细菌外膜囊泡在抗肿瘤中的研究进展
Research Progress of Bacterial Outer Membrane Vesicles in Anti-Tumor Therapy
DOI: 10.12677/acm.2024.1451699, PDF, HTML, XML, 下载: 20  浏览: 69  科研立项经费支持
作者: 姬国杰:新乡医学院三全学院生育力保存重点实验室,河南 新乡;新乡医学院三全学院生物与基础医学实验教学中心,河南 新乡;王宛晴, 李文秘, 王晓仪, 李冠洁, 胡焕焕*:新乡医学院三全学院生育力保存重点实验室,河南 新乡
关键词: 肿瘤细菌外膜囊泡生物分子生物学功能Tumor Bacteria Outer Membrane Vesicles Biomolecules Biological Function
摘要: 肿瘤是困扰全球健康的主要问题之一,如何克服目前所使用的治疗手段中的限制,是亟需解决的问题关键。细菌在分子机制方面得到了充分的证实,已被广泛的考虑在肿瘤治疗中的应用。外膜囊泡(Outer membrane vesicles, OMVs)是由革兰氏阴性菌分泌的双层脂质纳米囊泡。OMVs含有多种生物分子,是细菌与细菌、环境和宿主等交流的重要介质,因此它们可能成为抗肿瘤的有效的方案。本文综述了OMVs的结构、发生机制和生物学功能,此外,本文还重点关注了OMVs在抗肿瘤方面的应用进展。
Abstract: Tumor is one of the major global health issues, and overcoming the limitations of currently used treatment methods is a crucial issue that needs to be addressed urgently. Bacteria, with their well-established molecular mechanisms, have been widely considered for application in tumor therapy. Outer membrane vesicles (OMVs) are double-layer lipid nanovesicles secreted by Gram-negative bacteria. OMVs contain a variety of biomolecules and are important mediators of communication between bacteria, the environment, and the host, making them potentially effective candidates for anti-tumor therapy. This article reviews the structure, biogenesis, and biological functions of OMVs. In addition, it focuses on the progress of OMVs in anti-tumor applications.
文章引用:姬国杰, 王宛晴, 李文秘, 王晓仪, 李冠洁, 胡焕焕. 细菌外膜囊泡在抗肿瘤中的研究进展[J]. 临床医学进展, 2024, 14(5): 2396-2407. https://doi.org/10.12677/acm.2024.1451699

1. 引言

外膜囊泡(Outer membrane vesicles, OMVs)是由革兰氏阴性菌正常生长过程中主动由外膜衍生而来的球形纳米双层膜结构,粒径介于20~300 nm之间 [1] 。在一些特殊情况下,OMVs的直径范围会增加到10~500 nm,也会出现不规则的形状的变化,比如古细菌存在管状和细长状结构 [2] [3] 。早在1967年,Chatterjee等 [4] 在体外研究霍乱弧菌细胞壁结构时首次发现了OMVs。然后,OMVs在越来越多的革兰氏阴性细菌中被观察到,并且在某些革兰氏阳性细菌和古细菌中也相继被报道 [3] [5] 。OMVs基于其与细菌和囊泡相关的内在特性,已在生物医学领域受到广泛关注。OMVs除了能抑制同一环境中的其他细菌,还能在战斗中通过抑制噬菌体和抗菌肽的作用,提高细菌的生存能力,细菌还能够通过OMVs分泌毒素,激活宿主细胞的逃避和宿主防御系统 [6] 。OMVs含有细菌衍生的多种成分(脂质、蛋白质、核酸及其他小分子),包括抗原病原体相关分子模式(Pathogen-associated molecular patterns, PAMPs),这是疫苗的基本成分,基于此,天然OMVs或生物工程OMVs被开发为细菌疫苗,以对其亲本细菌产生强大的体液(抗体)和细胞(免疫细胞和细胞因子)免疫应答 [7] 。各种PAMPs的存在使OMVs成为强大的佐剂,使与OMVs混合或表达的抗原的特异性免疫应答得到增强和调节 [8] 。最近,OMVs在抗肿瘤治疗中的潜在应用已被探索 [9] 。OMVs包含细菌来源的蛋白,可以诱导抗肿瘤免疫反应来消除肿瘤组织。此外,利用含有PAMPs的OMVs的囊泡还可以作为药物载体,实现药物的靶向特异性 [10] 。

本文中,我们从OMVs的结构成分、提取纯化、发生机制、生物学功能及在抗肿瘤中的应用等多个方面进行了综述。以期对研究OMVs的学者能有所帮助,并为OMVs的各种生物学应用提供新的参考。

2. OMVs的结构成分

OMVs含有细菌多种衍生成分,主要包括脂质、蛋白质、核酸及其他小分子。接下来将从这四个方面进行概括介绍。

2.1. 脂质

OMVs膜主要含有磷脂(Phospholipid, PL)和脂多糖(Lipopolysaccharide, LPS),主要反映了外膜的结构 [11] 。不同革兰氏阴性菌的OMVs的磷脂含量有所不同。PL主要包括磷脂酰乙醇胺、磷脂酰甘油等 [12] [13] 。在大肠杆菌中,OMVs以甘油磷脂、磷脂酰甘油、磷脂酰乙醇胺(Phosphatidyl ethanolamine, PE)和心磷脂为其主要脂质同样,其他研究也表明,磷脂酰甘油是铜绿假单胞菌膜OMVs的主要成分脑膜炎奈瑟菌的OMVs含有磷脂酰甘油和PE作为最丰富的脂质。LPS是一种重要的病原体相关分子模式(Pathogen-associated molecular patterns, PAMPs),在生物膜中发挥粘附功能,也是OMVs的主要组成部分 [14] 。与外膜(Outer membrane, OM)类似,OMVs的外小叶除脂质外,主要由LPS组成。在早期的研究中,大肠杆菌的OMVs被发现与OM具有相似的磷脂谱 [15] 。

2.2. 蛋白质

不同类型的菌在不同生长阶段或不同应激条件下OMVs包含的蛋白谱是不一样的。在OMVs的蛋白质组学研究中,鉴定的蛋白总数在50~338范围内 [7] 。例如,在脑膜炎奈瑟菌的OMVs中共鉴定出155个蛋白,但在大肠杆菌的OMVs中鉴定出141种蛋白 [16] 。被鉴定出的蛋白质可以分为三类:外膜的基本成分,腔内特定的货物蛋白,以及未知或污染的蛋白质 [7] 。第一类属于OM蛋白,如孔蛋白、较大运输系统的OM蛋白部分、锚定蛋白黏附蛋白、酶,如磷脂酶和蛋白酶,以及鞭毛或菌毛蛋白、补体调节蛋白、结合蛋白、不浊相关蛋白、转运体、离子通道蛋白 [17] [18] 。第二类包括周质酶、细胞质酶以及一些毒力因子,如蛋白酶、肽酶、核酸酶、溶细胞素、霍乱毒素、空泡细胞毒素、细胞毒性膨胀毒素和脲酶等酶 [9] [19] 。最后一类蛋白质是常见的细胞质蛋白包括延伸因子、伴侣蛋白和热休克蛋白等 [20] 。在OMVs中也发现了许多细胞质和细胞内膜蛋白,这些蛋白被认为是来自培养物中裂解细胞的污染物 [2] 。

