免疫检查点抑制剂在治疗肺癌中的疗效预测标志物
The Predictive Biomarkers of Immune Checkpoint Inhibitors in the Treatment of Lung Cancer
DOI: 10.12677/acm.2024.1451686, PDF, HTML, XML, 下载: 24  浏览: 53 
作者: 贾轩超, 曹冉华*:内蒙古医科大学附属医院肿瘤内科,内蒙古 呼和浩特
关键词: 免疫检查点抑制剂治疗肺癌Immune Checkpoint Inhibitors Treating Lung Cancer
摘要: 免疫检查点阻断的巨大进步导致了肺癌患者治疗局面的转变。免疫检查点抑制剂(ICI)治疗,无论是单药疗还是联合治疗,都已被确立为无EGFR/ALK改变或广泛期小细胞肺癌的局部晚期/转移性非小细胞肺癌患者的标准治疗。越来越多的临床试验也在进行中,以进一步研究ICIs在早期肺癌患者中作为新辅助或辅助治疗的作用。尽管ICI在肺癌治疗中取得了有希望的进步,但这种疗法仅对15%至25%的肺癌患者有效。因此,鉴定能有效预测ICIs疗效的生物标志物至关重要。目前PD-L1表达和肿瘤突变负荷已被广泛研究用于患者选择,但这两种生物标志物都不完善。淋巴细胞亚群、细胞因子相辅相成,在免疫反应中发挥了重要作用,二者中部分指标已被认为具有预测ICI疗效的可能。本篇我们针对肺癌ICI治疗潜在的生物标志物,以及淋巴细胞亚群与细胞因子的相关性进行综述。
Abstract: The significant progress in immune checkpoint blockade has led to a transformation in the treatment of lung cancer patients. Immune checkpoint inhibitors (ICI) therapy, whether monotherapy or combination therapy, has been established as the standard treatment for locally advanced/metastatic non-small cell lung cancer patients without EGFR/ALK changes or extensive stage small cell lung cancer. An increasing number of clinical trials are also underway to further investigate the role of ICIs as neoadjuvant or adjuvant therapy in early lung cancer patients. Although ICI has made promising progress in the treatment of lung cancer, this therapy is only effective for 15% to 25% of lung cancer patients. Therefore, identifying biomarkers that can effectively predict the efficacy of ICIs is crucial. At present, PD-L1 expression and tumor mutation burden have been widely studied for patient selection, but neither of these biomarkers is complete. Lymphocyte subpopulations and cytokines complement each other and play an important role in immune responses. Some indicators of these two have been considered to have the potential to predict the efficacy of ICI. In this article, we provide a review of potential biomarkers for ICI treatment of lung cancer, as well as the correlation between lymphocyte subsets and cytokines.
文章引用:贾轩超, 曹冉华. 免疫检查点抑制剂在治疗肺癌中的疗效预测标志物[J]. 临床医学进展, 2024, 14(5): 2302-2310. https://doi.org/10.12677/acm.2024.1451686

1. 背景

免疫检查点阻断的巨大进步导致了肺癌患者治疗局面的转变。免疫检查点抑制剂(ICI)治疗,无论是单药治疗还是联合治疗,都已被确立为无EGFR/ALK改变或广泛期小细胞肺癌的局部晚期/转移性非小细胞肺癌患者的标准治疗。越来越多的临床试验也在进行中,以进一步研究ICIs在早期肺癌患者中作为新辅助或辅助治疗的作用。尽管ICI在肺癌治疗中取得了有希望的进步,但这种疗法仅对15%至25%的肺癌患者有效 [1] 。因此,鉴定能有效预测ICIs疗效的生物标志物至关重要。目前PD-L1表达和肿瘤突变负荷已被广泛研究用于患者选择,但这两种生物标志物都不完善。淋巴细胞亚群、细胞因子相辅相成,在免疫反应中发挥了重要作用,二者中部分指标已被认为具有预测ICI疗效的可能。本篇我们针对肺癌ICI治疗潜在的生物标志物,以及淋巴细胞亚群与细胞因子的相关性进行综述。

