numbers of BrdU+/Nestin+ cells in SVZ; (F) Numbers of BrdU+/Nestin+ cells in the striatum; (G) Numbers of BrdU+/Nestin+/DCX+ cells in SVZ. Data are expressed as mean ± SEM (n = 3 in the sham, n = 5 in IscVeh, IscSal40 groups). Multiple group comparisons were assessed by one-way analysis of variance, followed by LSD-t test. #: p < 0.05, ##: p < 0.01, compared to the sham group. *: p < 0.05, **: p < 0.01, compared to the IscVeh group. ns: no significance

图2. 红景天苷对缺血半球BrdU/Nestin/DCX免疫反应性的影响。Cy3通道的红色荧光表示BrdU,FITC通道的蓝色荧光表示Nestin,Alexa Fluor 488通道的绿色荧光表示DCX。箭头显示BrdU/Nestin/DCX的共同定位。比例尺:放大图像为100 μm和500 μm。(A) MCAO后3天。(B) MCAO后7天。(C) 缺血半球BrdU+细胞免疫荧光强度的定量。(D) SVZ中DCX+细胞免疫荧光强度的定量。(E) SVZ中BrdU+/Nestin+细胞的数量。(F) 纹状体中BrdU+/Nestin+细胞的数量。(G) SVZ中BrdU+/Nestin+/DCX+细胞的数量。数据表示为平均值 ± SEM (假手术组n = 3,IscVeh组n = 5,IscSal40组)。通过单因素方差分析和LSD-t检验评估多组比较。#:与假手术组相比,p < 0.05,##:p < 0.01。*:与IscVeh组相比,p < 0.05,**:p < 0.01。ns:没有显著性差异

Figure 3. Effect of salidroside on BrdU/Nestin/GFAP immunoreactivity in ischemic hemisphere. Red fluorescence from Cy3 indicates BrdU, blue fluorescence from FITC indicates Nestin, and green fluorescence from Alexa Fluor 488 indicates GFAP. The arrows show the co-localization of BrdU/Nestin/GFAP. Scale bars: 100 μm. (A) 3 days after MCAO; (B) 7 days after MCAO; (C) Quantification of immunofluorescence intensity of GFAP+ cells in striatum; (D) Quantification of numbers of BrdU+/Nestin+/GFAP+ cells in striatum. Data are expressed as mean ± SEM (n = 3 in the sham, n = 4 in IscVeh, IscSal40 groups). Multiple group comparisons were assessed by one-way analysis of variance, followed by LSD-t test. ##: p < 0.01 compared to the sham group. *: p < 0.05 compared to the IscVeh group. ns: no significance

图3. 红景天苷对缺血半球BrdU/Nestin/GGFAP免疫反应性的影响。Cy3通道的红色荧光表示BrdU,FITC通道的蓝色荧光表示Nestin,Alexa Fluor 488通道的绿色荧光表示GFAP。箭头显示BrdU/Nestin/GFP的共同定位。比例尺:放大图像为100 μm和500 μm。(A) MCAO后3天。(B) MCAO后7天。(C) 纹状体中GFAP+细胞免疫荧光强度的定量。(D) 纹状体中BrdU+/Nestin+/GFAP+细胞数量的定量。数据表示为平均值 ± SEM (假手术组n = 3,IscVeh组n = 5,IscSal40组)。通过单因素方差分析和LSD-t检验评估多组比较。#:与假手术组相比,p < 0.05,#:p < 0.01。**:与IscVeh组相比p < 0.01。ns:没有显著性差异

SVZ是大脑中的“干细胞生态位”之一。假手术组SVZ内存在少量BrdU+细胞。I/R后,纹状体中出现一些BrdU+细胞。MCAO手术后3天,纹状体和SVZ中BrdU免疫反应强度均增加(图2(A)、图2(B)、图2(C)),与假手术组相比,这意味着脑I/R后神经细胞的增殖增强。一些巢蛋白阳性神经上皮细胞也在脑I/R前增殖。在IscVeh组中,BrdU+/Nestin+细胞数显著增加(图2(A)、图2(B)、图2(E),p < 0.01)与假手术组相比。

