非编码RNA在胆管癌化疗耐药中的作用机制研究进展
Research Progress on the Mechanism of Non-Coding RNA in Chemotherapy Resistance of Cholangiocarcinoma
DOI: 10.12677/acm.2024.1451703, PDF, HTML, XML, 下载: 26  浏览: 47 
作者: 王 瑞:内蒙古医科大学第一临床医学院,内蒙古 呼和浩特;任建军*:内蒙古医科大学附属医院肝胆外科,内蒙古 呼和浩特
关键词: 非编码RNA胆管癌化疗耐药机制Non-Coding RNA Cholangiocarcinoma Chemotherapy Resistance Mechanism
摘要: 胆管癌(Cholangiocarcinoma)作为一种恶性程度高、预后差、手术切除率低的重大疾病,对人类健康构成了严重威胁。对于晚期或无法手术的患者,化疗成为关键的治疗手段。然而,化疗耐药性的问题一直是临床治疗的难题,其背后的机制复杂且涉及多因素。近年来的研究发现,在胆管癌中,非编码RNA的异常表达通过调控细胞凋亡、细胞周期、上皮–间质转化(EMT)以及细胞自噬等关键生物学过程,显著影响肿瘤对化疗药物的敏感性。本综述旨在梳理当前关于非编码RNA在胆管癌耐药性调控中的分子机制的研究进展,并探讨靶向非编码RNA以克服胆管癌耐药性的潜力,旨在为胆管癌的治疗策略提供创新思路,并为开发新的治疗药物奠定理论基础。
Abstract: Cholangiocarcinoma, as a major disease with high malignancy, poor prognosis, and low surgical resection rate, poses a serious threat to human health. For late stage or inoperable patients, chemotherapy becomes a key treatment option. However, the issue of chemotherapy resistance has always been a challenge in clinical treatment, and the underlying mechanisms are complex and involve multiple factors. In recent years, research has found that abnormal expression of non-coding RNA in cholangiocarcinoma significantly affects the sensitivity of tumors to chemotherapy drugs by regulating key biological processes such as cell apoptosis, cell cycle, epithelial mesenchymal transition (EMT), and cell autophagy. This review aims to review the current research progress on the molecular mechanisms of non-coding RNA in the regulation of drug resistance in cholangiocarcinoma, and explore the potential of targeting non-coding RNA to overcome drug resistance in cholangiocarcinoma. The aim is to provide innovative ideas for the treatment strategy of cholangiocarcinoma and lay a theoretical foundation for the development of new therapeutic drugs.
文章引用:王瑞, 任建军. 非编码RNA在胆管癌化疗耐药中的作用机制研究进展[J]. 临床医学进展, 2024, 14(5): 2429-2433. https://doi.org/10.12677/acm.2024.1451703

1. 前言

胆管癌(Cholangiocarcinoma, CCA)是一种起源于胆管上皮细胞的恶性肿瘤,是第二常见的原发性肝脏肿瘤,占所有胃肠道癌症的3% [1] 。按照解剖学分类可分为肝内(iCCA)、肝门部(pCCA)或远端(dCCA)胆管癌,pCCA和dCCA也可统称为“肝外胆管癌”(eCCA)。CCA可发生于胆管系统分布的任何部位,pCCA约占所有病例的50%~60%,其次是dCCA (20%~30%)和iCCA (10%~20%) [1] ,CCA早期通常无症状,因此大约70%~80%的患者在癌症进展到晚期后才被确诊 [2] 。虽然CCA是一种罕见的癌症,但近年来其全球发病率和死亡率一直在增加(1~6/10万人/年)。此外,尽管在诊断和治疗方面取得了进展,但在过去十年中,预后并没有显著改善,5年生存率约为7%~20% [3] ,低的生存率说明了CCA治疗面临的挑战极为严峻。尽管目前用于胆管癌(CCA)治疗的化疗药物在提升部分患者的生活质量和增强其总体生存率方面取得了显著的成效,但药物耐药性依然是CCA治疗过程中面临的一大难题。许多患者在治疗初期对药物表现出积极的响应,然而随着治疗的持续,他们可能逐渐发展出对这些药物的耐药性,这不仅会导致疾病的进展,也会限制后续治疗的选择。因此,深入理解耐药性的成因对于制定有效的CCA治疗方案极为关键。目前,在CCA的临床治疗中,常用的化疗药物包括吉西他滨(GEM)、5-氟尿嘧啶(5-FU)和顺铂(DDP)等。这些药物虽然在短期内能够控制疾病的进展,但耐药问题的出现使得它们的长期疗效受限 [4] 。