2. TMB

TMB是肿瘤中非同义突变的总数,通过每兆碱基(MB)的体细胞突变来量化。肺组织标本用于通过下一代测序(NGS)技术确定TMB。TMB作为生物标志物在免疫治疗中的应用主要是由于高水平基因突变导致的新抗原增加,这反过来激活了特异性免疫 [2] 。最近,根据KEYNOTE-158研究的结果,pembrolizumab已被批准用于患有不可切除或转移性TMB高的实体瘤且没有令人满意的替代治疗方案的患者。此外,Gandara等人报道,在OAK和POPLAR研究中,血液TMB也可以作为阈值为16 mut/Mb的阿替利珠单抗单药治疗患者的预测因子 [2] 。回顾性分析显示,在接受nivolumab治疗的NSCLC患者中,高TMB (>243个突变,根据全外显子组测序)与高PFS和ORR相关治疗 [1] 。在另一项研究中,高TMB (定义为Mut/Mb ≥ 10)的非小细胞肺癌患者在nivolumab和ipilimumab治疗后有较高的ORR或PFS。此外,ICI治疗与化疗的组合具有高反应率 [3] 。值得注意的是,在接受nivolumab单药治疗或nivolumab加ipilimumab联合治疗的SCLC患者中,报道了类似的TMB预后值 [4] [5] 。Wang等人使用优化的基因面板(NCC-GP150)进一步评估了血液中的DNA突变,并证实这些突变可以作为抗PD-1/PD-L1抗体治疗患者临床获益的生物标志物 [6] 。然而,由于各种计算方法和不同的标准来定义TMB的阈值,TMB是否可以成为临床上理想的生物标志物还需要进一步评估 [7] 。此外,对KEYNOTE-021和KEYNOTE-189研究的探索性分析发现,组织TMB与帕博利珠单抗加化疗的疗效没有显著相关性,在TMB高(≥175 mut/exome)和TMB低(<175 mut/外显子组)肿瘤 [8] [9] ,这表明尽管TMB可以作为ICI单一治疗的预测生物标志物,但它可能不适合ICI联合治疗。与其他基因相比,一些突变基因更容易形成新抗原。由于TMB和新抗原之间的这种间接联系,TMB并不总是与免疫疗法的疗效一致。虽然TMB水平的阈值是一个挑战,但随着通过测序技术产生的数据的增加和分析方法的改进,这个挑战是可以克服的。如上所述,新抗原是强特异性免疫反应的指标。然而,新抗原作为免疫治疗生物标志物的应用不仅依赖于通常可以通过TMB估计的数量,而且依赖于其质量,其受三个因素影响。根据新抗原是来自克隆突变还是亚克隆突变,新抗原是分布于整个肿瘤还是肿瘤的一部分,新抗原被分为两类。值得注意的是,与亚克隆突变相比,克隆突变产生的新抗原对免疫细胞的攻击更敏感;因此,亚克隆突变导致的肿瘤内新抗原异质性可能是ICI治疗的第一个阴性预测因子。此外,通过对新抗原表位和已知免疫原性微生物表位的相似性分析获得的高度序列同源性是外源新抗原的第三个特征。研究人员构建了一个基于这些因素的新抗原适合度模型,将其用于接受PD-1抑制剂治疗的患者,并证实其对肺癌和其他肿瘤的生存预测效果 [10] 。

3. PD-L1

PD-L1分子在肿瘤细胞和免疫细胞中表达,并且可以使用免疫组织化学(IHC)分析其表达水平,多项试验证实了临床结果和PD-L1表达之间的关联。先前的研究已证实,PD-L1的高表达水平与PD1/PD-L1抑制剂治疗后的无进展生存期(PFS)和总生存期(OS)正相关。六项III期临床试验研究报告称,ICI疗法对高水平表达PD-L1分子(≥50%)的非小细胞肺癌患者非常有效 [12] 。相反,一项荟萃分析报告称,包含PD-1/PD-L1抑制剂和化疗的联合疗法相比PD-L1表达 < 1%的非小细胞肺癌患者的化疗而言更有效 [12] 。此外,一些研究报告称,ICI化疗联合疗法是有效的,无论PD-L1的表达水平如何 [13] [14] 。一项关于SCLChas的研究报告称,基质上表达的PD-L1分子与帕博利珠单抗的疗效呈正相关 [15] 。然而,PD-L1的表达与纳武利尤单抗治疗的小细胞肺癌患者的客观缓解率(ORR)无关 [16] [17] 。有效性的变化可归因于病理样本的代表性和检测技术的可靠性。首先,由于PD-L1表达具有时空异质性 [18] 。最近的一项研究表明,PD-L1的表达与活检部位显著相关 [19] 。不同活检部位的PD-L1表达可能具有不同的预测价值,并为临床上PD-L1检测的进一步活检部位提供了证据。与新鲜标本相比,存档标本也可能影响PD-L1检测结果并降低OS的预测值 [20] 。此外,在PD-L1表达的测试方法和解释上也存在差异。值得注意的是,病理学家报告的PD-L1评分与通过数字图像确定的评分相当。相反,观察到免疫细胞中抗体的分数有显著差异 [21] 。这些抗体克隆之间的不一致性需要进一步研究,病理学家评估PD-L1表达水平的差异也可能导致结果的差异。PD-L1表达是一个有前途的生物标志物,其应用可以进一步优化。

4. 肿瘤微环境

肿瘤微环境(TME)在肿瘤生长中起着重要的作用,在ICI治疗期间,肿瘤浸润淋巴细胞(TIL)负责抗肿瘤活性 [22] 。不同的TIL在肿瘤–免疫相互作用中发挥不同的作用。IHC分析非小细胞肺癌组织标本中CD8和CD4分子表达的研究,据报道,较高的CD8+T细胞计数和较高的CD8+/CD4+比值(>2)与较高的抗PD-1治疗应答率呈正相关 [22] 。值得注意的是,CD8+和CD4+免疫细胞高间质浸润的NSCLC患者在nivolumab治疗后表现出更好的OS [23] 。对接受nivolumab治疗的肺癌患者的基质转化生长因子-β诱导蛋白(TGFBI)和瘤间CD8+T细胞的分析表明,低TGFBI和高CD8表达水平与高肿瘤反应正相关 [24] 。PD-1表达的TIL可能是一个潜在的预测因子,研究报道,在抗PD-1治疗前,以最高PD1表达为特征的CD8+ T细胞与更好的药物反应正相关 [25] 。最近的一项研究调查了耗尽CD8+T细胞的一个亚型,作为基于转录特征的耗尽CD8+T细胞的78基因标记,并报道了与非小细胞肺癌患者ICI治疗效果的正相关 [26] 。一项关于TIL上CD3、CD8、CD4、PD1和叉头盒蛋白3 (FoxP3)表达的研究报道,高CD3+TIL (>617.5/mm2)和低FoxP3+/CD8+T细胞比率(<25%)都是抗PD1治疗反应的预后因素在非小细胞肺癌患者中 [27] 。然而,FoxP3在其他情况下与治疗反应正相关。一项对接受nivolumab的EGFR突变的NSCLC患者的研究报道,CD4+和FoxP3+T细胞是阳性预后因素,而PD-L1表达不能预测治疗反应 [28] 。值得注意的是,TME是复杂的,不能通过一些细胞类型进行决定性的研究;因此,研究开发了一种免疫图。基于该免疫图,无论组织学类型如何,肺癌患者的TME被分为富含T细胞、缺乏T细胞和中等,这是用于个体化ICI治疗的更有前景的生物标志物 [29] 。应进一步研究和开发基于整个免疫系统的计算机模型,以充分理解驱动抗肿瘤免疫反应的机制。