2.3. 核酸物质

OMVs同时携带腔内和表面相关的DNA,除此之外RNA、质粒、噬菌体DNA和染色体DNA在OMVs中也有报道。有研究认为核酸被OMVs携带可能来自于环境中细胞的裂解残留物 [21] 。Kahn等 [22] 在副流感嗜血杆菌的OMVs中首次发现了质粒DNA的存在。后来,Dorward等发现其他OMVs也含有RNA和DNA;接着他们发现,革兰氏阴性菌的OMVs中包含有圆形质粒、线性质粒和染色体片段等DNA [23] [24] 。

2.4. 其他分子

OMVs还可以运输多种离子、群体感应信号和代谢物 [25] [26] ,但是这些分子在OMVs中的出现迄今为止尚未得到广泛的研究。随着研究的深入,会有更多其他类型的生物分子在OMVs中被发现,Kadurugamuwa等 [27] 描述了在OMVs中存在的细胞壁成分,如肽聚糖和小鼠氨酸。

3. OMVs的提取纯化

根据OMVs的物理和生化特性,关于OMVs的分离提取方法报道有很多,如:超速离心沉淀法、超滤法、蛋白质沉淀法和亲和层析法、体积排阻色谱、场流分馏、微流体等,下面总结了OMVs研究中常见三种方法 [28] 。

3.1. 超速离心沉淀法

主要原理是在不同的离心力条件下不同大小的颗粒沉降系数不同,从而实现纯化沉降收集。收集培养液,在4℃下,1500 g离心15 min,去除细胞,6000 g离心10 min去除细胞碎片,上清液先用0.45 μm过滤器过滤,4℃下,150,000 g离心2~3 h收集OMVs。在磷酸盐缓冲盐水(PBS)中洗涤后−80℃保存备用 [9] [29] 。

3.2. 密度梯度超速离心法

一种基于OMVs的物理特性(尺寸、形状、质量和密度)改进的方法。在密度梯度溶液中,不同的颗粒,由于密度不同,从上到下的梯度中积累在不同密度层。超速离心沉淀收集到的OMVs悬浮在碘二醇或蔗糖中,在4℃下200,000 g通过碘二醇或蔗糖密度梯度离心2 h。OMVs从相应的密度层收集。纯化后的OMVs再次用0.22 μm孔径过滤器过滤,清洗OMVs颗粒两次,悬浮在PBS中,−80℃保存备用 [9] [30] [31] 。

3.3. 超滤法

是一种利用压力作为驱动力,根据分子的大小和形态,选择性地过滤纳米级物质的技术。简单地说,在去除细菌细胞和碎片后,上清液通过0.45 μm过滤器过滤,无菌上清液用100 kDa过滤浓缩器浓缩。然后将上清液与71%或75%硫酸铵混合,4℃孵育3 h,4℃,10,000 g离心20 min。将含有OMVs的微球悬浮在PBS中,4℃下150,000 g离心1 h,用PBS洗涤两次,然后在−80℃保存备用 [32] 。

4. OMVs的产生机制

目前有多种关于OMVs形成机制的推论,相关研究主要集中在以下几个观点。

4.1. 膜的连接

革兰氏阴性细菌的包膜结构的稳定性和完整性由肽聚糖(Peptidoglycan, PG)通过短的OM锚定脂蛋白与OM共价交联来维持 [33] 。Schwechheimer等 [34] 发现PG的重塑和Lpp-PG的交联调控OMVs的产生。当PG的分解-合成被打破平衡,PG和OM的交联率降低或局部交联被破坏时,外膜上这些交联被破坏的点会向外突起形成芽点,继而导致OMVs的产生 [34] [35] 。

4.2. 压力聚集

革兰氏阴性细菌包膜中蛋白质折叠发生错误时,错误折叠的蛋白质会聚集到周质间隙,细菌会将错误折叠的蛋白质优先包装成囊泡去除,即外膜囊泡的释放。另外包膜中蛋白质、PG片段、外膜脂肪酸或LPS等这些物质积聚在周质间隙的某些区域后,会导致了“周质压力”的增加,从而将外膜向外挤出而出芽,从而去除不需要的细胞成分 [34] [36] 。NlpA是目前已经确定并发现对OMVs产生有主导作用的极少数包膜成分之一,nlpA的增加正向促进OMVs的产生 [34] 。

4.3. LPS重塑

革兰氏阴性细菌的OM内部小叶和外部小叶分别由甘油磷脂(Phosphoglycerides, PL)和LPS构成,LPS由内毒素脂质A、核心多糖和O抗原组成 [37] ,在外膜中加入特定修饰的LPS (如:乙酰化)会增加膜的不稳定性(如:改变灵活性和流动性),脂多糖结合分子(Pseudomonas quinolone signal, PQS)能增强菌体表面的阴离子排斥力,与LPS结合,另外,阴离子脂多糖(A-LPS)的去酰化可能通过上调某些小叶脂质的产生进一步增加膜曲率,导致OM局部向外弯曲,继而增加形成OMVs,且直径增大 [38] [39] [40] 。另外LPS在OMVs中富集,也可能直接或间接影响OMVs的组成。例如,铜绿假单胞杆菌能表达带中性多糖的LPS和带电荷多糖的LPS,只表达中性LPS的细菌形成的OMVs与带电荷LPS的细菌形成的OMVs相比直径更小 [41] 。

4.4. 环境条件

影响细菌生长的环境因子很多,如:温度、湿度、pH、氧气、光照、抗生素、渗透压及营养物质(碳源、氮源、矿物质等)等,同样也会影响OMVs的生成 [42] 。抗生素(环丙沙星、美罗培南、磷霉素和多粘菌素B)会影响大肠杆菌O104:H4和O157:H7生产的OMVs的大小、产量、毒力因子及蛋白成分等 [27] [43] 。相关证据表明,在受到抗生素应激时,细菌通过释放OMVs起到防御及保护作用 [44] 。粘质链球菌在不同温度下产生OMVs的量不同,22℃下产生的量是37℃的5倍之多 [45] ,然而温度升高(30℃ vs 37℃)会导致错误折叠的包膜蛋白增加,继而促进大肠杆菌产生外膜囊泡以消除温度应激 [36] ,以上研究说明不同细菌对抗温度应激反应是不一样的。鼠伤寒沙门菌在模拟营养丰富条件下富含参与转录和转运的蛋白 [31] 。在LB培养基中添加硝酸盐,一氧化氮在反硝化条件下诱导铜绿假单胞菌产生大量OMVs [46] 。Sampath等 [47] 研究表明,fumA和tktAD的突变导严重影响土拉弗朗西斯菌OMVs 的产生,说明OMVs的生物发生在一定程度上受遗传水平的调控。