DCX阳性神经前体细胞,即所谓的未成熟神经元,仅分布在SVZ中。这些细胞具有向再生神经元细胞发育的能力。MCAO后7天,它们的光密度积分值略有增加(图2(A)、图2(B)、图2(D)),与假手术组相比。同时,在MCAO后7天,SVZ中的BrdU+/Nestin+/DCX+细胞数量增加(图3(A)、图3(B)、图3(F),p < 0.01)。

给予红景天苷后,MCAO后7天BrdU+的强度显著增强(图2(A)、图2(B)、图2(C),p < 0.05)。类似地,与IscVeh组相比,红景天苷治疗后7天,DCX免疫反应性增加(图2(A)、图2(B)、图2(D),p < 0.01)。在再灌注后7天,与IscVeh组相比,红景天苷处理增强了SVZ和纹状体中的BrdU+/Nestin+细胞数量(图2(A)、图2(B),图2(E),图2(F),p < 0.01),以及SVZ中的BrdU+/Netin+/DCX+细胞数量。总之,红景天苷治疗可以通过增强神经前体细胞和干细胞增殖来增强神经再生。

Figure 4. Salidroside increased the protein level and mRNA expression of BDNF and NGF at 7 days after MCAO Concentration of BDNF (A) and NGF (B) in peri-infarct area were determined by ELISA. Relative mRNA levels of BDNF (A) and NGF (B) in ischemic area were determined by RT-PCR. Data are expressed as mean ± SEM (n = 7 in each group). Multiple group comparisons were assessed by one-way analysis of variance, followed by LSD-t test. #: p < 0.05, ##: p < 0.01, ###: p < 0.001 compared to the sham group. *: p < 0.05, ***: p < 0.001, compared to the IscVeh group

图4. 通过ELISA测定MCAO后7天,红景天苷增加了BDNF和NGF的蛋白水平和mRNA表达。RT-PCR检测缺血区BDNF(A)和NGF(B)的相对mRNA水平。数据表示为平均值 ± SEM (每组n = 7)。通过单因素方差分析和LSD-t检验评估多组比较。#:与假手术组相比,p < 0.05,##:p < 0.01,##:p < 0.001。*:与IscVeh组相比,p < 0.05,***:p < 0.001

星形胶质细胞在脑损伤后被激活,结果,MCAO后GFAP免疫反应强度显著增强(图3(A)~(C),p < 0.01)。脑I/R后,一些GFAP+细胞也被BrdU和Nestin标记,这主要在纹状体和SVZ中观察到。红景天苷处理不影响GFAP的表达(图3(A)~(C)),但与IscVeh组相比,它可以在I/R后3天进一步增加BrdU+/Nestin+/GFAP+细胞数量(图3(A)、图3(B)、图3(D),p < 0.01)。总之,尽管红景天苷不影响缺血性损伤后GFAP的上调,但它可能会增加表达增殖标志物BrdU和干细胞标志物如Nestin的增殖反应性星形胶质细胞的数量。

3.3. 红景天苷对脑BDNF和NGF蛋白水平及mRNA表达的影响

BDNF和NGF是常见的神经营养因子,调节神经系统的发育、维持和功能。通过ELISA对神经营养因子的蛋白质水平进行定量(图4)。MCAO后BDNF和NGF蛋白水平均下降(图4(A),图4(B),p < 0.05)。与IscVeh组相比,红景天苷治疗显著提高了BDNF和NGF水平(图4(A),图4(B),p < 0.05)。同时测定BDNF和NGF的mRNA表达。MCAO手术后,两种神经营养因子的相对mRNA水平急剧下降(图与假手术组相比,图4(C),图4(D),p < 0.001)。红景天苷治疗后,BDNF和NGF的mRNA水平显著升高(图与IscVeh组相比,图4(C),图4(D),p < 0.001)。基于这些结果,结合BDNF和NGF的蛋白水平变化,红景天苷可能有助于脑I/R后神经营养因子的分泌。