5. 细胞因子

在小细胞肺癌接受伊匹单抗治疗的研究中,IL-2的基线水平与总生存期呈正相关,这表明IL-2血清水平是一批单抗获益的有效预测因子,这种差异在仅接受化疗的患者中没有体现 [30] 。IL-4、IL-6水平的增加。从一定程度上可以反映肿瘤进展的可能。二者的表达水平与PFS呈明显负相关,这在非小细胞肺癌患者接受pd-1抑制剂治疗的研究中得以体现 [31] 。免疫检查点抑制剂治疗肺癌后的IL-6/IL-10显著降低可以反映患者从免疫治疗中获益或有一定治疗反应,因此二者有潜力成为肺癌免疫治疗疗效预测指标;IL-8水平早期下降的趋势在免疫治疗黑色素瘤的研究中,与更长的总生存期有明显的相关性,这一结论在19名接受免疫治疗的肺癌患者中同样得到验证 [32] 。Boutsikou等人排除其他因子的影响,表明抗PD1治疗后,外周血中TNF-α升高在一定水平上预示着更佳的药物反应和更长的生存时间 [33] 。晚期或转移性NSCLC患者经抗PD1治疗发现,PB中IFN-γ水平与治疗3个月后的反应呈正相关 [30] 。一项NSCLC患者接受PD-1单抗治疗2周期后的研究提示,TNF-α水平对于免疫治疗效果有一定的预测价值,其中DCR组的TNF-α水平明显高于PD组,且DCR组的变化率明显大于PD组 [34] 。IL-17因子水平与患者病理分型、分化程度、TNM分期存在明显的相关性,IL-17水平与分化程度呈负相关,与TNM分期高度呈正相关 [35] 。目前有研究发现,TH-17分泌的IL-17细胞因子对肿瘤血管生成起正向作用,这促进肿瘤细胞的生长,侵袭以及转移 [36] 大量研究发现,基于IL-7对不同亚群T淋巴细胞及抗原呈递细胞独特的生物学特性,IL-7可与多种抗肿瘤药物发生协同作用,例如肿瘤疫苗、多种细胞因子、生物活性物质等,有效增强抗肿瘤疗效,因此IL-7可能被用于肿瘤治疗 [37] 。诸多细胞因子在抗肿瘤免疫过程中的价值还需更多相关研究予以进一步说明。

6. 外周血淋巴细胞亚群

淋巴细胞亚群包括以下各类细胞:(CD3T细胞、CD4T细胞、CD8T细胞、CD4/CD8T细胞、CD3 CD4 CD25 CD127 Treg细胞和Th1/Th2细胞,CD16 CD56 NK细胞等) [31] 。

CD3和CD4主要表达于辅助T细胞(Th细胞)表面,Th细胞的功能主要是调节机体的免疫反应 [38] 。CD8主要表达于抑制性T细胞(Ts细胞)和效应性T细胞(Tc细胞),可抑制机体的免疫反应,也可呈细胞毒性表现,对细胞介导的抗肿瘤免疫反应至关重要。CD4+/CD8+的比值可以在一定程度上有效地反映出机体的免疫功能,CD4+/CD8+的比值升高,表示Th细胞数值高于Ts细胞,此时免疫应答上调。Th细胞包括Th1和Th2亚群,Th1细胞介导细胞免疫;Th2细胞介导体液免疫。在一晚期肺癌患者群体中,Th2比例偏高提示患者Th1细胞整体功能不足,抗肿瘤免疫反应下降,间接促进肿瘤的增殖和侵袭,而经PD-1单抗治疗后Th1/Th2比值失调较前改善 [31] 。Julia等人在接受6个周期的纳武单抗或4个周期的佩姆单抗治疗的NSCLC患者中发现,与疾病进展(PD)患者相比,疾病稳定(SD)和部分缓解(PR)患者中CD4+的T细胞所占比例高于疾病进展(PD)患者。一项关于接受纳武单抗的NSCLC患者外周血(PB)中免疫细胞的研究表明NK细胞和CD8+T细胞的重要性,在基线PB中具有较高数量NK细胞和CD8+T细胞的患者中观察到延长的生存,然而,在一项阿替利珠单抗治疗的研究中发现循环Treg减少与NSCLC患者的良好结局相关 [39] 。Treg是CD4+T细胞的一种亚型,其主要功能是维持免疫耐受和防止自身免疫性疾病的发展。在接受纳武单抗治疗的非鳞状NSCLC患者研究中,记忆T细胞与效应T细胞比率高的患者具有更长的无进展生存期 [40] 。一项使用纳武利尤单抗或帕博利珠单抗治疗的肺癌研究提示,经4周期治疗后,与无免疫应答组相比,免疫应答组患者外周血CD3+T细胞、CD4+T细胞、CD4/CD8+T细胞和Th1/Th2细胞水平明显升高,而CD8+T细胞、Treg细胞、NK细胞水平明显下降 [31] 。