非编码RNA (ncRNA)是一类在转录过程中产生的RNA分子,它们不具备编码蛋白质的能力,却占据了人类基因组的大约70%。ncRNA在细胞内扮演着多种调节角色,涉及众多信号通路和生理病理过程。根据长度和结构特征,科学家们已经鉴定出多种类型的ncRNA,包括microRNA (miRNA)、长链非编码RNA (lncRNA)、环状RNA (circRNA)、核仁小RNA (snoRNA)以及与piwi蛋白相互作用的RNA (piRNA)等 [5] [6] 。随着对ncRNAs在肿瘤病理过程中作用机制的不断深入研究,大量证据显示ncRNAs能够通过精细调控细胞的生长、凋亡、周期、上皮–间质转化(EMT)和自噬等关键生物学过程,从而对肿瘤细胞的恶性行为产生显著影响 [7] [8] 。在胆管癌研究中,研究者们发现ncRNAs在调节CCA (胆管癌)细胞对化疗药物敏感性方面发挥着至关重要的作用。microRNAs通过靶向特定基因的表达,能够影响CCA细胞的增殖、凋亡和药物外排等过程,进而参与化疗耐药性的形成。长链非编码RNA (lncRNAs)则通过与miRNAs和mRNAs的相互作用,构建起复杂的调控网络,进而影响CCA的化疗敏感性。此外,环状RNA (circRNAs)作为一类新近发现的ncRNA,其在CCA化疗耐药性中的作用也逐渐受到科研界的广泛关注 [9] [10] [11] 。本文的目标是综合分析当前ncRNAs在CCA化疗耐药性中的作用机制的研究成果。通过深入探讨这些ncRNAs在CCA化疗耐药性中的分子机制,我们不仅能够更加深入地理解它们如何调控CCA的生物学行为和对化疗的反应,还可以为开发更为精确和有效的治疗策略,为解决CCA化疗耐药问题提供新的治疗途径和科学依据,从而为患者带来更好的治疗效果和生活质量。

2. microRNA与CCA化疗耐药

microRNA (miRNA)是一种由内源基因编码的约22个核苷酸长的非编码单链RNA分子,通过特异性结合靶mRNA的3'非翻译区(3'-UTR),发挥抑制其翻译或促进其降解的作用,进而精细调控基因表达 [12] 。近期研究揭示了miRNA表达的失调与胆管癌(CCA)的耐药性密切相关。这些miRNA的异常表达不仅是获得耐药性的关键因素,也是维持耐药状态、导致治疗失败和疾病进展的重要原因 [13] 。在CCA的研究领域,Y. Zou等人的研究表明,抑制miR-21的表达能通过促进细胞凋亡有效抑制CCA的发展 [14] 。miR-21的过表达被发现会抑制肿瘤抑制基因PTEN的表达,导致细胞内信号传导失衡,并激活PI3K/AKT信号通路,这一信号通路的激活不仅促进了癌细胞的存活,还增强了它们对吉西他滨(Gemcitabine)诱导的凋亡的抵抗性 [15] 。此外,PI3K/AKT通路的激活还诱导了膜转运蛋白的表达,降低了癌细胞对化疗药物的敏感性 [16] 。H. Du等人的研究发现,miR-20a-5p在CCA中的表达增加,并且其过表达能够逆转由致癌长链非编码RNA(lncRNA)FALEC诱导的5-氟尿嘧啶(5-FU)耐药性 [17] 。miR-20a-5p通过抑制丝裂原活化蛋白激酶(MAPK)通路中的关键基因SHOC2和p-ERK1/2的表达,促进了5-FU诱导的细胞凋亡 [18] 。另一项研究还发现,miR-199a-3p的上调可以通过抑制多药耐药基因1 (MDR1)的表达,增强CCA细胞对顺铂的敏感性,从而提高其细胞毒性效果 [19] 。这些研究成果不仅突出了miRNA在CCA化疗耐药性中的潜在作用,而且为开发基于miRNA的CCA治疗策略提供了坚实的科学基础。通过靶向特定的miRNA,未来的治疗可能有效地克服CCA的耐药性,为患者带来更有效的治疗方案。

