FOXA1在恶性肿瘤中的作用及其机制研究进展
The Role of FOXA1 in Malignant Tumors and the Progress of Its Mechanism Research
DOI: 10.12677/acm.2024.1451704, PDF, HTML, XML, 下载: 16  浏览: 63 
作者: 杜文艳, 张一粟, 安 昕:甘肃中医药大学第一临床医学院,甘肃 兰州;王 干:白银市中心医院检验科,甘肃 白银;李 卓:甘肃省中医院,甘肃 兰州;刘 华*:甘肃省人民医院呼吸与危重症医学科,甘肃 兰州
关键词: 叉头框蛋白恶性肿瘤转录因子信号通路Forkhead Box Protein Malignant Tumor Transcription Factor Signaling Pathway
摘要: 叉头框蛋白A1 (forkhead-box A1, FOXA1)是叉头框(FOX)转录因子家族的成员。FOXA1主要是在胚胎产生、调控细胞的增殖与分化、人体器官生长发育及代谢调整等生理环节中发挥极为重要的调控功效。越来越多的研究表明FOXA1与肿瘤发生发展有关,多种研究表明它在肝癌、乳腺癌、前列腺癌、肺癌、结肠癌等多种恶性肿瘤中出现异常表达,影响患者愈后与生存。随着研究的不断深入,FOXA1在恶性肿瘤中的作用及其机制被揭示,因此本文主要阐述FOXA1在恶性肿瘤中的作用及其机制,对最新研究进展作一综述,以期为肿瘤的预防与防治提供帮助。
Abstract: Forkhead-box A1 (FOXA1) is a member of the forkhead-box (FOX) family of transcription factors, and FOXA1 plays an important role in embryogenesis, cell proliferation and differentiation, organ growth and metabolism, and other physiological processes. More and more researches have shown that FOXA1 is related to the development trend of tumorigenesis. Various studies have shown that it is abnormally expressed in various malignant tumors such as liver, breast, prostate, lung and colon cancers, which affects the survival of the patients and the development of their prognosis. With the deepening of research, the role and mechanism of FOXA1 in malignant tumors have been revealed. Therefore, this paper mainly describes the role of FOXA1 in malignant tumors and its mechanism, and gives an overview of the latest research progress, with a view to providing help for the prevention and control of tumors.
文章引用:杜文艳, 王干, 李卓, 张一粟, 安昕, 刘华. FOXA1在恶性肿瘤中的作用及其机制研究进展[J]. 临床医学进展, 2024, 14(5): 2434-2440. https://doi.org/10.12677/acm.2024.1451704

1. 引言

FOX家族是一个极为庞大的转录管控家族,其中包括19个亚组,分别以FOXA到FOXS亚组构成,具备特异性的叉头结构域 [1] 。FOXA又称“先锋因子”,最早是在大鼠肝脏核细胞提取物中发现,故又名为肝细胞核因子-3 (hepatocyte nuclear factor-3, HNF-3),分为FOXA1、FOXA2及FOXA3 [2] 。FOXA1是一个约100个氨基酸残基组成的转录辅助因子,可特异性的与含A(A/T)TRTT(G/T)RYTY序列的蛋白结合。FOXA1位于人类14号染色体中,其结构包括关键区域N端和C端,N端主要包括α-螺旋H,β-折叠S和两个翼状多肽环,主要参与双链的结合过程,C端为组蛋白结合区域,主要与H3/H4组蛋白结合,其可以结合致密染色质使其松散,增加对其他所需转录因子的募集,从而对下游基因的表达进行调控 [3] 。生理状态下,FOXA1在生物体内不仅通过调节转录促进特异性蛋白的表达,同时也参与胚胎发育、细胞生长及分化、免疫及代谢调节等环节 [4] 。在肿瘤的研究进程中,FOXA1成为近几年的研究热点,其参与恶性肿瘤的发生发展过程,在多种恶性肿瘤组织中表达异常,包括肝癌、乳腺癌、前列腺癌、肺癌、结肠癌等,与多数肿瘤的转移、侵袭密切相关 [5] [6] [7] [8] [9] 。本文综述了FOXA1在恶性肿瘤的作用及分子机制,以期为肿瘤的预防与防治提供帮助。