4. 讨论

在本研究中,我们研究了红景天苷对脑I/R的神经保护作用及其对神经再生的活性免疫组织化学和双标记荧光染色分析显示,红景天苷促进SVZ神经母细胞(以BrdU+/Nestin+/DCX+共染色表示)和缺血周围区反应性星形胶质细胞(以BrdU+/Nestin+/GFAP+共染色显示)的增殖。此外,红景天苷提高了BDNF/NGF的mRNA水平、BDNF的蛋白水平,这可能参与了红景天苷促进神经发生的机制。

红景天苷对脑缺血损伤的作用以前已有文献记载。先前的研究报道,红景天苷以剂量依赖的方式在20~100 mg/kg的剂量下对脑I/R大鼠发挥神经保护作用 [16] [18] [27] [28] [29] 。我们目前的研究结果表明,在40 mg/kg和80 mg/kg剂量的红景天苷治疗中,脑缺血再灌注损伤引起的神经行为损伤具有一定的剂量依赖性。这与其他报道一致。由于40 mg/kg剂量的红景天苷已经显示出显著的治疗效果,我们在随后的实验中使用该剂量来评估红景天苷促进脑缺血后神经再生的作用。

DCX是一种在新生神经元中表达的微管相关蛋白 [30] ,通常用作神经前体细胞的标志物。巢蛋白是神经上皮干细胞和放射状胶质细胞中的一种中间丝蛋白,是胚胎神经干细胞的标志物,其表达一直持续到星形胶质细胞发育。本研究发现,缺血性损伤后SVZ区出现大量BrdU+增殖细胞。它们中的许多与DCX共存。同时,Nestin掺入BrdU+细胞也在损伤区域进行标记。BrdU+/Nestin+和BrdU+/DCX+细胞位于不同但重叠的区域,表明脑缺血刺激了内源性神经母细胞的明显增殖。这一现象与许多其他文献报道一致 [31] 。红景天苷可增加SVZ区BrdU+/Nestin+/DCX+细胞的数量,提示红景天苷可促进脑缺血后神经母细胞的增殖。

星形胶质细胞参与了脑缺血损伤的病理过程。它们对脑缺血损伤的反应是通过变得肿胀和GFAP的上调,这种常见现象被称为反应性星形胶质细胞增生。反应性星形胶质细胞被证明对脑缺血后的神经行为恢复有有益影响 [32] 。使用某些试剂抑制星形胶质细胞或敲除GFAP基因会损害或延迟神经功能恢复 [33] 。此外,反应性星形胶质细胞不仅在形态上发生了变化,而且其中一些还增殖了。大约15%~40%的星形胶质细胞变为增殖星形胶质细胞,通过GFAP和BrdU双重染色进行标记。此外,在纹状体的损伤周围区域,大多数增殖的星形胶质细胞被Nestin标记,这表明被缺血损伤激活的星形胶质瘤恢复了祖细胞标记。其他研究人员先前也观察到了这种现象 [34] 。缺血性脑损伤后,在神经细胞分化因子NeuroD1作用后,纹状体星形胶质细胞转分化为功能成熟神经元 [35] 。这是身体对损伤的自发修复机制,有助于功能恢复。星形胶质细胞能够转分化为神经元的能力被用于中风的治疗。一项针对非人类灵长类动物的研究已经实现了操纵星形胶质细胞到神经元的转化 [36] ,表明该疗法具有很好的前景。在本研究中,尽管没有发现红景天苷对GFAP表达的影响,但红景天苷的治疗显著增加了反应性星形胶质细胞的增殖,这些细胞表达祖细胞标志物,这表明红景天苷可能具有促进内源性星形胶质细胞向神经元转化的潜在作用。