5. OMVs的生物学功能

OMVs在细菌的生长,生存,毒力等生理活动中行使多种生物学功能。

5.1. 影响生物膜的形成

OMVs对生物膜的形成既有促进作用又有抑制作用。有生物膜形成能力的幽门螺杆菌产生的OMVs能诱导没有这种能力菌株的生物膜形成 [48] 。泰兰伯克霍尔德氏菌OMVs能够抑制部分细菌生物膜的形成,从而抑制细菌的生长 [49] 。Ma等研究发现,OMVs通过LPS抑制小肠结肠炎耶尔森菌、肠炎沙门氏菌和金黄色葡萄球菌生物膜的形成 [50] 。

5.2. 细胞间传送生物分子

OMVs通过生物分子的传递在细菌与细菌,细菌与宿主之间起着交流的作用。先前的实验已经证明了OMVs可以传送各种生物分子(如酶、质粒、DNA、RNA、毒素等)到其他细菌(细胞)中 [51] 。如淋病奈瑟菌的OMVs可以将携带青霉素抗性基因的质粒以及少量的RNA转移到青霉素敏感的淋病奈瑟菌中 [52] ,大肠埃希菌O157:H7的OMVs可以将携带氨苄西林抗性基因(AmpR)和绿色荧光蛋白基因(pGFP)的质粒转移到缺乏这个质粒的大肠埃希菌JM109中 [20] ,贝氏不动杆菌也可以通过OMVs将小片段DNA转移到大肠杆菌中 [53] 。金黄色葡萄球菌可以通过OMVs将抗生素运输到细胞内从而消灭胞内金黄色葡萄球菌 [54] 。相关研究表明,毒力因子或细胞毒素也可以通过OMVs转移到宿主真核细胞 [55] ,如霍乱弧菌的具有生物活性的主要致病性毒力因子(CT、TCP毒素)可以通过OMVs以的形式转运到宿主细胞 [56] ,铜绿假单胞菌分泌的OMVs也可以作为运输载体将其泡内sRNA传递给人呼吸道上皮细胞,减少宿主细胞的炎症反应 [57] 。

5.3. 自我保护

细菌暴露于危险环境(抗生素、高温、噬菌体、竞争性微生物或抗原位点)时,细菌自身会调控分泌携带有毒成分、噬菌体和错误折叠蛋白等不需要的物质的OMVs,以减轻自身的应激压力,这是细菌自我保护的一种新机制 [58] 。当细菌处于抗生素环境中时,会通过分泌OMVs 将进入胞内的抗生素分泌出来,或通过OMVs分泌参与抗生素降解的酶帮助细菌减缓抗生素应激,提高对抗生素抗性 [59] 。而黏质沙雷菌在高温环境下会减少OMVs的产生,以减轻高温的危害 [60] 。当大肠杆菌 [61] 和霍乱弧菌 [62] 受到噬菌体攻击时,可以通过分泌OMVs以结合噬菌体形成复合物,降低噬菌体的感染效率以帮助本身逃避噬菌体的攻击。有些细菌分泌的OMVs会携带一些活性酶,这些酶可以酶解细菌周围的有害物质或直接抑制周围微生物的活性。有报道证实了铜绿假单胞菌分泌携带自溶素和肽聚糖水解酶的OMVs可以抑制枯草芽杆菌和金黄色葡萄球菌的生长 [63] 。除了抑制细菌活性外,溶酶杆菌C3株产生含有肽聚糖水解酶和鼠李糖脂化合物的OMVs能直接抑制真菌属酿酒酵母和丝状真菌镰刀菌的生长 [64] 。

5.4. 摄取营养

细菌分泌的OMVs 含有多种酶类,不同的酶通过不同的途径帮助细菌本身获得营养。有些酶(蛋白酶和核酸酶)可以将生物大分子降解为细菌能够利用的小分子从而为细菌的正常生命活动提供营养物质;有些酶(PG水解酶、肽聚糖水解酶和糖苷酶)能杀死同环境中的其它竞争菌株(包括细菌和真菌),以获得充足的营养物质 [63] [65] 。有些菌可以通过分泌OMVs将受体蛋白释放到菌体外,以捕获周围环境中的金属离子(铁离子和锌离子),以满足自身生存需求 [66] 。除此之外,OMVs本身也可以作为一种营养物质,圆绿球藻的 OMVs就可以作为交替单胞菌和嗜盐单胞菌的碳源 [26] 。

6. OMVs抗肿瘤的应用

近年来,OMVs在肿瘤治疗这一领域得到越来越多研究者得关注,目前主要集中在肿瘤免疫、肿瘤药物载体、肿瘤疫苗和肿瘤诊断等方面。

6.1. 肿瘤免疫

OMVs具有肿瘤趋向性,发挥抗肿瘤作用,近年来,OMVs在肿瘤免疫调节方面受到了越来越多的关注。Kim等 [9] 收集了来自脂质A酰基转移酶基因失活突变体大肠杆菌的OMVs,直接经尾静脉注射后,OMVs在肿瘤组织中靶向并积累,激活APCs和适应性免疫,导致NK和T细胞在肿瘤组织中浸润和积累,并诱导趋化因子CXCL10和IFN-γ的产生,并且这种抗肿瘤作用具有IFN-γ依赖性。Li等 [67] 通过转基因的方法添加程序性死亡1 (PD1)来修饰OMVs的表面,工程化的OMV-PD1激活先天免疫反应,促进NK细胞和巨噬细胞在肿瘤组织中的浸润,增加IFN-γ、IL-6和TNF-α的表达,并与PD-L1竞争性结合,以达到更好的抗肿瘤效果。Chen等 [68] 将减毒沙门氏菌OMVs黑色素瘤细胞膜囊泡融合,构建了新的纳米平台(EPV),EPV可以将天然佐剂和肿瘤抗原结合,触发肿瘤免疫反应。在Chen等 [69] 的在另一项研究中,将减毒沙门氏菌中OMVs用来包封5-氟尿嘧啶(5-FU),并用聚乙二醇(PEG)和RGD环肽(Arg-Gly-Asp)进行修饰,修饰后的OMVs诱导了先天免疫反应,并增强了TNF-α、IFN-γ和IL-12的表达,抑制肿瘤的转移。Zhuang等 [70] 将鼠伤寒杆菌来源的OMVs注射到体内,发现OMVs会引发肿瘤内红细胞外渗,积累的血红蛋白增强光吸收作用,通过PTT引起免疫反应杀死肿瘤细胞。Chen等 [71] 将大肠杆菌中的OMVs包被在纳米金颗粒(AuNPs)上,并结合放疗,显著增加了巨噬细胞/单核细胞趋化蛋白1和2 (MCP-1和2)的产生,通过增加ROS的含量激活TNF-α的表达,进而增加巨噬细胞的趋化性,增强抗肿瘤效果。由ROS、细胞因子和免疫细胞引起的放射增敏作用增强了。