2. FOXA1与恶性肿瘤

2.1. 肝癌

肝癌是一种严重危害人类身体健康的恶性肿瘤,是全球第六大恶性肿瘤,在全球范围内癌症死亡原因中排名第三 [10] 。肝癌的主要病因包括大量饮酒、食用含黄曲霉毒素食物及感染慢性乙型或丙型肝炎病毒 [5] 。肝癌的治疗方式包括手术、放疗、化疗、经皮乙醇注射及射频消融等,但大多数患者发觉时已为中晚期,治疗效果并不理想,生存率低。因而,寻找到新的医治靶点尤为重要。近期研究表明,Zhenrong Liu等 [5] 通过定向逆转率-PCR (RT-Qpcr)和Western blot实验技术发现,FOXA1在肝癌细胞中显著高表达,与正常肝细胞系中的表达相比存在显著差异,且癌组织中FOXA1的表达水平越高,预后越差,他们进一步研究发现,FOXA1主要通过促进肝癌细胞的增殖及转移来影响其发展及预后。其作用机制也有许多学者探索,Wang等 [11] 发现FOXA1可以通过靶向修复肝癌细胞中具有致癌性lncRNA MCM3AP反义RNA 1 (MCM3AP-AS1),进一步推动肝癌细胞增殖、集落形成和细胞周期过程,与肿瘤大小、TNM分期及预后差呈明显正相关。Zhen Yuan等 [12] 等发现FOXA1通过直接调节miR-212-3p/FOXA1/AGR2信号通路促进肝癌细胞增殖并抑制细胞凋亡。综上所述,FOXA1在肝细胞癌的进展过程中发挥重要作用,针对 FOXA1的药物可能是肝癌患者新的治疗选择。

2.2. 乳腺癌

乳腺癌是全球比较常见的癌症之一,是20~50岁女性癌症相关死亡的重要原因 [13] 。尽管现代治疗手段已经朝着个体化治疗方向发展,但仍然难以完全避免肿瘤的复发和转移。Meng Zhou等 [14] 纳入915名女性,发现转录因子FOXA1在肿瘤组织里的表达显著高于癌旁组织(p < 0.001),且组织学雌激素受体(ER)阳性、孕激素受体(PR)阳性肿瘤中的表达高于组织学ER阴性、PR阴性。有研究发现FOXA1的表达与临床病理特征即肿瘤大小,肿瘤分级,诺丁汉预后指数均呈负相关 [15] 。FOXA1的高表达是预测长期无病生存期(DFS)的独立因素,对于肿瘤体积小且FOXA1的表达高的患者其DFS长,相反肿瘤体积大且FOXA1的表达低的患者其DFS短 [6] 。说明FOXA1表达与良好预后呈正相关。因此,FOXA1为晚期复发的潜在有用预测标志物。进一步研究发现,FOXA1可以直接与 ER启动子结合并调节ER活性,且FOXA1的表达受甲基化和ER阳性肿瘤状态的影响。由于启动子区域的异常DNA低甲基化是肿瘤中癌基因异常表达的机制之一,并且FOXA1启动子主要在ER阴性肿瘤中甲基化,因此FOXA1主要作为癌基因在ER阳性乳腺癌中发挥作用 [16] 。这些发现将有助于开发乳腺癌的新疗法。有研究显示表明,一方面FOXA1可通过在mRNA和蛋白水平上诱导E-钙粘蛋白(E-cadherin)的表达,E-钙粘蛋白是一种跨膜糖蛋白,在维持上皮细胞的结构完整性方面起着重要作用,缺乏这种蛋白会增强癌细胞的侵袭和进展。另一方面Twist1通过沉默FOXA1表达促进乳腺癌侵袭和转移,具体机制为Twist1与FOXA1启动子结合募集NuRD复合物,阻止AP-1与FOXA1启动子结合,导致H3K9乙酰化降低,RNA聚合酶II募集减少,使FOXA1表达沉默。他们还证实在乳腺癌中Twist1的表达与FOXA1的表达呈负相关 [17] [18] 。基于上述分子机制,乳腺癌中FOXA1的高表达对乳腺癌患者的总生存率有益处,这与以往的研究结果一致。

