经颈静脉肝内门体分流术后并发症的研究进展
Research Progress on Complications after Transjugular Intrahepatic Portosystemic Shunt
DOI: 10.12677/acm.2024.1451681, PDF, HTML, XML, 下载: 61  浏览: 113 
作者: 王小宁:山东第一医科大学(山东省医学科学院)研究生院,山东 济南;李 旭:山东第二医科大学研究生院,山东 潍坊;李 坤*:山东第一医科大学第一附属医院消化内科,山东 济南
关键词: 门静脉高压经颈静脉肝内门体分流术手术并发症Portal Hypertension Transjugular Intrahepatic Portosystemic Shunts Surgical Complications
摘要: 经颈静脉肝内门体分流术(transjugular intrahepatic portosystemic shunts, TIPS)在治疗静脉曲张破裂出血、顽固性腹水等门静脉高压并发症中起着至关重要的作用,然而由于TIPS术后并发症严重降低了患者生存质量,临床应高度重视。了解TIPS术后并发症及其危险因素很有必要,本文就TIPS术后并发症及其防治策略的现状及新进展作一综述。
Abstract: Transjugular intrahepatic portosystemic shunt (TIPS) plays a crucial role in the treatment of complications of portal hypertension such as variceal bleeding and refractory ascites. However, the serious post-TIPS complications significantly reduce patients’ quality of life, warranting high clinical attention. It is essential to understand the post-TIPS complications and their risk factors. This article provides a comprehensive review of the current status and recent advances in the prevention and treatment strategies of post-TIPS complications.
文章引用:王小宁, 李旭, 李坤. 经颈静脉肝内门体分流术后并发症的研究进展[J]. 临床医学进展, 2024, 14(5): 2270-2277. https://doi.org/10.12677/acm.2024.1451681

1. 引言

1969年,Rösch [1] 等人第一次提出经皮在门静脉–肝静脉间建立一个通道,从而降低门静脉压力这一理念,并成功在动物上实验并成功实施。TIPS于1988年首次用于临床,在先前动物实验和临床研究的基础上,Richter [2] 团队1988年使用Palmaz支架首次在终末期门静脉高压患者中成功实施TIPS。TIPS技术经过几十年来的不断改进和发展,现已广泛应用于治疗门静脉高压并发症。随着TIPS的广泛应用,其术后并发症及防治策略也逐渐受到重视,发现及预防TIPS术后并发症,对提高患者术后生存质量具有重要意义,本文将从TIPS术后常见并发症及特殊的TIPS术后并发症两个方面来阐述。

2. TIPS术后常见并发症

2.1. 肝性脑病

肝性脑病(hepatic encephalopathy, HE)是一种与急性和慢性肝损伤相关或门体静脉分流所致的神经精神综合征。它表现为广泛的神经心理异常,从高级认知功能的细微损害,到明显的定向障碍、意识混乱和昏迷 [3] 。欧洲肝病协会将肝性脑病分为显性肝性脑病(overt hepatic encephalopathy, OHE)和隐匿型肝性脑病(covert hepatic encephalopathy, CHE)两类,其中CHE又包括轻微型肝性脑病(minimal hepatic encephalopathy, MHE)和West-Haven标准(WHC)中0、I级HE,OHE包括WHC中的II~IV级HE [4] 。HE是TIPS术后最常见的并发症,据报道 [5] ,TIPS术后OHE的1年累积发生率在10%~50%之间,持续性OHE的发生率约为8%,而CHE的发生率约为35%。即使是最轻微形式的HE也会显著降低患者术后的生活质量,造成TIPS术不良的预后 [6] 。

在临床工作中,评估一个OHE的患者相对简单,因为这些患者大多数意识会发生改变,神经心理学特征比较明显。然而MHE的判定有一定的困难,在临床中及早发现MHE,并及早进行治疗至关重要。MHE被定义为仅有认知改变,如注意力缺陷、精神运动迟缓和执行功能障碍,而临床检查并无异常 [7] 。它的诊断依赖于一系列的心理测试,如肝性脑病心理学评分(psychometric hepatic encephalopathy score, PHES)、可重复神经心理状态测试(repeatable battery for assessment of neurological status, RBANS)和连续反应时间测试(continuous reaction time, CRT)等。在这些测试中,PHES敏感性和特异性均很高,被称为C/MHE诊断的金标准 [8] [9] 。然而上述这些测试需要规范数据,并且耗时长,其结果可能会受到患者年龄、文化程度等因素的影响。临界闪烁频率(critical flicker frequency, CFF)是一种简单的视觉测试,它也已被验证可用于诊断MHE [10] [11] 。与心理测试相比,CFF具有简单易行、不受教育水平、年龄影响,且无学习效应等优势。最近研究表明 [12] ,通过运用CFF和PHES诊断TIPS术前MHE,CFF比PHES对于术后发生OHE的预测效果更准确,使用阈值为39 Hz的CFF可以术前帮助选择患者,以便提前干预并降低TIPS术后HE的发生率。