6.2. 肿瘤药物载体

OMVs具有高度的生物相容性,较强得载药能力和肿瘤靶向能力,易于修饰和工业化,有望成为类脂双层纳米载体。Kuerban等人 [72] 将抗肿瘤药物阿霉素(doxorubicin, DOX)装载到减毒肺炎克雷伯菌的OMVs中(DOX-OMVs)。DOX-OMVs显示出显著的细胞毒性作用,并增强向A549癌细胞的转运,导致强烈的细胞毒性作用和细胞凋亡,而OMVs可以增强DOX的抗肿瘤作用,并且在携带肿瘤的裸鼠中没有明显的毒副作用和不良反应。Li等人 [73] 将二氢卟吩e6 (Chlorin e6, Ce6)和DOX一起引入用大肠杆菌OMVs中。Ce6作为光敏剂增强PDT,DOX作为化疗药物杀死肿瘤细胞,可以根除小鼠体内的三阴性乳腺癌,而没有产生副作用,并防止其转移到肺部。Liu等人 [74] 将四氧化三铁–二氧化锰(FMO)装载到大肠杆菌的OMVs (FMO-OMVs),构建了功能化的纳米平台,增强了FMO-OMVs在肿瘤组织中的积累。FMO-OMVs在肿瘤部位发生反应性分解,产生锰和铁离子,调节肿瘤的缺氧环境此外,氧化锰和四氧化三铁可以直接破坏肿瘤细胞。Shi等人 [75] 将5-FU载入大肠杆菌OMVs中。通过高压共挤压法包封5-氟尿嘧啶(5-FU)负载的单分散二氧化硅。结合OMVs在肠道吸收的优势,OMVs在肠道表面后释放5-FU,以达到抑制结肠癌生长得效果。这种靶向传递5-FU减少了与常规给药相关的肝和脾损伤的副作用。Gujrati等人 [8] 首次证明了将siRNA加载到msbB突变体大肠杆菌的OMVs中以实现肿瘤靶向siRNA传递。这些OMVs在细胞膜上显示了一个人表皮生长因子受体2 (HER2)特异性的附着体作为靶向配体。在肿瘤动物模型中,siRNA负载的OMVs可以在HER2过表达细胞系中诱导靶向基因沉默和显著的细胞增殖抑制和肿瘤生长退化。最近,Cui等人 [76] 设计了一种高效的miRNA纳米传递系统用于肿瘤基因治疗,基于PD1显示的OMVs封装包含miR-34a的沸石咪唑酸框架-8 (ZIF-8)。工程OMVs具有较高的miRNA传递效率、肿瘤靶向和检查点抑制,是一种很有前途的仿生纳米传递载体,可用于细胞内传递miRNA,以提高肿瘤治疗效果。另外,Guo等人 [77] 通过种ph敏感的给药系统,将紫杉醇(PTX)和DNA损伤反应1 (Redd1)-siRNA通过OMVs同时传递到肿瘤部位,通过调节肿瘤代谢微环境,抑制肿瘤生长。

6.3. 肿瘤疫苗

基于OMVs的肿瘤疫苗主要是通过细菌的基因工程技术进行功能修饰,使外源蛋白在囊泡腔内或其膜表面表达。Wang等 [78] 在实验室成功地通过基因重组技术将HPV的抗原 E7蛋白植入大肠杆菌的OMVs内,促进了树突状细胞的肿瘤抗原摄取和内吞体逃逸,从而显著抑制了小鼠TC-1异种移植瘤的生长。Huang等人 [79] 利用基因重组技术将硫氧还蛋白(Thioredoxin, Trx)基因与小鼠碱性成纤维细胞生长因子(Basic Fibroblast Growth Factor, BFGF)基因融合,并装载到OMVs上形成BFGF修饰的OMVs (BFGF-OMVs)。BFGF-OMVs可以诱导机体产生抗血管生成自身抗体,通过主动抑制肿瘤血管生成发挥肿瘤抑制作用。Grandi等人 [80] 使用人表皮生长因子受体变异III (EGFRvIII)和B16细胞的新抗原M30表位来修饰OMVs,结果显示小鼠完全免受肿瘤侵袭。之后,在Cheng和Yue等人的研究中 [81] [82] ,通过溶血素A (Cly A)蛋白融合抗原蛋白,导致各种肿瘤抗原快速同时显示在OMVs表面,使其能够显示多种不同的肿瘤抗原。基于这种方式获得的OMVs的疫苗平台不仅抑制了黑色素瘤和皮下结直肠癌的生长,还消除了黑色素瘤肺转移。Zou等人 [83] 将来自肿瘤的细胞膜(TM)和OMVs融合形成新的功能囊泡(YM-OMVs)。体外实验表明,TM-OMVs可以增强肿瘤抗原的摄取,在体内,TM-OMVs在腹股沟淋巴结中积累,并显著抑制肿瘤生长和肺转移。Chen等人 [84] 通过手术从小鼠中切除肿瘤以获得肿瘤细胞膜(TM),并用溶菌酶处理大肠杆菌DH5a以制备大肠杆菌细胞质膜(EM)。在PLGA NP聚合物作用下,将EM和TM混合后挤压得到一种混合膜纳米颗粒疫苗(HM-NPs),该疫苗显著延长了肿瘤切除后动物的生存期,甚至在多个小鼠肿瘤模型中导致肿瘤完全消退。这些研究表明,OMVs作为一种天然佐剂,是最适合接种癌症疫苗的平台之一。

6.4. 肿瘤诊断

在肿瘤筛查诊断方面,OMVs具有与细胞外囊泡(Extracellular vesicles, EV)相似的作用 [85] 。Gujrati等人 [86] 对来自大肠杆菌的含酪氨酸酶基因的OMVs进行封装,制备了负载黑色素的OMVs (OMVs-Mel),OMVs-Mel在乳腺癌携带模型的体内产生了肿瘤成像的强光声信号。Chen等人 [87] 合成了用于抗原结合和信号产生的OMVs的传感器,将GFP组装在INP-Scaf3-Z支架上,以癌症特异性表面标记物MUC1为靶点,添加抗MUC1抗体后可以检测到Hela细胞,OMVs与HeLa细胞之间的背景相互作用较低。