2.3. 前列腺癌

根据GLOBOCAN 2020的数据可知,2020年,前列腺癌是全球男性第二大常见癌症类型和第五大癌症死亡原因 [19] 。原发性前列腺癌在接受根治治疗后,10年内进展为转移性疾病的患者超过30% [20] 。前列腺癌主要由雄激素受体(androgen receptor, AR)信号驱动,因此,雄激素剥夺疗法(androgen deprivation therapy, ADT)是主要的治疗策略,尽管AR通路抑制剂取得进展,但患者最终仍会产生耐药性并进展为去势抵抗性前列腺癌(castration-resistance prostate cancer, CRPC)、转移性去势抵抗前列腺癌(metastatic castration-resistance prostate cancer, mCRPC)和神经内分泌前列腺癌(neuroendocrine prostate cancer, NEPC) [20] [21] 。研究发现,FOXA1是前列腺癌中研究最多的先锋因子,已在前列腺癌组织中的表达被广泛探索。先前的研究报告称,FOXA1促进原发性前列腺癌细胞的增殖、淋巴结转移呈正相关,FOXA1高表达通常预示着前列腺癌的不良预后,但FOXA1在NEPC和CRPC中下调,并与AR呈负相关 [20] 。以上表明FOXA1在前列腺癌的进展和转移过程中发挥关键作用。最新研究表明,FOXA1在前列腺癌的致癌机制中,FOXA1可通过诱导多种促血管生成因子表达促进前列腺癌血管生成,包括表皮生长因子、内皮素-1和内皮糖蛋白 [7] 。瘤内缺氧与CRPC有关,而FOXA1在CRPC中下调,具体机制一方面为FOXA1直接与缺氧诱导因子1A (hypoxia inducible factor 1A, HIF1A)的基因内增强子结合以抑制FOXA1表达,而HIF1A反过来在介导FOXA1丢失诱导的缺氧基因表达中至关重要 [22] 。另一方面FOXA1缺失通过升高的转化生长因子-β (transforming growth factor-β, TGF-β)信号传导诱导上皮间充质转化(EMT)和细胞运动 [22] 。因此,针对FOXA1的药物可能是前列腺癌患者新的治疗选择。