7. 细胞因子与淋巴细胞亚群的相关性分析

CD4主要表达于辅助T细胞介导体液免疫,其中Th1细胞主要分泌IL-2、TNF-β和IFN-γ等细胞因子,Th2细胞主要分泌IL-4、IL-5、IL-6、IL-10和IL-13等细胞因子。已有数据表明,CD8+T细胞可通过释放IFN-α破坏肿瘤细胞生长,从而抑制肿瘤细胞。许多细胞因子例如IFN-α、IL_2、IL-4的分泌与CD4+T细胞有关 [38] 。IL-2是一种细胞因子,其可反向对T细胞的复制起促进作用 [30] 。此外,FDONSKOV的一项实验表明:在应用IL-2治疗转移性肿瘤的研究中,效应CD4+T/CD8+T的比值较基线水平增加 [38] 。细胞因子与淋巴细胞亚群在抗肿瘤免疫反应中至关重要,但二者联系颇为复杂,未来的探索可能进一步建立以二者为基础的ICI网络监测机制,在肺癌免疫中发挥作用。

8. 其他生物标记或方法等

其他研究调查了ICI治疗的肺癌患者的其他可能得生物标志物,包括外周炎症细胞 [41] 、肠道微生物菌群多样性 [42] 、ctDNA检测 [43] 、HLA-I [44] 等。此外,PET在一定程度上是预测ICI治疗的非小细胞肺癌患者PFS和OS的有效方法 [45] 。血清抗神经元核抗体与小细胞肺癌相关的神经系统副肿瘤综合征(PNs)与良好的预后相关 [46] 。经过进一步的验证,这些手段在预测ICI疗效方面将是必不可少的。

9. 展望与思考

迄今为止,超过40种预测性生物标志物正在评估中。然而,关于哪一种是最理想的,还没有达成一致意见。肿瘤细胞和免疫系统之间的联系是一个多因素的动态过程。因此,综合模型可能有助于ICI治疗的标准化和预测准确性;但是,它的及时性和方便性是不确定的。目前,外周血指标因无创性,易于应用等优点受到关注,通过上述现有研究发现,细胞因子与淋巴细胞亚群中相当一部分指标都显示出了其可以为ICI疗效预测提供支持,不论是正相关还是负相关都会为相关问题提供宝贵的理论基础,或许我们可以把这些指标结合在一起,筛选出其中大有可为的“新型”指标,为免疫治疗更进一步选择获益较大的人群,为预后判断提供强有力的依据。亦可基于此研发更为精准的淋巴细胞/细胞因子混合制品,进而使患者的免疫系统适配于杀伤肿瘤细胞的水平。然而,目前对免疫疗效的预测仍处于探索阶段,也面临着诸多困难,如何改善免疫治疗疗效也是摆在我们面前的实际性难题。尽管如此,现有研究成果展现出的可能性依然令人感叹,未来值得深入探索如何进一步“精准”选择适宜的患者,探索更高效、更安全的免疫治疗“新方略”,从而为更多肺癌患者延长生存期,提高生活质量,甚至为他们的治愈带来希望。