7. 问题与展望

OMVs在肿瘤领域中具有多重功能。它们不仅促进肿瘤生长和转移,还调节肿瘤微环境,抑制肿瘤的发展。OMVs中携带的生物标志物还可以作为肿瘤的诊断标志,有助于肿瘤的早期监测。此外,OMVs作为药物载体,可有效传递抗肿瘤药物到肿瘤部位,提高治疗效果。尽管本文全面审查了OMVs在肿瘤治疗和诊断中的应用,但仍有许多诸多问题亟待解决:1) 在OMVs产生过程中,如何调控包裹的物质;2) OMVs在肿瘤治疗中的机制尚不明确;3) 如何实现工程化OMVs的大量获得,提高效率;4) 如何消除OMVs在肿瘤治疗中的不良反应,确保其安全性;5) 目前OMVs的研究尚处于实验室阶段,如何安全高效地转化于临床。随着生物工程技术及组学技术的发展,研究人员可以更深入地了解作用机制及临床研究前景。这些研究可以为OMVs成为个性化精准治疗工具提供帮助。

基金项目

河南省科技攻关项目(232102310303, 232102310065),新乡医学院三全学院骨干教师培养计划(SQ2023GGJS06),河南省高等学校青年骨干教师培养计划(2023GGJS201),新乡医学院三全学院学术技术带头人培养计划(SQ2023XSJSDTR01)。