2.4. 肺癌

GLOBOCAN 2020数据显示,在所有恶性肿瘤中,肺癌是导致男性癌症发病率和死亡率的主要原因,而在女性中,肺癌的发病率仅次于乳腺癌和结直肠癌,死亡率排名第二,仅次于乳腺癌。男性的发病率和死亡率约是女性的2倍 [23] 。其主要罪魁祸首归因于烟草 [24] 。由此可以看出肺癌严重危害我国居民的身体及心理健康,因此肺癌的防治是我国恶性肿瘤防控面临的重大挑战。大量的研究表明,肺癌的发生机制并不是单一的,它的调控是一个多机制、多交叉的过程。FOXA1在肺癌的发生、侵袭、远处转移及预后都有参与。研究表明,FOXA1在原发非小细胞肺癌组织中和转移淋巴结中均有表达,它还促进H1299、PC9和A549肺腺癌细胞的迁移和侵袭 [25] 。在小细胞肺癌(small cell lung cancer, SCLC)中,他们首次在SCLC样品中检测到其上调的细胞周期蛋白依赖性激酶抑制剂2C (cyclin-dependent kinase inhibitor 2C, CDKN2C)的mRNA和蛋白质水平,CDKN2C可被FOXA1正向调控,且CDKN2C与FOXA1的表达越高,SCLC患者的预后越差 [26] 。进一步研究发现,一方面FOXA1通过直接结合细胞分裂周期因子5 (cell division cycle 5-like, CDC5L)的启动子,使CDC5L过表达,其可以激活胞外信号调节激酶(extracelluar signal-regulated kinase, ERK)1/2和细胞质非受体酪氨酸激酶(Janus kinase, JAK) 2通路抑制细胞凋亡,进而延长非小细胞肺癌(non-small cell lung cancer, NSCLC)细胞周期S期,进而来促进NSCLC的进展 [8] 。另一方面,FOXA1先锋转录因子是多种激素依赖性癌症中类固醇受体功能的重要介质。糖皮质激素受体(glucocorticoid receptor, GR)是FOXA1依赖性NSCLC中FOXA1相互作用组中排名最高的转录因子,敲除GR能够抑制FOXA1依赖性的NSCLC细胞的增殖 [27] 。除此之外,FOXA1也被证明在NSCLC细胞中有促进EMT [28] 。这些研究结果表明FOXA1在肺癌的发展和进展中发挥着重要作用,为理解肺癌的分子机制提供了新的视角。但FOXA1在肺癌方面的研究较少,因此需要更多的学者去研究、探讨。

2.5. 结肠癌

结肠癌是人类消化道中最常见的恶性肿瘤之一,同时也是世界范围内排名第四的致命癌症。每年约有90万人死于该病 [29] 。在中国,结肠癌的发病率呈现上升趋势 [30] 。结肠癌的发生发展是个复杂过程。近年来,研究发现先锋转录因子FOXA1在结肠癌中有重要的生物学功能和潜在机制。为了研究FOXA1在人结肠癌进展中的重要性,他们纳入403例患者用免疫组织化学技术发现FOXA1过表达与结肠癌分化、淋巴血管浸润、晚期肿瘤分期、浸润深度、淋巴结转移和生存率低有关 [31] 。但有不同研究发现FOXA1在正常结肠癌中强烈表达,但在结肠腺癌中显著下调 [32] 。因此需要更多的研究去证实这一不同观点。在发生机制方面,Jie Pan等 [9] 研究表明FOXA1表达与其甲基化程度呈负相关,敲低FOXA1可抑制磷酸酶的表达、张力蛋白同源物/AKT信号通路和EMT,进而减少增殖、迁移和侵袭,诱导HCT116和SW480细胞的G2/M期阻滞。由此可以得出,FOXA1在结肠癌的发生发展中是一个潜在的致癌基因。此外,MircoRNA-760上调可显著抑制体内结肠癌的发生,而FOXA1被认为是结肠癌细胞中MircoRNA-760的功能靶标,具体机制为:MircoRNA-760通过直接靶向FOXA1并调节EMT和磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)/蛋白激酶B (protein kinase B, PKB)信号通路来抑制结肠癌的生物学进展 [33] 。因此FOXA1和MircoRNA-760均是结肠癌生物治疗的潜在靶点。

2.6. 胃癌

胃癌是全球第五大最常见的恶性肿瘤和癌症相关死亡的第四大原因 [34] 。尽管全球胃癌负担呈下降趋势,但在我国仍然严重,胃癌是源自胃的原发性上皮恶性肿瘤,是一种复杂的异质性疾病。自身免疫性胃炎和幽门螺杆菌感染是胃癌最主要的危险因素 [35] [36] 。FOXA1在胃癌细胞中表达上调,且过表达的FOXA1对胃癌的发展具有促进作用。一方面FOXA1通过增强紧密连接蛋白4 (claudin4, CLDN4)的转录来激活诱导PI3K/PKB通路表达,促进胃癌的发生 [37] 。另一方面FOXA1可直接结合减数分裂核分裂1 (meiotic nuclear divisions 1, MND1)的启动子抑制MND1的表达,MND1结合转酮醇酶(transketolase, TKT),通过PI3K/AKT信号通路调节胃癌细胞增殖、转移和葡萄糖代谢 [38] 。由此可见,FOXA1对胃癌的发病至关重要。