BDNF和NGF是神经营养因子家族的成员。它们是参与神经元发育、分化和存活的内源性蛋白质。BDNF在促进神经再生、调节突触可塑性和脑缺血后功能恢复方面发挥重要作用 [37] 。许多研究报告称,中风后BDNF水平下降 [38] ,提高BDNF水平的治疗或药物已被证明有助于中风后的康复 [39] [40] 。NGF在调节神经系统中神经群体的生长、发育和可塑性方面发挥着重要作用。NGF可提高神经细胞在体内和体外的存活率。它具有保护脑缺血后延迟神经元死亡的能力 [41] 。与BDNF类似,脑I/R后NGF表达下调,在缺血后早期给予外源性NGF可减轻脑梗死并改善神经行为评估 [42] 。NGF可以诱导星形胶质细胞迁移,但不影响增殖 [43] 。本研究发现红景天苷能促进BDNF和NGF的转录。此外,红景天苷处理也提高了它们的蛋白质水平。研究表明,红景天苷对BDNF敲除小鼠脑缺血损伤的保护作用受到抑制 [44] 。另一项研究表明,红景天苷在抑郁症小鼠模型中上调BDNF基因 [45] 。红景天苷通过调节神经营养因子(BDNF、GDNF和CNTF)影响施旺细胞生长 [46] 。这些研究和我们目前的发现表明,BDNF和NGF等神经营养因子的上调可能是红景天苷发挥多种神经保护作用的重要机制。

5. 结论

我们目前的工作表明,红景天苷可以增强神经祖细胞和反应性星形胶质细胞的增殖。其机制可能涉及红景天苷提高BDNF/NGF表达。本研究增加了对红景天苷神经保护作用机制的理解。