NOTES

*通讯作者。

参考文献

[1] Toyofuku, M., Nomura, N. and Eberl, L. (2019) Types and Origins of Bacterial Membrane Vesicles. Nature Reviews Microbiology, 17, 13-24.
https://doi.org/10.1038/s41579-018-0112-2
[2] Kulp, A. and Kuehn, M.J. (2010) Biological Functions and Biogenesis of Secreted Bacterial Outer Membrane Vesicles. Annual Review of Microbiology, 64, 163-184.
https://doi.org/10.1146/annurev.micro.091208.073413
[3] McCaig, W.D., Koller, A. and Thanassi, D.G. (2013) Production of Outer Membrane Vesicles and Outer Membrane Tubes by Francisella novicida. Journal of Bacteriology, 195, 1120-1132.
https://doi.org/10.1128/JB.02007-12
[4] Chatterjee, S.N. and Das, J. (1967) Electron Microscopic Observations on the Excretion of Cell-Wall Material by Vibrio cholerae. The Journal of General Microbiology, 49, 1-11.
https://doi.org/10.1099/00221287-49-1-1
[5] Moghimipour, E., Abedishirehjin, S., Baghbadorani, M.A., et al. (2021) Bacteria and Archaea: A New Era of Cancer Therapy. Journal of Controlled Release, 338, 1-7.
https://doi.org/10.1016/j.jconrel.2021.08.019
[6] Sadeghi, L., Mohit, E., Moallemi, S., et al. (2023) Recent Advances in Various Bio-Applications of Bacteria-Derived Outer Membrane Vesicles. Microbial Pathogenesis, 185, Article ID: 106440.
https://doi.org/10.1016/j.micpath.2023.106440
[7] VanderPol, L., Stork, M. and VanderLey, P. (2015) Outer Membrane Vesicles as Platform Vaccine Technology. Biotechnology Journal, 10, 1689-706.
https://doi.org/10.1002/biot.201400395
[8] Gujrati, V., Kim, S., Kim, S.H., et al. (2014) Bioengineered Bacterial Outer Membrane Vesicles as Cell-Specific Drug-Delivery Vehicles for Cancer Therapy. ACS Nano, 8, 1525-37.
https://doi.org/10.1021/nn405724x
[9] Kim, O.Y., Park, H.T., Dinh, N.T.H., et al. (2017) Bacterial Outer Membrane Vesicles Suppress Tumor by Interferon-γ-Mediated Antitumor Response. Nature Communications, 8, Article No. 626.
https://doi.org/10.1038/s41467-017-00729-8
[10] Jain, S. and Pillai, J. (2017) Bacterial Membrane Vesicles as Novel Nanosystems for Drug Delivery. International Journal of Nanomedicine, 12, 6329-6341.
https://doi.org/10.2147/IJN.S137368
[11] Lei, E.K., Azmat, A., Henry, K.A., et al. (2024) Outer Membrane Vesicles as a Platform for the Discovery of Antibodies to Bacterial Pathogens. Applied Microbiology and Biotechnology, 108, Article No. 232.
https://doi.org/10.1007/s00253-024-13033-5
[12] Suh, J.W., Kang, J.S., Kim, J.Y., et al. (2024) Characterization of the Outer Membrane Vesicles of Pseudomonas aeruginosa Exhibiting Growth Inhibition against Acinetobacter baumannii. Biomedicines, 12, Article No. 556.
https://doi.org/10.3390/biomedicines12030556
[13] Tashiro, Y., Inagaki, A., Shimizu, M., et al. (2011) Characterization of Phospholipids in Membrane Vesicles Derived from Pseudomonas aeruginosa. Bioscience, Biotechnology, and Biochemistry, 75, 605-607.
https://doi.org/10.1271/bbb.100754
[14] Liu, J., Kang, R. and Tang, D. (2024) Lipopolysaccharide Delivery Systems in Innate Immunity. Trends in Immunology.
https://doi.org/10.1016/j.it.2024.02.003
[15] Renelli, M., Matias, V., Lo, R.Y., et al. (2004) DNA-Containing Membrane Vesicles of Pseudomonas aeruginosa PAO1 and Their Genetic Transformation Potential. Microbiology (Reading), 150, 2161-2169.
https://doi.org/10.1099/mic.0.26841-0
[16] Hoekstra, D., Vander Laan, J.W., De Leij, L., et al. (1976) Release of Outer Membrane Fragments from Normally Growing Escherichia coli. Biochimica et Biophysica Acta, 455, 889-899.
https://doi.org/10.1016/0005-2736(76)90058-4
[17] Pavkova, I., Bavlovic, J., Kubelkova, K., et al. (2024) Protective Potential of Outer Membrane Vesicles Derived from a Virulent Strain of Francisella tularensis. Frontiers in Microbiology, 15, Article ID: 1355872.
https://doi.org/10.3389/fmicb.2024.1355872
[18] Manabe, T., Kato, M., Ueno, T., et al. (2013) Flagella Proteins Contribute to the Production of Outer Membrane Vesicles from Escherichia coli W3110. Biochemical and Biophysical Research Communications, 441, 151-156.
https://doi.org/10.1016/j.bbrc.2013.10.022
[19] Lee, E.Y., Bang, J.Y., Park, G.W., et al. (2007) Global Proteomic Profiling of Native Outer Membrane Vesicles Derived from Escherichia coli. Proteomics, 7, 3143-3153.
https://doi.org/10.1002/pmic.200700196
[20] Yaron, S., Kolling, G.L., Simon, L., et al. (2000) Vesicle-Mediated Transfer of Virulence Genes from Escherichia coli O157:H7 to Other Enteric Bacteria. Applied and Environmental Microbiology, 66, 4414-4420.
https://doi.org/10.1128/AEM.66.10.4414-4420.2000
[21] Berlanda Scorza, F., Doro, F., Rodríguez-Ortega, M.J., et al. (2008) Proteomics Characterization of Outer Membrane Vesicles from the Extraintestinal Pathogenic Escherichia coli DeltatolR IHE3034 Mutant. Molecular & Cellular Proteomics, 7, 473-485.
https://doi.org/10.1074/mcp.M700295-MCP200
[22] Kahn, M.E., Maul, G. and Goodgal, S.H. (1982) Possible Mechanism for Donor DNA Binding and Transport in Haemophilus. Proceedings of the National Academy of Sciences of the United States of America, 79, 6370-6374.
https://doi.org/10.1073/pnas.79.20.6370
[23] Dorward, D.W., Garon, C.F. and Judd, R.C. (1989) Export and Intercellular Transfer of DNA via Membrane Blebs of Neisseria gonorrhoeae. Journal of Bacteriology, 171, 2499-2505.
https://doi.org/10.1128/jb.171.5.2499-2505.1989
[24] Dorward, D.W. and Garon, C.F. (1990) DNA Is Packaged within Membrane-Derived Vesicles of Gram-Negative but Not Gram-Positive Bacteria. Applied and Environmental Microbiology, 56, 1960-1962.
https://doi.org/10.1128/aem.56.6.1960-1962.1990
[25] Schertzer, J.W. and Whiteley, M. (2012) A Bilayer-Couple Model of Bacterial Outer Membrane Vesicle Biogenesis. MBio, 3, E00297-11.
https://doi.org/10.1128/mBio.00297-11
[26] Biller, S.J., Schubotz, F., Roggensack, S.E., et al. (2014) Bacterial Vesicles in Marine Ecosystems. Science, 343, 183-186.
https://doi.org/10.1126/science.1243457
[27] Kadurugamuwa, J.L. and Beveridge, T.J. (1995) Virulence Factors Are Released from Pseudomonas aeruginosa in Association with Membrane Vesicles during Normal Growth and Exposure to Gentamicin: A Novel Mechanism of Enzyme Secretion. Journal of Bacteriology, 177, 3998-4008.
https://doi.org/10.1128/jb.177.14.3998-4008.1995
[28] Li, M., Zhou, H., Yang, C., et al. (2020) Bacterial Outer Membrane Vesicles as a Platform for Biomedical Applications: An Update. Journal of Controlled Release, 323, 253-268.
https://doi.org/10.1016/j.jconrel.2020.04.031
[29] Zhou, L., Chen, D.Y., et al. (2019) Escherichia coli Outer Membrane Vesicles Induced DNA Double-Strand Breaks in Intestinal Epithelial Caco-2 Cells. Medical Science Monitor Basic Research, 25, 45-52.
https://doi.org/10.12659/MSMBR.913756
[30] Choi, M.S., Ze, E.Y., Park, J.Y., et al. (2021) Helicobacter pylori-Derived Outer Membrane Vesicles Stimulate Interleukin 8 Secretion through Nuclear Factor Kappa B Activation. The Korean Journal of Internal Medicine, 36, 854-867.