NOTES

*通讯作者。

参考文献

[1] Peters, S., Creelan, B., Hellmann, M.D., et al. (2017) Abstract CT082: Impact of Tumor Mutation Burden on the Efficacy of First-Line Nivolumab in Stage IV or Recurrent Non-Small Cell Lung Cancer: An Exploratory Analysis of CheckMate 026. Cancer Research, 77, CT082-CT082.
https://doi.org/10.1158/1538-7445.AM2017-CT082
[2] Gandara, D.R., Paul, S.M., Kowanetz, M., Schleifman, E., Zou, W., Li, Y., Rittmeyer, A., Fehrenbacher, L., Otto, G., Malboeuf, C., Lieber, D.S., Lipson, D., Silterra, J., Amler, L., Riehl, T., Cummings, C.A., Hegde, P.S., Sandler, A., Ballinger, M., Fabrizio, D., Mok, T. and Shames, D.S. (2018) Blood-Based Tumor Mutational Burden as a Predictor of Clinical Benefit in Non-Small-Cell Lung Cancer Patients Treated with Atezolizumab. Nature Medicine, 24, 1441-1448.
https://doi.org/10.1038/s41591-018-0134-3
[3] Hellmann, M.D., Ciuleanu, T.E., Pluzanski, A., Lee, J.S., Otterson, G.A., Audigier-Valette, C., Minenza, E., Linardou, H., Burgers, S., Salman, P., Borghaei, H., Ramalingam, S.S., Brahmer, J., Reck, M., O’Byrne, K.J., Geese, W.J., Green, G., Chang, H., Szustakowski, J., Bhagavatheeswaran, P., Healey, D., Fu, Y., Nathan, F. and Paz-Ares, L. (2018) Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. The New England Journal of Medicine, 378, 2093-2104.
https://doi.org/10.1056/NEJMoa1801946
[4] Ricciuti, B., Kravets, S., Dahlberg, S.E., Umeton, R., Albayrak, A., Subegdjo, S.J., Johnson, B.E., Nishino, M., Sholl, L.M. and Awad, M.M. (2019) Use of Targeted Next Generation Sequencing to Characterize Tumor Mutational Burden and Efficacy of Immune Checkpoint Inhibition in Small Cell Lung Cancer. The Journal for ImmunoTherapy of Cancer, 7, Article No. 87.
https://doi.org/10.1186/s40425-019-0572-6
[5] Hellmann, M.D., Callahan, M.K., Awad, M.M., Calvo, E., Ascierto, P.A., Atmaca, A., Rizvi, N.A., Hirsch, F.R., Selvaggi, G., Szustakowski, J.D., Sasson, A., Golhar, R., Vitazka, P., Chang, H., Geese, W.J. and Antonia, S.J. (2018) Tumor Mutational Burden and Efficacy of Nivolumab Monotherapy and in Combination with Ipilimumab in Small-Cell Lung Cancer. Cancer Cell, 33, 853-861.E4.
https://doi.org/10.1016/j.ccell.2018.04.001
[6] Wang, Z., Duan, J., Cai, S., Han, M., Dong, H., Zhao, J., Zhu, B., Wang, S., Zhuo, M., Sun, J., Wang, Q., Bai, H., Han, J., Tian, Y., Lu, J., Xu, T., Zhao, X., Wang, G., Cao, X., Li, F., Wang, D., Chen, Y., Bai, Y., Zhao, J., Zhao, Z., Zhang, Y., Xiong, L., He, J., Gao, S. and Wang, J. (2019) Assessment of Blood Tumor Mutational Burden as a Potential Biomarker for Immunotherapy in Patients with Non-Small Cell Lung Cancer with Use of a Next-Generation Sequencing Cancer Gene Panel. JAMA Oncology, 5, 696-702.
https://doi.org/10.1001/jamaoncol.2018.7098
[7] Chan, T.A., Yarchoan, M., Jaffee, E., Swanton, C., Quezada, S.A., Stenzinger, A. and Peters, S. (2019) Development of Tumor Mutation Burden as an Immunotherapy Biomarker: Utility for the Oncology Clinic. Annals of Oncology, 30, 44-56.
https://doi.org/10.1093/annonc/mdy495
[8] Langer, C.J., Gadgeel, S.M., Borghaei, H., Papadimitrakopoulou, V.A., Patnaik, A., Powell, S.F., Gentzler, R.D., Martins, R.G., Stevenson, J.P., Jalal, S.I., Panwalkar, A., Yang, J.C., Gubens, M., Sequist, L.V., Awad, M.M., Fiore, J., Ge, Y., Raftopoulos, H., Gandhi, L. and KEYNOTE-021 Investigators (2016) Carboplatin and Pemetrexed with or without Pembrolizumab for Advanced, Non-Squamous Non-Small-Cell Lung Cancer: A Randomised, Phase 2 Cohort of the Open-Label KEYNOTE-021 Study. The Lancet Oncology, 17, 1497-1508.
https://doi.org/10.1016/S1470-2045(16)30498-3
[9] Horinouchi, H., Nogami, N., Saka, H., Nishio, M., Tokito, T., Takahashi, T., Kasahara, K., Hattori, Y., Ichihara, E., Adachi, N., Noguchi, K., Souza, F. and Kurata, T. (2021) Pembrolizumab plus Pemetrexed-Platinum for Metastatic Nonsquamous Non-Small-Cell Lung Cancer: KEYNOTE-189 Japan Study. Cancer Science, 112, 3255-3265.
https://doi.org/10.1111/cas.14980
[10] Łuksza, M., Riaz, N., Makarov, V., Balachandran, V.P., Hellmann, M.D., Solovyov, A., Rizvi, N.A., Merghoub, T., Levine, A.J., Chan, T.A., Wolchok, J.D. and Greenbaum, B.D. (2017) A Neoantigen Fitness Model Predicts Tumour Response to Checkpoint Blockade Immunotherapy. Nature, 551, 517-520.
https://doi.org/10.1038/nature24473