2.7. 其他恶性肿瘤

FOXA1在宫颈癌、卵巢癌、鼻咽癌、唾液管癌等癌症组织里均有表达。宫颈癌作为一种病毒相关的癌症,严重威胁女性生命健康的一大恶性肿瘤,复发率高 [39] [40] 。FOXA1在子宫浸润前病变和绝大多数半浸润性宫颈癌中表达,且被证实FOXA1可在宫颈癌细胞中诱导源自氧甾醇结合蛋白样10的circRNA的表达,从而调节宫颈癌细胞的增殖和迁移 [40] 。在女性卵巢癌中,研究者发现FOXA1在卵巢癌组织中表达比癌旁组织的表达升高,FOXA1表达的下调能够抑制细胞的增殖和侵袭 [41] 。在鼻咽癌中,Ammous-Boukhris N等 [42] 首次分析了56例鼻咽癌患者和19例正常鼻咽粘膜中FOXA1的表达,他们发现FOXA1的表达与LMP1的水平高低有关,呈负相关,且FOXA1的过表达与鼻咽癌患者的非侵袭性行为和良好的预后有关。在一项针对142例病例的研究中,发现FOXA1的高表达与唾液管癌(SDC)的良好预后相关 [43] 。因此,由以上研究中我们可看到FOXA1在不同癌症中的表达水平及作用机制不尽相同。

3. 总结与展望

随着研究的不断推进,许多的证据表明FOXA1在恶性肿瘤的发生发展过程中扮演着重要角色。尽管在过去的十年中,对癌症的治疗能力逐步提高,然而由于肿瘤往往是一个多种因素、多种分子调控功效后的综合性物质,FOXA1在不同肿瘤中的调控机制及调控效应中存在很大差异,这给FOXA1靶向治疗药物的研发和临床治疗造成严峻挑战,因而需要更多的学者投入更多的精力去深入研究与分析。转录因子FOXA1对恶性肿瘤的主要途径主要表现在:1) 参与EMT进程。2) 依赖激素信号传导。3) 与调节因子(蛋白质)结合形成蛋白复合物,进一步激活致癌基因和(或)其它肿瘤调控分子。研发参与FOXA1介导通路的调控分子及FOXA1因子抑制剂的药物可能是治疗各种类型癌症患者的潜在工具。因此,在未来我们还需要更多的研究,我们认为应该围绕以下几个方面进行探索:1) FOXA1转录因子与肿瘤耐药性之间的研究:FOXA1可促进或抑制其下游靶标,对癌症的发生可起到促进或抑制作用,若干预FOXA1因子或其介导的途径,可潜在改变肿瘤的耐药性。2) 检测肿瘤患者血清中FOXA1的表达水平。3) 研究显示,大多肿瘤中FOXA1的表达增高与疾病的负向发展相关,因此开发更多对肿瘤细胞敏感的FOXA1小分子抑制剂,促进临床转化。