基金项目

本研究得到福建省自然科学基金项目(2021J01910)的资助。

NOTES

*通讯作者。

参考文献

[1] Paul, S. and Candelario-Jalil, E. (2021) Emerging Neuroprotective Strategies for the Treatment of Ischemic Stroke: An Overview of Clinical and Preclinical Studies. Experimental Neurology, 335, Article ID: 113518.
https://doi.org/10.1016/j.expneurol.2020.113518
[2] Sarmah, D., Agrawal, V., Rane, P., Bhute, S., Watanabe, M., Kalia, K., Ghosh, Z., Dave, K.R., Yavagal, D.R. and Bhattacharya, P. (2018) Mesenchymal Stem Cell Therapy in Ischemic Stroke: A Meta-Analysis of Preclinical Studies. Clinical Pharmacology and Therapeutics, 103, 990-998.
https://doi.org/10.1002/cpt.927
[3] Schmidt, A. and Minnerup, J. (2016) Promoting Recovery from Ischemic Stroke. Expert Review of Neurotherapeutics, 16, 173-186.
https://doi.org/10.1586/14737175.2016.1134324
[4] Tanaka, Y., Tanaka, R., Liu, M., Hattori, N. and Urabe, T. (2010) Cilostazol Attenuates Ischemic Brain Injury and Enhances Neurogenesis in the Subventricular Zone of Adult Mice after Transient Focal Cerebral Ischemia. Neuroscience, 171, 1367-1376.
https://doi.org/10.1016/j.neuroscience.2010.10.008
[5] Fisch, U., Brégère, C., Geier, F., Chicha, L. and Guzman, R. (2020) Neonatal Hypoxia-Ischemia in Rat Elicits a Region-Specific Neurotrophic Response in SVZ Microglia. Journal of Neuroinflammation, 17, Article No. 26.
https://doi.org/10.1186/s12974-020-1706-y
[6] Haupt, M., Gerner, S.T., Bahr, M. and Doeppner, T.R. (2023) Neuroprotective Strategies for Ischemic Stroke-Future Perspectives. International Journal of Molecular Sciences, 24, Article No. 4334.
https://doi.org/10.3390/ijms24054334
[7] Kim, H., Kong, C.S. and Seo, Y. (2022) Salidroside, 8(E)-Nuezhenide, and Ligustroside from Ligustrum japonicum Fructus Inhibit Expressions of MMP-2 and-9 in HT 1080 Fibrosarcoma. International Journal of Molecular Sciences, 23, Article No. 2660.
https://doi.org/10.3390/ijms23052660
[8] Jiang, Y., Mao, S., Huang, W., Lu, B., Cai, Z., Zhou, F., Li, M., Lou, T. and Zhao, Y. (2016) Phenylethanoid Glycoside Profiles and Antioxidant Activities of Osmanthus fragrans Lour. Flowers by UPLC/PDA/MS and Simulated Digestion Model. Journal of Agricultural and Food Chemistry, 64, 2459-2466.
https://doi.org/10.1021/acs.jafc.5b03474
[9] Agbo, M.O., Odimegwu, D.C., Okoye, F.B.C. and Osadebe, P.O. (2017) Antiviral Activity of Salidroside from the Leaves of Nigerian Mistletoe (Loranthus micranthus Linn) Parasitic on Hevea brasiliensis against Respiratory Syncytial Virus. Pakistan Journal of Pharmaceutical Sciences, 30, 1251-1256.
[10] Tian, X., Huang, Y., Zhang, X., Fang, R., Feng, Y., Zhang, W., Li, L. and Li, T. (2022) Salidroside Attenuates Myocardial Ischemia/Reperfusion Injury via AMPK-Induced Suppression of Endoplasmic Reticulum Stress and Mitochondrial Fission. Toxicology and Applied Pharmacology, 448, Article ID: 116093.
https://doi.org/10.1016/j.taap.2022.116093
[11] Jiang, S., Fan, F., Yang, L., Chen, K., Sun, Z., Zhang, Y., Cairang, N., Wang, X. and Meng, X. (2022) Salidroside Attenuates High Altitude Hypobaric Hypoxia-Induced Brain Injury in Mice via Inhibiting NF-KappaB/NLRP3 Pathway. European Journal of Pharmacology, 925, Article ID: 175015.
https://doi.org/10.1016/j.ejphar.2022.175015
[12] Luan, X., Cui, C., Jiang, J., Wang, C., Li, L., Li, H., Xu, C., Li, L., Chi, Y. and Yan, G. (2022) Salidroside Mitigates Airway Inflammation in Asthmatic Mice via the AMPK/Akt/GSK3beta Signaling Pathway. International Archives of Allergy and Immunology, 183, 326-336.