[11] Melosky, B., Chu, Q., Juergens, R.A., Leighl, N., Ionescu, D., Tsao, M.S., McLeod, D. and Hirsh, V. (2018) Breaking the Biomarker Code: PD-L1 Expression and Checkpoint Inhibition in Advanced NSCLC. Cancer Treatment Reviews, 65, 65-77.
https://doi.org/10.1016/j.ctrv.2018.02.005
[12] Landre, T., Des Guetz, G., Chouahnia, K., Taleb, C., Vergnenègre, A. and Chouaïd, C. (2020) First-Line PD-1/PD-L1 Inhibitor plus Chemotherapy vs Chemotherapy Alone for Negative or  < 1% PD-L1-Expressing Metastatic Non-Small-Cell Lung Cancers. Journal of Cancer Research and Clinical Oncology, 146, 441-448.
https://doi.org/10.1007/s00432-019-03070-3
[13] Gandhi, L., Rodríguez-Abreu, D., Gadgeel, S., Esteban, E., Felip, E., De Angelis, F., Domine, M., Clingan, P., Hochmair, M.J., Powell, S.F., Cheng, S.Y., Bischoff, H.G., Peled, N., Grossi, F., Jennens, R.R., Reck, M., Hui, R., Garon, E.B., Boyer, M., Rubio-Viqueira, B., Novello, S., Kurata, T., Gray, J.E., Vida, J., Wei, Z., Yang, J., Raftopoulos, H., Pietanza, M.C., Garassino, M.C. and KEYNOTE-189 Investigators (2018) Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. The New England Journal of Medicine, 378, 2078-2092.
https://doi.org/10.1056/NEJMoa1801005
[14] Paz-Ares, L., Luft, A., Vicente, D., Tafreshi, A., Gümüş, M., Mazières, J., Hermes, B., Çay Şenler, F., Csőszi, T., Fülöp, A., Rodríguez-Cid, J., Wilson, J., Sugawara, S., Kato, T., Lee, K.H., Cheng, Y., Novello, S., Halmos, B., Li, X., Lubiniecki, G.M., Piperdi, B., Kowalski, D.M. and KEYNOTE-407 Investigators (2018) Pembrolizumab plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer. The New England Journal of Medicine, 379, 2040-2051.
https://doi.org/10.1056/NEJMoa1810865
[15] Gadgeel, S.M., Pennell, N.A., Fidler, M.J., Halmos, B., Bonomi, P., Stevenson, J., Schneider, B., Sukari, A., Ventimiglia, J., Chen, W., Galasso, C., Wozniak, A., Boerner, J. and Kalemkerian, G.P. (2018) Phase II Study of Maintenance Pembrolizumab in Patients with Extensive-Stage Small Cell Lung Cancer (SCLC). Journal of Thoracic Oncology, 13, 1393-1399.
https://doi.org/10.1016/j.jtho.2018.05.002
[16] Ready, N., Farago, A.F., De Braud, F., Atmaca, A., Hellmann, M.D., Schneider, J.G., Spigel, D.R., Moreno, V., Chau, I., Hann, C.L., Eder, J.P., Steele, N.L., Pieters, A., Fairchild, J. and Antonia, S.J. (2019) Third-Line Nivolumab Monotherapy in Recurrent SCLC: CheckMate 032. Journal of Thoracic Oncology, 14, 237-244.
https://doi.org/10.1016/j.jtho.2018.10.003
[17] Ready, N.E., Ott, P.A., Hellmann, M.D., Zugazagoitia, J., Hann, C.L., De Braud, F., Antonia, S.J., Ascierto, P.A., Moreno, V., Atmaca, A., Salvagni, S., Taylor, M., Amin, A., Camidge, D.R., Horn, L., Calvo, E., Li, A., Lin, W.H., Callahan, M.K. and Spigel, D.R. (2020) Nivolumab Monotherapy and Nivolumab plus Ipilimumab in Recurrent Small Cell Lung Cancer: Results from the CheckMate 032 Randomized Cohort. Journal of Thoracic Oncology, 15, 426-435.
https://doi.org/10.1016/j.jtho.2019.10.004
[18] Gaule, P., Smithy, J.W., Toki, M., Rehman, J., Patell-Socha, F., Cougot, D., Collin, P., Morrill, P., Neumeister, V. and Rimm, D.L. (2017) A Quantitative Comparison of Antibodies to Programmed Cell Death 1 Ligand 1. JAMA Oncology, 3, 256-259.
https://doi.org/10.1001/jamaoncol.2016.3015
[19] Hong, L., Negrao, M.V., Dibaj, S.S., Chen, R., Reuben, A., Bohac, J.M., Liu, X., Skoulidis, F., Gay, C.M., Cascone, T., Mitchell, K.G., Tran, H.T., Le, X., Byers, L.A., Sepesi, B., Altan, M., Elamin, Y.Y., Fossella, F.V., Kurie, J.M., Lu, C., Mott, F.E., Tsao, A.S., Rinsurongkawong, W., Lewis, J., Gibbons, D.L., Glisson, B.S., Blumenschein, G.R., Roarty, E.B., Futreal, P.A., Wistuba, I.I., Roth, J.A., Swisher, S.G., Papadimitrakopoulou, V.A., Heymach, J.V., Lee, J.J., Simon, G.R. and Zhang, J. (2020) Programmed Death-Ligand 1 Heterogeneity and Its Impact on Benefit from Immune Checkpoint Inhibitors in NSCLC. Journal of Thoracic Oncology, 15, 1449-1459.
https://doi.org/10.1016/j.jtho.2020.04.026
[20] Herbst, R.S., Baas, P., Perez-Gracia, J.L., Felip, E., Kim, D.W., Han, J.Y., Molina, J.R., Kim, J.H., Dubos Arvis, C., Ahn, M.J., Majem, M., Fidler, M.J., Surmont, V., De Castro, G., Garrido, M., Shentu, Y., Emancipator, K., Samkari, A., Jensen, E.H., Lubiniecki, G.M. and Garon, E.B. (2019) Use of Archival versus Newly Collected Tumor Samples for Assessing PD-L1 Expression and Overall Survival: An Updated Analysis of KEYNOTE-010 Trial. Annals of Oncology, 30, 281-289.