NOTES

*通讯作者。

参考文献

[1] Lam, E.W., Brosens, J.J., Gomes, A.R., et al. (2013) Forkhead Box Proteins: Tuning Forks for Transcriptional Harmony. Nature Reviews Cancer, 13, 482-495.
https://doi.org/10.1038/nrc3539
[2] Yu, C., Li, X., Zhao, Y., et al. (2023) The Role of FOXA Family Transcription Factors in Glucolipid Metabolism and NAFLD. Frontiers in Endocrinology, 14, Article 1081500.
https://doi.org/10.3389/fendo.2023.1081500
[3] 白仲虎, 李璐, 戴晓峰. 转录因子 FOXA1在乳腺癌分子分型中的功能研究[J]. 生物学杂志, 2017, 34(1): 5-10.
[4] Castaneda, M., Hollander, P.D. and Mani, S.A. (2022) Forkhead Box Transcription Factors: Double-Edged Swords in Cancer. Cancer Research, 82, 2057-2065.
https://doi.org/10.1158/0008-5472.CAN-21-3371
[5] Liu, Z., Wang, Y., Aizimuaji, Z., et al. (2022) Elevated FOXA1 Expression Indicates Poor Prognosis in Liver Cancer Due to Its Effects on Cell Proliferation and Metastasis. Disease Markers, 2022, Article ID: 3317315.
https://doi.org/10.1155/2022/3317315
[6] Horimoto, Y., Sasahara, N., Sasaki, R., et al. (2020) High FOXA1 Protein Expression Might Predict Late Recurrence in Patients with Estrogen-Positive and HER2-Negative Breast Cancer. Breast Cancer Research and Treatment, 183, 41-48.
https://doi.org/10.1007/s10549-020-05751-x
[7] Su, Y., Zhang, Y., Zhao, J., et al. (2021) FOXA1 Promotes Prostate Cancer Angiogenesis by Inducing Multiple Pro-Angiogenic Factors Expression. Journal of Cancer Research and Clinical Oncology, 147, 3225-3243.
https://doi.org/10.1007/s00432-021-03730-3
[8] Chen, G., Wei, R.S., Ma, J., et al. (2023) FOXA1 Prolongs S Phase and Promotes Cancer Progression in Non-Small Cell Lung Cancer through Upregulation of CDC5L and Activation of the ERK1/2 and JAK2 Pathways. The Kaohsiung Journal of Medical Sciences, 39, 1077-1086.
https://doi.org/10.1002/kjm2.12737
[9] Pan, J., Xu, Z., Xu, M., et al. (2020) Knockdown of Forkhead Box A1 Suppresses the Tumorigenesis and Progression of Human Colon Cancer Cells through Regulating the Phosphatase and Tensin Homolog/Akt Pathway. Journal of International Medical Research, 48.
https://doi.org/10.1177/0300060520971453
[10] Siegel, R.L., Miller, K.D., Wagle, N.S., et al. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48.
https://doi.org/10.3322/caac.21763
[11] Wang, Y., Yang, L., Chen, T., et al. (2019) A Novel LncRNA MCM3AP-AS1 Promotes the Growth of Hepatocellular Carcinoma by Targeting MiR-194-5p/FOXA1 Axis. Molecular Cancer, 18, Article No. 28.
https://doi.org/10.1186/s12943-019-0957-7
[12] Yuan, Z., Ye, M., Qie, J., et al. (2020) FOXA1 Promotes Cell Proliferation and Suppresses Apoptosis in HCC by Directly Regulating MiR-212-3p/FOXA1/AGR2 Signaling Pathway. OncoTargets and Therapy, 13, 5231-5240.
https://doi.org/10.2147/OTT.S252890
[13] Iacoviello, L., Bonaccio, M., De Gaetano, G., et al. (2021) Epidemiology of Breast Cancer, a Paradigm of the “Common Soil” Hypothesis. Seminars in Cancer Biology, 72, 4-10.
https://doi.org/10.1016/j.semcancer.2020.02.010
[14] Zhou, M., Gan, X.L., Ren, Y.X., et al. (2023) AGR2 and FOXA1 As Prognostic Markers in ER-Positive Breast Cancer. BMC Cancer, 23, Article No. 743.