3. lncRNA与CCA化疗耐药

长链非编码RNA (lncRNA)是不编码蛋白质且长度超过200个核苷酸的RNA分子,目前多种lncRNA已被证实通过参与调节细胞干性、细胞凋亡、DNA修复进而影响细胞耐药性。HOXD-AS1作为一种lncRNA,通过调节CCA的干细胞特性,增强了化疗抵抗性。HOXD-AS1通过作为miR-520c-3p的海绵,能够上调MYCN的表达,从而增强肿瘤对吉西他滨(Gemcitabine)的耐药性 [20] 。LINC00665则作为miR-424-5p的海绵,促进了CCA对吉西他滨耐药性的产生,这与BCL9L/Wnt/β-连环蛋白信号通路的激活密切相关 [21] 。与此相反,DLEU1通过阻断CCA的干性维持,并作为miR-149-5p的海绵,提高了肿瘤对吉西他滨的敏感性,这最终导致YAP1蛋白表达的上调 [22] 。LINC01714是另一种lncRNA,它通过抑制叉头框O3 (FOXO3)的磷酸化,增强了CCA对吉西他滨的敏感性 [23] 。此外,FOXP3可能通过调节DNA损伤修复在化学抗性中发挥作用 [24] 。lnc-PKD2-2-3和HOTTIP等lncRNA通过调节细胞凋亡参与了对化疗药物的抗性,lnc-PKD2-2-3能够吸收miR-328,导致GPAM表达增加,恢复了对5-氟尿嘧啶(5-FU)的耐药性 [25] 。这些研究结果凸显了lncRNA在CCA耐药性和预后中的复杂调控作用。深入理解lncRNA的基本作用机制,并评估它们作为治疗靶点的潜力,对于开发新的治疗策略具有重要意义。

4. circRNA与CCA化疗耐药

环状RNA(circular RNA, circRNA)是一类独特的非编码RNA分子,它们通过反向剪接形成稳定的闭合环状结构,在调控多种生物学过程中扮演着关键角色。在胆管癌(CCA)的治疗领域,circRNA的作用尤为重要,它们参与调控肿瘤细胞的耐药性 [11] 。例如,circRNA cNFIB在CCA中表达下调,表现为一种肿瘤抑制因子 [26] 。cNFIB的表达降低与肺癌的侵袭性增强及预后不良密切相关。研究发现,cNFIB的高表达水平能通过与MEK1竞争性相互作用,抑制ERK信号通路,从而延缓对曲美替尼(一种MEK抑制剂)的耐药性发展。与正常组织相比,circ-SMARCA5在CCA中表达显著降低,并与更佳的预后相关联 [27] 。circ-SMARCA5能够恢复CCA细胞对吉西他滨和顺铂化疗药物的敏感性。近期研究揭示,SMARCA5通过抑制miR-95-3p的表达,促进细胞凋亡 [28] 。这表明SMARCA5可能通过调控细胞凋亡机制来克服化疗耐药性,为CCA治疗提供了新的策略和靶点。这些发现不仅增强了我们对CCA中circRNA功能的认识,而且为未来的治疗提供了潜在的分子标志物和治疗靶点。

5. 小结与展望

非编码RNA (ncRNA)在胆管癌(CCA)化疗耐药性中的研究虽然取得了一定的进展,但它们的具体作用机制和信号通路尚未完全阐明。而且ncRNA的种类繁多,它们之间可能存在交叉作用,增加了研究的复杂性。尽管部分ncRNA显示出作为CCA治疗潜在靶点的希望,但要验证这些靶点在临床前模型和临床试验中的有效性,仍面临着不小的挑战。然而,随着对CCA中ncRNA的机制和生物学功能的深入了解,以及对化疗药物如吉西他滨、5-氟尿嘧啶和顺铂耐药性的深入研究,预计将开发出结合ncRNA治疗与传统化疗、放疗、靶向治疗及免疫治疗的综合治疗方案。这将有望显著提升CCA治疗的成功率。综上所述,ncRNA在胆管癌化疗耐药性中的作用机制研究是一个具有巨大潜力同时也充满挑战的领域。未来研究的深入有望为CCA治疗开辟新的途径,实现治疗策略的创新和突破。