https://doi.org/10.1093/annonc/mdy545
[21] Tsao, M.S., Kerr, K.M., Kockx, M., Beasley, M.B., Borczuk, A.C., Botling, J., Bubendorf, L., Chirieac, L., Chen, G., Chou, T.Y., Chung, J.H., Dacic, S., Lantuejoul, S., Mino-Kenudson, M., Moreira, A.L., Nicholson, A.G., Noguchi, M., Pelosi, G., Poleri, C., Russell, P.A., Sauter, J., Thunnissen, E., Wistuba, I., Yu, H., Wynes, M.W., Pintilie, M., Yatabe, Y. and Hirsch, F.R. (2018) PD-L1 Immunohistochemistry Comparability Study in Real-Life Clinical Samples: Results of Blueprint Phase 2 Project. Journal of Thoracic Oncology, 13, 1302-1311.
https://doi.org/10.1016/j.jtho.2018.05.013
[22] Uryvaev, A., Passhak, M., Hershkovits, D., Sabo, E. and Bar-Sela, G. (2018) The Role of Tumor-Infiltrating Lymphocytes (TILs) as a Predictive Biomarker of Response to Anti-PD1 Therapy in Patients with Metastatic Non-Small Cell Lung Cancer or Metastatic Melanoma. Medical Oncology, 35, Article No. 25.
https://doi.org/10.1007/s12032-018-1080-0
[23] Niemeijer, A.N., Sahba, S., Smit, E.F., Lissenberg-Witte, B.I., De Langen, A.J. and Thunnissen, E. (2020) Association of Tumour and Stroma PD-1, PD-L1, CD3, CD4 and CD8 Expression with DCB and OS to Nivolumab Treatment in NSCLC Patients Pre-Treated with Chemotherapy. British Journal of Cancer, 123, 392-402.
https://doi.org/10.1038/s41416-020-0888-5
[24] Nakazawa, N., Yokobori, T., Kaira, K., Turtoi, A., Baatar, S., Gombodorj, N., Handa, T., Tsukagoshi, M., Ubukata, Y., Kimura, A., Kogure, N., Ogata, K., Maeno, T., Sohda, M., Yajima, T., Shimizu, K., Mogi, A., Kuwano, H., Saeki, H. and Shirabe, K. (2020) High Stromal TGFBI in Lung Cancer and Intratumoral CD8-Positive T Cells Were Associated with Poor Prognosis and Therapeutic Resistance to Immune Checkpoint Inhibitors. Annals of Surgical Oncology, 27, 933-942.
https://doi.org/10.1245/s10434-019-07878-8
[25] Thommen, D.S., Koelzer, V.H., Herzig, P., Roller, A., Trefny, M., Dimeloe, S., Kiialainen, A., Hanhart, J., Schill, C., Hess, C., Savic, Prince, S., Wiese, M., Lardinois, D., Ho, P.C., Klein, C., Karanikas, V., Mertz, K.D., Schumacher, T.N. and Zippelius, A. (2018) A Transcriptionally and Functionally Distinct PD-1 CD8 T Cell Pool with Predictive Potential in Non-Small-Cell Lung Cancer Treated with PD-1 Blockade. Nature Medicine, 24, 994-1004.
https://doi.org/10.1038/s41591-018-0057-z
[26] Cai, M.C., Zhao, X., Cao, M., Ma, P., Chen, M., Wu, J., Jia, C., He, C., Fu, Y., Tan, L., Xue, X., Yu, Z. and Zhuang, G. (2020) T-Cell Exhaustion Interrelates with Immune Cytolytic Activity to Shape the Inflamed Tumor Microenvironment. The Journal of Pathology, 251, 147-159.
https://doi.org/10.1002/path.5435
[27] Kim, H., Kwon, H.J., Han, Y.B., Park, S.Y., Kim, E.S., Kim, S.H., Kim, Y.J., Lee, J.S. and Chung, J.H. (2019) Increased CD3 T Cells with a Low FOXP3 /CD8 T Cell Ratio Can Predict Anti-PD-1 Therapeutic Response in Non-Small Cell Lung Cancer Patients. Modern Pathology, 32, 367-375.
https://doi.org/10.1038/s41379-018-0142-3
[28] Sato, M., Watanabe, S., Tanaka, H., Nozaki, K., Arita, M., Takahashi, M., Shoji, S., Ichikawa, K., Kondo, R., Aoki, N., Hayashi, M., Ohshima, Y., Koya, T., Ohashi, R., Ajioka, Y. and Kikuchi, T. (2019) Retrospective Analysis of Antitumor Effects and Biomarkers for Nivolumab in NSCLC Patients with EGFR Mutations. PLOS ONE, 14, e0215292.
https://doi.org/10.1371/journal.pone.0215292
[29] Karasaki, T., Nagayama, K., Kuwano, H., Nitadori, J.I., Sato, M., Anraku, M., Hosoi, A., Matsushita, H., Morishita, Y., Kashiwabara, K., Takazawa, M., Ohara, O., Kakimi, K. and Nakajima, J. (2017) An Immunogram for the Cancer-Immunity Cycle: Towards Personalized Immunotherapy of Lung Cancer. Journal of Thoracic Oncology, 12, 791-803.
https://doi.org/10.1016/j.jtho.2017.01.005
[30] Hardy-Werbin, M., Rocha, P., Arpi, O., et al. (2019) Serum Cytokine Levels as Predictive Biomarkers of Benefit from Ipilimumab in Small Cell Lung Cancer. Oncoimmunology, 8, e1593810.
https://doi.org/10.1080/2162402X.2019.1593810
[31] 李兴, 马丽娜, 李迅, 等. PD-1抑制剂治疗晚期肺癌的疗效及对患者外周血T淋巴细胞亚群和细胞因子水平的影响[J]. 中国肿瘤生物治疗杂志, 2021, 28(11): 1113-1118.