https://doi.org/10.3904/kjim.2019.432
[31] Bai, J., Kim, S.I., Ryu, S., et al. (2014) Identification and Characterization of Outer Membrane Vesicle-Associated Proteins in Salmonella Enterica Serovar typhimurium. Infection and Immunity, 82, 4001-4010.
https://doi.org/10.1128/IAI.01416-13
[32] Bauman, S.J. and Kuehn, M.J. (2006) Purification of Outer Membrane Vesicles from Pseudomonas aeruginosa and Their Activation of an IL-8 Response. Microbes and Infection, 8, 2400-2408.
https://doi.org/10.1016/j.micinf.2006.05.001
[33] Mat Rani, N.N.I., Alzubaidi, Z.M., Butt, A.M., et al. (2022) Outer Membrane Vesicles as Biomimetic Vaccine Carriers against Infections and Cancers. WIREs Nanomedicine and Nanobiotechnology, 14, E1784.
https://doi.org/10.1002/wnan.1784
[34] Schwechheimer, C., Kulp, A. and Kuehn, M.J. (2014) Modulation of Bacterial Outer Membrane Vesicle Production by Envelope Structure and Content. BMC Microbiology, 14, Article No. 324.
https://doi.org/10.1186/s12866-014-0324-1
[35] Schwechheimer, C., Rodriguez, D.L. and Kuehn, M.J. (2015) NlpI-Mediated Modulation of Outer Membrane Vesicle Production through Peptidoglycan Dynamics in Escherichia coli. Microbiologyopen, 4, 375-389.
https://doi.org/10.1002/mbo3.244
[36] Hua, L., Kaiser, M., Carabadjac, I., et al. (2023) Vesicle Budding Caused by Lysolipid-Induced Asymmetry Stress. Biophysical Journal, 122, 4011-4022.
https://doi.org/10.1016/j.bpj.2023.08.023
[37] May, K.L. and Silhavy, T.J. (2018) The Escherichia coli Phospholipase PldA Regulates Outer Membrane Homeostasis via Lipid Signaling. MBio, 9, E00379-18.
https://doi.org/10.1128/mBio.00379-18
[38] Bonnington, K.E. and Kuehn, M.J. (2016) Outer Membrane Vesicle Production Facilitates LPS Remodeling and Outer Membrane Maintenance in Salmonella during Environmental Transitions. MBio, 7, E01532-16.
https://doi.org/10.1128/mBio.01532-16
[39] Gui, M.J., Dashper, S.G., Slakeski, N., et al. (2016) Spheres of Influence: Porphyromonas gingivalis Outer Membrane Vesicles. Molecular Oral Microbiology, 31, 365-378.
https://doi.org/10.1111/omi.12134
[40] Reidl, J. (2016) Outer Membrane Vesicle Biosynthesis in Salmonella: Is There More to Gram-Negative Bacteria? MBio, 7, E01282-16.
https://doi.org/10.1128/mBio.01282-16
[41] Murphy, K., Park, A.J., Hao, Y., et al. (2014) Influence of O Polysaccharides on Biofilm Development and Outer Membrane Vesicle Biogenesis in Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 196, 1306-1317.
https://doi.org/10.1128/JB.01463-13
[42] Orench-Rivera, N. and Kuehn, M.J. (2016) Environmentally Controlled Bacterial Vesicle-Mediated Export. Cellular Microbiology, 18, 1525-1536.
https://doi.org/10.1111/cmi.12676
[43] Bauwens, A., Kunsmann, L., Karch, H., et al. (2017) Antibiotic-Mediated Modulations of Outer Membrane Vesicles in Enterohemorrhagic Escherichia coli O104:H4 and O157:H7. Antimicrobial Agents and Chemotherapy, 61, E00937-17.
https://doi.org/10.1128/AAC.00937-17
[44] Kulkarni, H.M., Nagaraj, R. and Jagannadham, M.V. (2015) Protective Role of E. coli Outer Membrane Vesicles against Antibiotics. Microbiological Research, 181, 1-7.
https://doi.org/10.1016/j.micres.2015.07.008
[45] McMahon, K.J., Castelli, M.E., García Vescovi, E., et al. (2012) Biogenesis of Outer Membrane Vesicles in Serratia marcescens Is Thermoregulated and Can Be Induced by Activation of the Rcs Phosphorelay System. Journal of Bacteriology, 194, 3241-3249.
https://doi.org/10.1128/JB.00016-12
[46] Toyofuku, M., Zhou, S., Sawada, I., et al. (2014) Membrane Vesicle Formation Is Associated with Pyocin Production under Denitrifying Conditions in Pseudomonas aeruginosa PAO1. Environmental Microbiology, 16, 2927-2938.
https://doi.org/10.1111/1462-2920.12260
[47] Sampath, V., McCaig, W.D. and Thanassi, D.G. (2018) Amino Acid Deprivation and Central Carbon Metabolism Regulate the Production of Outer Membrane Vesicles and Tubes by Francisella. Molecular Microbiology, 107, 523-541.
https://doi.org/10.1111/mmi.13897
[48] Yonezawa, H., Osaki, T., Kurata, S., et al. (2009) Outer Membrane Vesicles of Helicobacter pylori TK1402 Are Involved in Biofilm Formation. BMC Microbiology, 9, Article No. 197.
https://doi.org/10.1186/1471-2180-9-197
[49] Wu, Y. and Seyedsayamdost, M.R. (2017) Synergy and Target Promiscuity Drive Structural Divergence in Bacterial Alkylquinolone Biosynthesis. Cell Chemical Biology, 24, 1437-1444.E3.
https://doi.org/10.1016/j.chembiol.2017.08.024
[50] Ma, G., Ding, Y., Wu, Q., et al. (2022) Yersinia enterocolitica-Derived Outer Membrane Vesicles Inhibit Initial Stage of Biofilm Formation. Microorganisms, 10, Article No. 2357.
https://doi.org/10.3390/microorganisms10122357
[51] Vanaja, S.K., Russo, A.J., Behl, B., et al. (2016) Bacterial Outer Membrane Vesicles Mediate Cytosolic Localization of LPS and Caspase-11 Activation. Cell, 165, 1106-1119.
https://doi.org/10.1016/j.cell.2016.04.015
[52] Behrouzi, A., Mazaheri, H., Falsafi, S., et al. (2020) Intestinal Effect of the Probiotic Escherichia coli Strain Nissle 1917 and Its OMV. Journal of Diabetes & Metabolic Disorders, 19, 597-604.
https://doi.org/10.1007/s40200-020-00511-6
[53] Gao, F., Xu, L., Yang, B., et al. (2019) Kill the Real with the Fake: Eliminate Intracellular Staphylococcus aureus Using Nanoparticle Coated with Its Extracellular Vesicle Membrane as Active-Targeting Drug Carrier. ACS Infectious Diseases, 5, 218-227.
https://doi.org/10.1021/acsinfecdis.8b00212
[54] Fulsundar, S., Harms, K., Flaten, G.E., et al. (2014) Gene Transfer Potential of Outer Membrane Vesicles of Acinetobacter baylyi and Effects of Stress on Vesiculation. Applied and Environmental Microbiology, 80, 3469-3483.
https://doi.org/10.1128/AEM.04248-13
[55] Furuta, N., Takeuchi, H. and Amano, A. (2009) Entry of Porphyromonas gingivalis Outer Membrane Vesicles into Epithelial Cells Causes Cellular Functional Impairment. Infection and Immunity, 77, 4761-4770.
https://doi.org/10.1128/IAI.00841-09
[56] Elluri, S., Enow, C., Vdovikova, S., et al. (2014) Outer Membrane Vesicles Mediate Transport of Biologically Active Vibrio cholerae Cytolysin (VCC) from V. cholerae Strains. PLOS ONE, 9, e106731.
https://doi.org/10.1371/journal.pone.0106731
[57] Koeppen, K., Hampton, T.H., Jarek, M., et al. (2016) A Novel Mechanism of Host-Pathogen Interaction through SRNA in Bacterial Outer Membrane Vesicles. PLOS Pathogens, 12, e1005672.
https://doi.org/10.1371/journal.ppat.1005672
[58] Aldick, T., Bielaszewska, M., Uhlin, B.E., et al. (2009) Vesicular Stabilization and Activity Augmentation of Enterohaemorrhagic Escherichia coli Haemolysin. Molecular Microbiology, 71, 1496-1508.
https://doi.org/10.1111/j.1365-2958.2009.06618.x
[59] Kim, S.W., Park, S.B., Im, S.P., et al. (2018) Outer Membrane Vesicles from β-Lactam-Resistant Escherichia coli Enable the Survival of β-Lactam-Susceptible E. coli in the Presence of β-Lactam Antibiotics. Scientific Reports, 8, Article No. 5402.