https://doi.org/10.1186/s12885-023-10964-6
[15] 张继君, 陶丽丽, 赵夫娟, 等. FOXA1、GATA-3与ER在乳腺癌中的表达及预后意义[J]. 暨南大学学报(自然科学与医学版), 2019, 40(3): 225-233.
[16] Jing, X., Liang, H., Hao, C., et al. (2019) Analyses of An Epigenetic Switch Involved in the Activation of Pioneer Factor FOXA1 Leading to the Prognostic Value of Estrogen Receptor and FOXA1 Co-Expression in Breast Cancer. Aging, 11, 7442-7456.
https://doi.org/10.18632/aging.102250
[17] Benayed-Guerfali, D., Dabbeche-Bouricha, E., Ayadi, W., et al. (2019) Association of FOXA1 and EMT Markers (Twist1 and E-Cadherin) in Breast Cancer. Molecular Biology Reports, 46, 3247-3255.
https://doi.org/10.1007/s11033-019-04784-w
[18] Xu, Y., Qin, L., Sun, T., et al. (2017) Twist1 Promotes Breast Cancer Invasion and Metastasis by Silencing Foxa1 Expression. Oncogene, 36, 1157-1166.
https://doi.org/10.1038/onc.2016.286
[19] Liu, J., Dong, L., Zhu, Y., et al. (2022) Prostate Cancer Treatment—China’s Perspective. Cancer Letters, 550, Article ID: 215927.
https://doi.org/10.1016/j.canlet.2022.215927
[20] Dong, H.Y., Ding, L., Zhou, T.R., et al. (2023) FOXA1 in Prostate Cancer. Asian Journal of Andrology, 25, 287-295.
https://doi.org/10.4103/aja202259
[21] Teng, M., Zhou, S., Cai, C., et al. (2021) Pioneer of Prostate Cancer: Past, Present and the Future of FOXA1. Protein & Cell, 12, 29-38.
https://doi.org/10.1007/s13238-020-00786-8
[22] Wang, X., Brea, L., Lu, X., et al. (2022) FOXA1 Inhibits Hypoxia Programs through Transcriptional Repression of HIF1A. Oncogene, 41, 4259-4270.
https://doi.org/10.1038/s41388-022-02423-6
[23] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[24] 《中国吸烟危害健康报告2020》编写组. 《中国吸烟危害健康报告2020》概要[J]. 中国循环杂志, 2021, 36(10): 937-952.
[25] Li, J., Zhang, S., Zhu, L., et al. (2018) Role of Transcription Factor FOXA1 in Non-Small Cell Lung Cancer. Molecular Medicine Reports, 17, 509-521.
https://doi.org/10.3892/mmr.2017.7885
[26] Li, G.S., Chen, G., Liu, J., et al. (2022) Clinical Significance of Cyclin-Dependent Kinase Inhibitor 2C Expression in Cancers: From Small Cell Lung Carcinoma to Pan-Cancers. BMC Pulmonary Medicine, 22, Article No. 246.
https://doi.org/10.1186/s12890-022-02036-5
[27] Dorso, M., Patel, P.T., Pankov, A., et al. (2023) A Druggable FOXA1-Glucocorticoid Receptor Transcriptional Axis Drives Tumor Growth in A Subset of Non-Small Cell Lung Cancer. Cancer Research Communications, 3, 1788-1799.
https://doi.org/10.1158/2767-9764.CRC-23-0310
[28] Fang, X.Q., Lee, M., Lim, W.J., et al. (2022) PGC1α Cooperates with FOXA1 to Regulate Epithelial Mesenchymal Transition through the TCF4-TWIST1. International Journal of Molecular Sciences, 23, Article 8247.
https://doi.org/10.3390/ijms23158247
[29] Dekker, E., Tanis, P.J., Vleugels, J.L, A., et al. (2019) Colorectal Cancer. Lancet, 394, 1467-1480.
https://doi.org/10.1016/S0140-6736(19)32319-0
[30] Wang, H. (2020) MicroRNAs and Apoptosis in Colorectal Cancer. International Journal of Molecular Sciences, 21, Article 5353.
https://doi.org/10.3390/ijms21155353