NOTES

*通讯作者。

参考文献

[1] Angela, L., et al. (2020) Cholangiocarcinoma 2020: The Next Horizon in Mechanisms and Management. Nature Reviews Gastroenterology Hepatology, 17, 557-588.
[2] Rizvi, S. and Gores, J.G. (2013) Pathogenesis, Diagnosis, and Management of Cholangiocarcinoma. Gastroenterology, 145, 1215-1229.
https://doi.org/10.1053/j.gastro.2013.10.013
[3] Katie, R.K., Bruno, N., et al. (2021) Biliary Tract Cancer. The Lancet, 397, 428-444.
https://doi.org/10.1016/S0140-6736(21)00153-7
[4] Primrose, N.J., Fox, P.R., Palmer, H.D., et al. (2018) Capecitabine Compared with Observation in Resected Biliary Tract Cancer (BILCAP): A Randomised, Controlled, Multicentre, Phase 3 Study. The Lancet Oncology, 20, 663-673.
[5] Anastasiadou, E., Jacob, L.S. and Slack, F.J. (2018) Non-Coding RNA Networks in Cancer. Nature Reviews Cancer, 18, 5-18.
[6] Slack, J.F. and Chinnaiyan, M.A. (2019) The Role of Non-Coding RNAs in Oncology. Cell, 179, 1033-1055.
https://doi.org/10.1016/j.cell.2019.10.017
[7] Luo, M., et al. (2023) Circular RNA circPOFUT1 Enhances Malignant Phenotypes and Autophagy-Associated Chemoresistance via Sequestrating MiR-488-3p to Activate the PLAG1-ATG12 Axis in Gastric Cancer. Cell Death Disease, 14, Article No. 10.
https://doi.org/10.1038/s41419-022-05506-0
[8] Xu, Y.J. (2022) MiRNA-21-5p Accelerates EMT and Inhibits Apoptosis of Laryngeal Carcinoma via Inhibiting KLF6 Expression. Biochemical Genetics, 61, 101-115.
https://doi.org/10.1007/s10528-022-10246-z
[9] Liang, Z.Q., Zhu, B.S., Meng, D.D., et al. (2019) Down-Regulation of lncRNA-NEF Indicates Poor Prognosis in Intrahepatic Cholangiocarcinoma. Bioscience Reports, 39, BSR20181573.
https://doi.org/10.1042/BSR20181573
[10] Du, H.M., Hou, S.L., Zhang, L.C., et al. (2023) lncRNA FALEC Increases the Proliferation, Migration and Drug Resistance of Cholangiocarcinoma through Competitive Regulation of MiR-20a-5p/SHOC2 Axis. Aging, 15, 3759-3770.
https://doi.org/10.18632/aging.204709
[11] Cui, C., Yang, J., Li, X., Liu, D., Fu, L. and Wang, X. (2020) Functions and Mechanisms of Circular RNAs in Cancer Radiotherapy and Chemotherapy Resistance. Molecular Cancer, 19, Article No. 58.
https://doi.org/10.1186/s12943-020-01180-y
[12] Bartel, D.P. (2004) microRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116, 281-297.
https://doi.org/10.1016/S0092-8674(04)00045-5
[13] He, B., Zhao, Z., Cai, Q., et al. (2020) MiRNA-Based Biomarkers, Therapies, and Resistance in Cancer. International Journal of Biological Sciences, 16, 2628-2647.
https://doi.org/10.7150/ijbs.47203
[14] Zou, Y., Li, R., Kuang, D., et al. (2020) Galangin Inhibits Cholangiocarcinoma Cell Growth and Metastasis through Downregulation of microRNA-21 Expression. BioMed Research International, 2020, Article ID: 5846938.
https://doi.org/10.1155/2020/5846938
[15] Meng, F., Henson, R., Lang, M., et al. (2006) Involvement of Human micro-RNA in Growth and Response to Chemotherapy in Human Cholangiocarcinoma Cell Lines. Gastroenterology, 130, 2113-2129.
https://doi.org/10.1053/j.gastro.2006.02.057
[16] Liu, R., Chen, Y., Liu, G., Li, C., Song, Y., Cao, Z., et al. (2020) PI3K/AKT Pathway as a Key Link Modulates the Multidrug Resistance of Cancers. Cell Death & Disease, 11, Article No. 797.