https://doi.org/10.1038/s41598-018-23656-0
[60] Whitworth, D.E. (2011) Myxobacterial Vesicles Death at a Distance? Advances in Applied Microbiology, 75, 1-31.
https://doi.org/10.1016/B978-0-12-387046-9.00001-3
[61] Manning, A.J. and Kuehn, M.J. (2011) Contribution of Bacterial Outer Membrane Vesicles to Innate Bacterial Defense. BMC Microbiology, 11, Article No. 258.
https://doi.org/10.1186/1471-2180-11-258
[62] Reyes-Robles, T., Dillard, R.S., Cairns, L.S., et al. (2018) Vibrio cholerae Outer Membrane Vesicles Inhibit Bacteriophage Infection. Journal of Bacteriology, 200, E00792-17.
https://doi.org/10.1128/JB.00792-17
[63] Wang, Y., Hoffmann, J.P., Chou, C.W., et al. (2020) Burkholderia thailandensis Outer Membrane Vesicles Exert Antimicrobial Activity against Drug-Resistant and Competitor Microbial Species. Journal of Microbiology, 58, 550-562.
https://doi.org/10.1007/s12275-020-0028-1
[64] MacDonald, K.L. and Beveridge, T.J. (2002) Bactericidal Effect of Gentamicin-Induced Membrane Vesicles Derived from Pseudomonas aeruginosa PAO1 on Gram-Positive Bacteria. Canadian Journal of Microbiology, 48, 810-820.
https://doi.org/10.1139/w02-077
[65] MacDonald, I.A. and Kuehn, M.J. (2012) Offense and Defense: Microbial Membrane Vesicles Play both Ways. Research in Microbiology, 163, 607-618.
https://doi.org/10.1016/j.resmic.2012.10.020
[66] Lappann, M., Otto, A., Becher, D., et al. (2013) Comparative Proteome Analysis of Spontaneous Outer Membrane Vesicles and Purified Outer Membranes of Neisseria meningitidis. Journal of Bacteriology, 195, 4425-4435.
https://doi.org/10.1128/JB.00625-13
[67] Li, Y., Zhao, R., Cheng, K., et al. (2020) Bacterial Outer Membrane Vesicles Presenting Programmed Death 1 for Improved Cancer Immunotherapy via Immune Activation and Checkpoint Inhibition. ACS Nano, 14, 16698-16711.
https://doi.org/10.1021/acsnano.0c03776
[68] Chen, Q., Huang, G., Wu, W., et al. (2020) A Hybrid Eukaryotic-Prokaryotic Nanoplatform with Photothermal Modality for Enhanced Antitumor Vaccination. Advanced Materials, 32, e1908185.
https://doi.org/10.1002/adma.201908185
[69] Chen, Q., Bai, H., Wu, W., et al. (2020) Bioengineering Bacterial Vesicle-Coated Polymeric Nanomedicine for Enhanced Cancer Immunotherapy and Metastasis Prevention. Nano Letters, 20, 11-21.
https://doi.org/10.1021/acs.nanolett.9b02182
[70] Zhuang, Q., Xu, J., Deng, D., et al. (2021) Bacteria-Derived Membrane Vesicles to Advance Targeted Photothermal Tumor Ablation. Biomaterials, 268, Article ID: 120550.
https://doi.org/10.1016/j.biomaterials.2020.120550
[71] Chen, M.H., Liu, T.Y., Chen, Y.C., et al. (2021) Combining Augmented Radiotherapy and Immunotherapy through a Nano-Gold and Bacterial Outer-Membrane Vesicle Complex for the Treatment of Glioblastoma. Nanomaterials (Basel), 11, Article No. 1661.
https://doi.org/10.3390/nano11071661
[72] Kuerban, K., Gao, X., Zhang, H., et al. (2020) Doxorubicin-Loaded Bacterial Outer-Membrane Vesicles Exert Enhanced Anti-Tumor Efficacy in Non-Small-Cell Lung Cancer. Acta Pharmaceutica Sinica B, 10, 1534-1548.
https://doi.org/10.1016/j.apsb.2020.02.002
[73] Li, Y., Wu, J., Qiu, X., et al. (2022) Bacterial Outer Membrane Vesicles-Based Therapeutic Platform Eradicates Triple-Negative Breast Tumor by Combinational Photodynamic/Chemo-/Immunotherapy. Bioactive Materials, 20, 548-560.
https://doi.org/10.1016/j.bioactmat.2022.05.037
[74] Liu, X.Z., Wen, Z.J., Li, Y.M., et al. (2023) Bioengineered Bacterial Membrane Vesicles with Multifunctional Nanoparticles as a Versatile Platform for Cancer Immunotherapy. ACS Applied Materials & Interfaces, 15, 3744-3759.
https://doi.org/10.1021/acsami.2c18244
[75] Shi, J., Ma, Z., Pan, H., et al. (2020) Biofilm-Encapsulated Nano Drug Delivery System for the Treatment of Colon Cancer. Journal of Microencapsulation, 37, 481-491.
https://doi.org/10.1080/02652048.2020.1797914
[76] Cui, C., He, Q., Wang, J., et al. (2023) Targeted MiR-34a Delivery with PD1 Displayed Bacterial Outer Membrane Vesicles-Coated Zeolitic Imidazolate Framework Nanoparticles for Enhanced Tumor Therapy. International Journal of Biological Macromolecules, 247, Article ID: 125692.
https://doi.org/10.1016/j.ijbiomac.2023.125692
[77] Guo, Q., Li, X., Zhou, W., et al. (2021) Sequentially Triggered Bacterial Outer Membrane Vesicles for Macrophage Metabolism Modulation and Tumor Metastasis Suppression. ACS Nano, 15, 13826-13838.
https://doi.org/10.1021/acsnano.1c05613
[78] Wang, S., Huang, W., Li, K., et al. (2017) Engineered Outer Membrane Vesicle Is Potent to Elicit HPV16E7-Specific Cellular Immunity in a Mouse Model of TC-1 Graft Tumor. International Journal of Nanomedicine, 12, 6813-6825.
https://doi.org/10.2147/IJN.S143264
[79] Huang, W., Shu, C., Hua, L., et al. (2020) Modified Bacterial Outer Membrane Vesicles Induce Autoantibodies for Tumor Therapy. Acta Biomaterialia, 108, 300-312.
https://doi.org/10.1016/j.actbio.2020.03.030
[80] Grandi, A., Tomasi, M., Zanella, I., et al. (2017) Synergistic Protective Activity of Tumor-Specific Epitopes Engineered in Bacterial Outer Membrane Vesicles. Frontiers in Oncology, 7, Article No. 253.
https://doi.org/10.3389/fonc.2017.00253
[81] Cheng, K., Zhao, R., Li, Y., et al. (2021) Bioengineered Bacteria-Derived Outer Membrane Vesicles as a Versatile Antigen Display Platform for Tumor Vaccination via Plug-and-Display Technology. Nature Communications, 12, Article No. 2041.
https://doi.org/10.1038/s41467-021-22308-8
[82] Yue, Y., Xu, J., Li, Y., et al. (2022) Antigen-Bearing Outer Membrane Vesicles as Tumour Vaccines Produced in Situ by Ingested Genetically Engineered Bacteria. Nature Biomedical Engineering, 6, 898-909.
https://doi.org/10.1038/s41551-022-00886-2
[83] Zou, M.Z., Li, Z.H., Bai, X.F., et al. (2021) Hybrid Vesicles Based on Autologous Tumor Cell Membrane and Bacterial Outer Membrane to Enhance Innate Immune Response and Personalized Tumor Immunotherapy. Nano Letters, 21, 8609-8618.
https://doi.org/10.1021/acs.nanolett.1c02482
[84] Chen, L., Qin, H., Zhao, R., et al. (2021) Bacterial Cytoplasmic Membranes Synergistically Enhance the Antitumor Activity of Autologous Cancer Vaccines. Science Translational Medicine, 13, Eabc2816.
https://doi.org/10.1126/scitranslmed.abc2816
[85] Hu, T., Wolfram, J. and Srivastava, S. (2021) Extracellular Vesicles in Cancer Detection: Hopes and Hypes. Trends Cancer, 7, 122-133.
https://doi.org/10.1016/j.trecan.2020.09.003
[86] Gujrati, V., Prakash, J., Malekzadeh-Najafabadi, J., et al. (2019) Bioengineered Bacterial Vesicles as Biological Nano-Heaters for Optoacoustic Imaging. Nature Communications, 10, Article No. 1114.
https://doi.org/10.1038/s41467-019-09034-y
[87] Chen, Q., Rozovsky, S. and Chen, W. (2017) Engineering Multi-Functional Bacterial Outer Membrane Vesicles as Modular Nanodevices for Biosensing and Bioimaging. Chemical Communications (Camb), 53, 7569-7572.
https://doi.org/10.1039/C7CC04246A