[31] Park, Y.L., Kim, S.H., Park, S.Y., et al. (2019) Forkhead-Box A1 Regulates Tumor Cell Growth and Predicts Prognosis in Colorectal Cancer. International Journal of Oncology, 54, 2169-2178.
https://doi.org/10.3892/ijo.2019.4771
[32] Lazar, S.B., Pongor, L., Li, X.L., et al. (2020) Genome-Wide Analysis of the FOXA1 Transcriptional Network Identifies Novel Protein-Coding and Long Noncoding RNA Targets in Colorectal Cancer Cells. Molecular and Cellular Biology, 40, e00224-20.
https://doi.org/10.1128/MCB.00224-20
[33] Cong, K., Li, C.G., Wei, Y.H., et al. (2019) MicroRNA-760 Inhibits the Biological Progression of Colorectal Carcinoma by Directly Targeting FOXA1 and Regulating Epithelial-To-Mesenchymal Transition and PI3K/AKT Signaling Pathway. European Review for Medical and Pharmacological Sciences, 23, 5730-5740.
[34] Yang, W.J., Zhao, H.P., Yu, Y., et al. (2023) Updates on Global Epidemiology, Risk and Prognostic Factors of Gastric Cancer. World Journal of Gastroenterology, 29, 2452-2468.
https://doi.org/10.3748/wjg.v29.i16.2452
[35] Zhang, Z., Zhu, T., Zhang, L., et al. (2023) Critical Influence of Cytokines and Immune Cells in Autoimmune Gastritis. Autoimmunity, 56, Article ID: 2174531.
https://doi.org/10.1080/08916934.2023.2174531
[36] Hu, Y., Zhu, Y. and Lu, N.H. (2022) The Management of Helicobacter pylori Infection and Prevention and Control of Gastric Cancer in China. Frontiers in Cellular and Infection Microbiology, 12, Article 1049279.
https://doi.org/10.3389/fcimb.2022.1049279
[37] Peng, W., Chen, L. and Liu, J. (2023) Celastrol Inhibits Gastric Cancer Cell Proliferation, Migration, and Invasion via the FOXA1/CLDN4 Axis. Toxicology Research, 12, 392-399.
https://doi.org/10.1093/toxres/tfad024
[38] Hu, X., Zhou, S., Li, H., et al. (2023) FOXA1/MND1/TKT Axis Regulates Gastric Cancer Progression and Oxaliplatin Sensitivity via PI3K/AKT Signaling Pathway. Cancer Cell International, 23, Article No. 234.
https://doi.org/10.1186/s12935-023-03077-4
[39] Zhu, Y., Zhou, J., Zhu, L., et al. (2022) Adoptive Tumor Infiltrating Lymphocytes Cell Therapy for Cervical Cancer. Human Vaccines & Immunotherapeutics, 18, Article ID: 2060019.
https://doi.org/10.1080/21645515.2022.2060019
[40] Wang, Z., Sun, B.S., Chen, Z.S., et al. (2022) FOXA1 Leads to Aberrant Expression of SIX4 Affecting Cervical Cancer Cell Growth and Chemoresistance. Analytical Cellular Pathology, 2022, Article ID: 9675466.
https://doi.org/10.1155/2022/9675466
[41] Zheng, Z.J., Liu, Y., Wang, H.J., et al. (2020) LncRNA SNHG17 Promotes Proliferation and Invasion of Ovarian Cancer Cells through Up-Regulating FOXA1. European Review for Medical and Pharmacological Sciences, 24, 9282-9289.
[42] Ammous-Boukhris, N., Ayadi, W., Derbel, M., et al. (2020) FOXA1 Expression in Nasopharyngeal Carcinoma: Association with Clinicopathological Characteristics and EMT Markers. BioMed Research International, 2020, Article ID: 4234632.
https://doi.org/10.1155/2020/4234632
[43] Urano, M., Hirai, H., Tada, Y., et al. (2018) The High Expression of FOXA1 Is Correlated with a Favourable Prognosis in Salivary Duct Carcinomas: A Study of 142 Cases. Histopathology, 73, 943-952.
https://doi.org/10.1111/his.13706