https://doi.org/10.1038/s41419-020-02998-6
[17] Du, H., Hou, S., Zhang, L., Liu, C., Yu, T. and Zhang, W. (2023) lncRNA FALEC Increases the Proliferation, Migration and Drug Resistance of Cholangiocarcinoma through Competitive Regulation of MiR-20a-5p/SHOC2 Axis. Aging (Albany NY), 15, 3759-3770.
https://doi.org/10.18632/aging.204709
[18] Roskoski, R. (2019) Targeting ERK1/2 Protein-Serine/Threonine Kinases in Human Cancers. Pharmacological Research, 142, 151-168.
https://doi.org/10.1016/j.phrs.2019.03.019
[19] Li, Q., Xia, X., Ji, J., et al. (2017) MiR-199a-3p Enhances Cisplatin Sensitivity of Cholangiocarcinoma Cells by Inhibiting MTOR Signaling Pathway and Expression of MDR1. Oncotarget, 8, 33621-33630.
https://doi.org/10.18632/oncotarget.16834
[20] Li, J., Jiang, X., Li, Z., et al. (2020) SP1-Induced HOXD-AS1 Promotes Malignant Progression of Cholangiocarcinoma by Regulating MiR-520c-3p/MYCN. Aging (Albany NY), 12, 16304-16325.
https://doi.org/10.18632/aging.103660
[21] Lu, M., Qin, X., Zhou, Y., et al. (2021) Long Non-Coding RNA LINC00665 Promotes Gemcitabine Resistance of Cholangiocarcinoma Cells via Regulating EMT and Stemness Properties through MiR-424-5p/BCL9L Axis. Cell Death & Disease, 12, Article No. 72.
https://doi.org/10.1038/s41419-020-03346-4
[22] Li, J., Jiang, X., Xu, Y., et al. (2022) YY1-Induced DLEU1/MiR-149-5p Promotes Malignant Biological Behavior of Cholangiocarcinoma through Upregulating YAP1/TEAD2/SOX2. International Journal of Biological Sciences, 18, 4301-4315.
https://doi.org/10.7150/ijbs.66224
[23] Shen, S., Wang, J., Zheng, B., et al. (2020) LINC01714 Enhances Gemcitabine Sensitivity by Modulating FOXO3 Phosphorylation in Cholangiocarcinoma. Molecular TherapyNucleic Acids, 19, 446-457.
https://doi.org/10.1016/j.omtn.2019.11.028
[24] Yao, S., Fan, Y.L. and Lam, W.E. (2018) The FOXO3-FOXM1 Axis: A Key Cancer Drug Target and a Modulator of Cancer Drug Resistance. Seminars in Cancer Biology, 50, 77-89.
https://doi.org/10.1016/j.semcancer.2017.11.018
[25] Zhang, L., Ma, D., Li, F., Qiu, G., Sun, D. and Zeng, Z. (2022) lnc-PKD2-2-3/MiR-328/GPAM ceRNA Network Induces Cholangiocarcinoma Proliferation, Invasion and 5-FU Chemoresistance. Frontiers in Oncology, 12, Article ID: 871281.
https://doi.org/10.3389/fonc.2022.871281
[26] Du, J., Lan, T., Liao, H., et al. (2023) Correction: CircNFIB Inhibits Tumor Growth and Metastasis through Suppressing MEK1/ERK Signaling in Intrahepatic Cholangiocarcinoma. Molecular Cancer, 22, Article No. 134.
https://doi.org/10.1186/s12943-023-01836-5
[27] Lu, Q. and Fang, T. (2020) Circular RNA SMARCA5 Correlates with Favorable Clinical Tumor Features and Prognosis, and Increases Chemotherapy Sensitivity in Intrahepatic Cholangiocarcinoma. Journal of Clinical Laboratory Analysis, 34, E23138.
https://doi.org/10.1002/jcla.23138
[28] Wang, G., Gao, X., Sun, Z., et al. (2023) Circular RNA SMARCA5 Inhibits Cholangiocarcinoma via microRNA-95-3p/Tumor Necrosis Factor Receptor Associated Factor 3 Axis. Anticancer Drugs, 34, 1002-1009.
https://doi.org/10.1097/CAD.0000000000001487