https://doi.org/10.1159/000519295
[13] Yao, F., Jiang, X., Qiu, L., Peng, Z., Zheng, W., Ding, L. and Xia, X. (2022) Long-Term Oral Administration of Salidroside Alleviates Diabetic Retinopathy in Db/Db Mice. Frontiers in Endocrinology, 13, Article ID: 861452.
https://doi.org/10.3389/fendo.2022.861452
[14] Han, J., Zhang, J.Z., Zhong, Z.F., Li, Z.F., Pang, W.S., Hu, J. and Chen, L.D. (2018) Gualou Guizhi Decoction Promotes Neurological Functional Recovery and Neurogenesis Following Focal Cerebral Ischemia/Reperfusion. Neural Regeneration Research, 13, 1408-1416.
https://doi.org/10.4103/1673-5374.235296
[15] Lai, W., Zheng, Z., Zhang, X., Wei, Y., Chu, K., Brown, J., Hong, G. and Chen, L. (2015) Salidroside-Mediated Neuroprotection Is Associated with Induction of Early Growth Response Genes (EGRS) across a Wide Therapeutic Window. Neurotoxicity Research, 28, 108-121.
https://doi.org/10.1007/s12640-015-9529-9
[16] Wei, Y., Hong, H., Zhang, X., Lai, W., Wang, Y., Chu, K., Brown, J., Hong, G. and Chen, L. (2017) Salidroside Inhibits Inflammation through PI3K/Akt/HIF Signaling after Focal Cerebral Ischemia in Rats. Inflammation, 40, 1297-1309.
https://doi.org/10.1007/s10753-017-0573-x
[17] Hu, H., Li, Z., Zhu, X., Lin, R. and Chen, L. (2014) Salidroside Reduces Cell Mobility via NF-KappaB and MAPK Signaling in LPS-Induced BV2 Microglial Cells. Evidence-Based Complementary and Alternative Medicine: ECAM, 2014, Article ID: 383821.
https://doi.org/10.1155/2014/383821
[18] Lai, W., Xie, X., Zhang, X., Wang, Y., Chu, K., Brown, J., Chen, L. and Hong, G. (2018) Inhibition of Complement Drives Increase in Early Growth Response Proteins and Neuroprotection Mediated by Salidroside after Cerebral Ischemia. Inflammation, 41, 449-463.
https://doi.org/10.1007/s10753-017-0701-7
[19] Liu, X., Wen, S., Yan, F., Liu, K., Liu, L., Wang, L., Zhao, S. and Ji, X. (2018) Salidroside Provides Neuroprotection by Modulating Microglial Polarization after Cerebral Ischemia. Journal of Neuroinflammation, 15, Article No. 39.
https://doi.org/10.1186/s12974-018-1081-0
[20] Wang, Y., Su, Y., Lai, W., Huang, X., Chu, K., Brown, J. and Hong, G. (2020) Salidroside Restores an Anti-Inflammatory Endothelial Phenotype by Selectively Inhibiting Endothelial Complement after Oxidative Stress. Inflammation, 43, 310-325.
https://doi.org/10.1007/s10753-019-01121-y
[21] Han, J., Xiao, Q., Lin, Y.H., Zheng, Z.Z., He, Z.D., Hu, J. and Chen, L.D. (2015) Neuroprotective Effects of Salidroside on Focal Cerebral Ischemia/Reperfusion Injury Involve the Nuclear Erythroid 2-Related Factor 2 Pathway. Neural Regeneration Research, 10, 1989-1996.
https://doi.org/10.4103/1673-5374.172317
[22] Zhong, Z.F., Han, J., Zhang, J.Z., Xiao, Q., Chen, J.Y., Zhang, K., Hu, J. and Chen, L.D. (2019) Neuroprotective Effects of Salidroside on Cerebral Ischemia/Reperfusion-Induced Behavioral Impairment Involves the Dopaminergic System. Frontiers in Pharmacology, 10, Article No. 1433.
https://doi.org/10.3389/fphar.2019.01433
[23] Qu, Z.Q., Zhou, Y., Zeng, Y.S., Lin, Y.K., Li, Y., Zhong, Z.Q. and Chan, W.Y. (2012) Protective Effects of a Rhodiola Crenulata Extract and Salidroside on Hippocampal Neurogenesis against Streptozotocin-Induced Neural Injury in the Rat. PLOS ONE, 7, E29641.
https://doi.org/10.1371/journal.pone.0029641