[32] Wu, L., Xie, S., Wang, L., et al. (2021) The Ratio of IP10 to IL-8 in Plasma Reflects and Predicts the Response of Patients with Lung Cancer to Anti-PD-1 Immunotherapy Combined with Chemotherapy. Frontiers in Immunology, 12, Article ID: 665147.
https://doi.org/10.3389/fimmu.2021.665147
[33] Boutsikou, E., Domvri, K., Hardavella, G., et al. (2018) Tumour Necrosis Factor, Interferon-Gamma and Interleukins as Predictive Markers of Antiprogrammed Cell-Death Protein-1 Treatment in Advanced Non-Small Cell Lung Cancer: A Pragmatic Approach in Clinical Practice. Therapeutic Advances in Medical Oncology, 10, 1758835918768238.
https://doi.org/10.1177/1758835918768238
[34] 郑轩, 胡毅. 晚期非小细胞肺癌患者抗PD-1治疗前后血清TNF-α水平变化与疗效的关系[J]. 解放军医学院学报, 2019, 40(3): 231-234 55.
[35] 左秀萍, 高苗, 宋娟, 等. 非小细胞肺癌患者中Th17细胞及IL-17变化与淋巴结转移、不良预后的相关性分析[J]. 临床肺科杂志, 2021, 26(9): 1405-1410.
[36] 毛英, 刘黎, 张匠, 等. 非小细胞肺癌患者癌组织免疫微环境中Th1、Th2、Th17的表达水平及意义[J]. 临床误诊误治, 2021, 34(1): 77-82.
[37] 陈样, 勾红峰. 白介素-7与肿瘤关系的研究进展[J]. 实用医院临床杂志, 2016, 13(4): 212-214.
[38] 黄作平, 邹冰心, 谢强, 等. Th_1/Th_2类细胞因子在非小细胞肺癌中的作用探讨[J]. 中国现代医学杂志, 2006(13): 1948-1951.
[39] Wei, X., Gu, L. and Heng, W. (2021) T Lymphocytes Related Biomarkers for Predicting Immunotherapy Efficacy in Non-Small Cell Lung Cancer. Oncology Letters, 21, Article No. 89.
https://doi.org/10.3892/ol.2020.12350
[40] Manjarrez-Orduño, N., Menard, L.C., Kansal, S., et al. (2018) Circulating T Cell Subpopulations Correlate with Immune Responses at the Tumor Site and Clinical Response to PD1 Inhibition in Non-Small Cell Lung Cancer. Frontiers in Immunology, 9, Article No. 1613.
https://doi.org/10.3389/fimmu.2018.01613
[41] Dusselier, M., Deluche, E., Delacourt, N., Ballouhey, J., Egenod, T., Melloni, B., Vergnenègre, C., Veillon, R. and Vergnenègre, A. (2019) Neutrophil-to-Lymphocyte Ratio Evolution Is an Independent Predictor of Early Progression of Second-Line Nivolumab-Treated Patients with Advanced Non-Small-Cell Lung Cancers. PLOS ONE, 14, e0219060.
https://doi.org/10.1371/journal.pone.0219060
[42] Routy, B., Le Chatelier, E., Derosa, L., Duong, C.P.M., Alou, M.T., Daillère, R., Fluckiger, A., Messaoudene, M., Rauber, C., Roberti, M.P., Fidelle, M., Flament, C., Poirier-Colame, V., Opolon, P., Klein, C., Iribarren, K., Mondragón, L., Jacquelot, N., Qu, B., Ferrere, G., Clémenson, C., Mezquita, L., Masip, J.R., Naltet, C., Brosseau, S., Kaderbhai, C., Richard, C., Rizvi, H., Levenez, F., Galleron, N., Quinquis, B., Pons, N., Ryffel, B., Minard-Colin, V., Gonin, P., Soria, J.C., Deutsch, E., Loriot, Y., Ghiringhelli, F., Zalcman, G., Goldwasser, F., Escudier, B., Hellmann, M.D., Eggermont, A., Raoult, D., Albiges, L., Kroemer, G. and Zitvogel, L. (2018) Gut Microbiome Influences Efficacy of PD-1-Based Immunotherapy Against Epithelial Tumors. Science, 359, 91-97.
https://doi.org/10.1126/science.aan3706
[43] Goldberg, S.B., Narayan, A., Kole, A.J., Decker, R.H., Teysir, J., Carriero, N.J., Lee, A., Nemati, R., Nath, S.K., Mane, S.M., Deng, Y., Sukumar, N., Zelterman, D., Boffa, D.J., Politi, K., Gettinger, S.N., Wilson, L.D., Herbst, R.S. and Patel, A.A. (2018) Early Assessment of Lung Cancer Immunotherapy Response via Circulating Tumor DNA. Clinical Cancer Research, 24, 1872-1880.
https://doi.org/10.1158/1078-0432.CCR-17-1341
[44] Gettinger, S., Choi, J., Hastings, K., Truini, A., Datar, I., Sowell, R., Wurtz, A., Dong, W., Cai, G., Melnick, M.A., Du, V.Y., Schlessinger, J., Goldberg, S.B., Chiang, A., Sanmamed, M.F., Melero, I., Agorreta, J., Montuenga, L.M., Lifton, R., Ferrone, S., Kavathas, P., Rimm, D.L., Kaech, S.M., Schalper, K., Herbst, R.S. and Politi, K. (2017) Impaired HLA Class I Antigen Processing and Presentation as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer. Cancer Discovery, 7, 1420-1435.
https://doi.org/10.1158/2159-8290.CD-17-0593
[45] Wu, Q., Liu, J., Zhang, Y., Wu, S. and Xie, X. (2020) Predictive Value of Positron Emission Tomography for the Prognosis of Immune Checkpoint Inhibitors (ICIs) in Malignant Tumors. Cancer Immunology, Immunotherapy, 69, 927-936.
https://doi.org/10.1007/s00262-020-02515-w
[46] Kobayashi, M., Ikezoe, T., Uemura, Y., Ueno, H. and Taguchi, H. (2007) Long-Term Survival of a Patient with Small Cell Lung Cancer Associated with Cancer-Associated Retinopathy. Lung Cancer, 57, 399-403.
https://doi.org/10.1016/j.lungcan.2007.02.015