[24] Ha, X.Q., Yang, B., Hou, H.J., Cai, X.L., Xiong, W.Y. and Wei, X.P. (2020) Protective Effect of Rhodioloside and Bone Marrow Mesenchymal Stem Cells Infected with HIF-1-Expressing Adenovirus on Acute Spinal Cord Injury. Neural Regeneration Research, 15, 690-696.
https://doi.org/10.4103/1673-5374.266920
[25] Zhao, H.B., Ma, H., Ha, X.Q., Zheng, P., Li, X.Y., Zhang, M., Dong, J.Z. and Yang, Y.S. (2014) Salidroside Induces Rat Mesenchymal Stem Cells to Differentiate into Dopaminergic Neurons. Cell Biology International, 38, 462-471.
https://doi.org/10.1002/cbin.10217
[26] Yan, R., Xu, H. and Fu, X. (2018) Salidroside Protects Hypoxia-Induced Injury by Up-Regulation of MiR-210 in Rat Neural Stem Cells. Biomedicine & Pharmacotherapy, 103, 1490-1497.
https://doi.org/10.1016/j.biopha.2018.04.184
[27] Zuo, W., Yan, F., Zhang, B., Hu, X. and Mei, D. (2018) Salidroside Improves Brain Ischemic Injury by Activating PI3K/Akt Pathway and Reduces Complications Induced by Delayed TPA Treatment. European Journal of Pharmacology, 830, 128-138.
https://doi.org/10.1016/j.ejphar.2018.04.001
[28] Chen, T., Ma, Z., Zhu, L., Jiang, W., Wei, T., Zhou, R., Luo, F., Zhang, K., Fu, Q., Ma, C., et al. (2016) Suppressing Receptor-Interacting Protein 140: A New Sight for Salidroside to Treat Cerebral Ischemia. Molecular Neurobiology, 53, 6240-6250.
https://doi.org/10.1007/s12035-015-9521-7
[29] Coviello, S., Gramuntell, Y., Klimczak, P., Varea, E., Blasco-Ibanez, J.M., Crespo, C., Gutierrez, A. and Nacher, J. (2022) Phenotype and Distribution of Immature Neurons in the Human Cerebral Cortex Layer II. Frontiers in Neuroanatomy, 16, Article ID: 851432.
https://doi.org/10.3389/fnana.2022.851432
[30] Yu, B., Yao, Y., Zhang, X., Ruan, M., Zhang, Z., Xu, L., Liang, T. and Lu, J. (2021) Synergic Neuroprotection between Ligusticum Chuanxiong Hort and Borneol against Ischemic Stroke by Neurogenesis via Modulating Reactive Astrogliosis and Maintaining the Blood-Brain Barrier. Frontiers in Pharmacology, 12, Article ID: 666790.
https://doi.org/10.3389/fphar.2021.666790
[31] Ding, Z.B., Song, L.J., Wang, Q., Kumar, G., Yan, Y.Q. and Ma, C.G. (2021) Astrocytes: A Double-Edged Sword in Neurodegenerative Diseases. Neural Regeneration Research, 16, 1702-1710.
https://doi.org/10.4103/1673-5374.306064
[32] Liu, Z., Li, Y., Cui, Y., Roberts, C., Lu, M., Wilhelmsson, U., Pekny, M. and Chopp, M. (2014) Beneficial Effects of Gfap/Vimentin Reactive Astrocytes for Axonal Remodeling and Motor Behavioral Recovery in Mice after Stroke. Glia, 62, 2022-2033.
https://doi.org/10.1002/glia.22723
[33] Shen, S.W., Duan, C.L., Chen, X.H., Wang, Y.Q., Sun, X., Zhang, Q.W., Cui, H.R. and Sun, F.Y. (2016) Neurogenic Effect of VEGF Is Related to Increase of Astrocytes Transdifferentiation into New Mature Neurons in Rat Brains after Stroke. Neuropharmacology, 108, 451-461.
https://doi.org/10.1016/j.neuropharm.2015.11.012
[34] Duan, C.L., Liu, C.W., Shen, S.W., Yu, Z., Mo, J.L., Chen, X.H. and Sun, F.Y. (2015) Striatal Astrocytes Transdifferentiate into Functional Mature Neurons Following Ischemic Brain Injury. Glia, 63, 1660-1670.
https://doi.org/10.1002/glia.22837
[35] Ge, L.J., Yang, F.H., Li, W., Wang, T., Lin, Y., Feng, J., Chen, N.H., Jiang, M., Wang, J.H., Hu, X.T., et al. (2020) In Vivo Neuroregeneration to Treat Ischemic Stroke through NeuroD1 AAV-Based Gene Therapy in Adult Non-Human Primates. Frontiers in Cell and Developmental Biology, 8, Article ID: 590008.
https://doi.org/10.3389/fcell.2020.590008
[36] Xiong, L.L., Chen, J., Du, R.L., Liu, J., Chen, Y.J., Hawwas, M.A., Zhou, X.F., Wang, T.H., Yang, S.J. and Bai, X. (2021) Brain-Derived Neurotrophic Factor and Its Related Enzymes and Receptors Play Important Roles after Hypoxic-Ischemic Brain Damage. Neural Regeneration Research, 16, 1453-1459.
https://doi.org/10.4103/1673-5374.303033
[37] Casas, S., Perez, A.F., Mattiazzi, M., Lopez, J., Folgueira, A., Gargiulo-Monachelli, G.M., Gonzalez Deniselle, M.C. and De Nicola, A.F. (2017) Potential Biomarkers with Plasma Cortisol, Brain-Derived Neurotrophic Factor and Nitrites in Patients with Acute Ischemic Stroke. Current Neurovascular Research, 14, 338-346.
https://doi.org/10.2174/1567202614666171005122925
[38] Yu, K.W., Wang, C.J., Wu, Y., Wang, Y.Y., Wang, N.H., Kuang, S.Y., Liu, G., Xie, H.Y., Jiang, C.Y. and Wu, J.F. (2020) An Enriched Environment Increases the Expression of Fibronectin Type III Domain-Containing Protein 5 and Brain-Derived Neurotrophic Factor in the Cerebral Cortex of the Ischemic Mouse Brain. Neural Regeneration Research, 15, 1671-1677.
https://doi.org/10.4103/1673-5374.276339
[39] Gao, Y., Ya, B., Li, X., Guo, Y. and Yin, H. (2021) Myricitrin Ameliorates Cognitive Deficits in MCAO Cerebral Stroke Rats via Histone Acetylation-Induced Alterations of Brain-Derived Neurotrophic Factor. Molecular and Cellular Biochemistry, 476, 609-617.
https://doi.org/10.1007/s11010-020-03930-4
[40] Li, C., Sun, T. and Jiang, C. (2021) Recent Advances in Nanomedicines for the Treatment of Ischemic Stroke. Acta Pharmaceutica Sinica B, 11, 1767-1788.
https://doi.org/10.1016/j.apsb.2020.11.019
[41] Yang, J., Wu, S., Hou, L., Zhu, D., Yin, S., Yang, G. and Wang, Y. (2020) Therapeutic Effects of Simultaneous Delivery of Nerve Growth Factor MRNA and Protein via Exosomes on Cerebral Ischemia. Molecular Therapy Nucleic Acids, 21, 512-522.
https://doi.org/10.1016/j.omtn.2020.06.013
[42] Cragnolini, A.B., Montenegro, G., Friedman, W.J. and Masco, D.H. (2018) Brain-Region Specific Responses of Astrocytes to an in Vitro Injury and Neurotrophins. Molecular and Cellular Neurosciences, 88, 240-248.
https://doi.org/10.1016/j.mcn.2018.02.007
[43] Zhang, X., Du, Q., Yang, Y., Wang, J., Liu, Y., Zhao, Z., Zhu, Y. and Liu, C. (2018) Salidroside Alleviates Ischemic Brain Injury in Mice with Ischemic Stroke through Regulating BDNK Mediated PI3K/Akt Pathway. Biochemical Pharmacology, 156, 99-108.
https://doi.org/10.1016/j.bcp.2018.08.015
[44] Chai, Y., Cai, Y., Fu, Y., Wang, Y., Zhang, Y., Zhang, X., Zhu, L., Miao, M. and Yan, T. (2022) Salidroside Ameliorates Depression by Suppressing NLRP3-Mediated Pyroptosis via P2X7/NF-KappaB/NLRP3 Signaling Pathway. Frontiers in Pharmacology, 13, Article ID: 812362.
https://doi.org/10.3389/fphar.2022.812362
[45] Liu, H., Lv, P., Zhu, Y., Wu, H., Zhang, K., Xu, F., Zheng, L. and Zhao, J. (2017) Salidroside Promotes Peripheral Nerve Regeneration Based on Tissue Engineering Strategy Using Schwann Cells and PLGA: In Vitro and in Vivo. Scientific Reports, 7, Article No. 39869.
https://doi.org/10.1038/srep39869
[46] Li, J., Zhang, Y., Yang, Z., Zhang, J., Lin, R. and Luo, D. (2020) Salidroside Promotes Sciatic Nerve Regeneration Following Combined Application Epimysium Conduit and Schwann Cells in Rats. Experimental Biology and Medicine, 245, 522-531.
https://doi.org/10.1177/1535370220906541