TIPS术后HE的发生机制,从病理生理学的角度来看,氨仍然是HE发病机制的核心因素,此外HE还与全身炎症、神经炎症、氧化应激和细胞衰老有关,HE患者的血脑屏障通透性、脑脊液成分、淋巴液流量、脑能量代谢、神经传递和细胞间通讯均发生紊乱,造成神经功能的损伤,这也为HE的治疗提供了潜在靶点 [13] - [18] 。

既往多项研究表明 [19] [20] [21] [22] ,增加患者TIPS术后HE风险的因素包括TIPS术前HE病史(包括CHE)、晚期肝功能障碍(Child-PughC级或终末期肝病模型评分 > 18)、高龄、肌酐升高、低钠血症和肌少症。还有研究发现,TIPS降低门体梯度(portosystemic gradient, PSG),应以患者原来的基础压为基础,与PSG降低到<12 mmHg相比,PSG降低三分之一可降低TIPS术后患者肝性脑病、肝功能损害的风险 [23] 。最近李雷 [24] 等人首次证明了控制营养状况(The Controlling Nutritional Status, CONUT)评分是TIPS术后肝硬化患者发生OHE风险的独立预后因素。CONUT评分非常简单,成本相对较低,易于在临床环境中进行,并且反映了患者的营养和免疫指标。与Child-Pugh评分相比,CONUT评分模型更有价值,它不仅可以用于预测TIPS术后肝硬化患者的OHE风险,也有利于临床医生确定给予患者营养支持的剂量和时间。TIPS改变了肝脏血供,术后门静脉压力下降继而肝血窦压力下降,肝动脉的灌注量代偿性升高,关于肝动脉血流变化与肝性脑病的关系目前还未有人研究,未来应进一步探索TIPS术后肝动脉血流动力学改变的分子机制,开发新的HE防治策略。

对于TIPS术后HE的治疗,目前主要集中在调节肠道微生物群、降低氨水平方面。乳果糖 [25] [26] 是一种不可吸收的二糖,可调节肠道微生物群,减少细菌产氨,并通过降低结肠pH值来减少氨从肠道到血液的运输,可用于治疗MHE和HE。一旦患者已经出现HE发作,乳果糖可降低患者进一步发作的风险,已被应用作一线二级预防药物 [27] 。利福昔明是一种吸收率很低的广谱抗生素,它被认为可以抑制尿素脱氨基细菌的分裂,从而减少肠道中氨的产生,并促进乳酸菌、双歧杆菌等有益菌的生长,同时不易诱导细菌耐药,利福昔明可改善OHE,逆转MHE,防止HE复发 [28] ,利福昔明现已被批准用于OHE的二级预防。现已发现 [29] ,在非吸收性二糖中添加利福昔明在提高HE患者的生存率方面优于单独非吸收性二糖治疗或单独利福昔明治疗。而其他药物,比如L-鸟氨酸-L-门冬氨酸、支链氨基酸、降氨剂在降低HE死亡率方面的效用尚未得到明确的证明,待进一步研究。益生菌和粪便微生物群移植作为两种调节肠道微生物群的新方法,正在测试中。使用益生菌 [30] 治疗,不管是单独或是作为其他当前治疗的补充,似乎是较安全和有前途的HE治疗方法。骨骼肌减少症在肝硬化中很常见,由于骨骼肌在清除循环氨中起着重要作用,因此优化有HE风险患者的营养状况也很重要。针对HE发病的其他机制,如免疫系统和外周炎症的调节、神经炎症调节、神经传递调节的药物已被发现可以改善患者认知和运动功能以及HE,但不降低氨水平,然而到目前为止,作用于这些靶点的药物改善HE的效用尚未得到评估。目前需要进一步研究作用于免疫系统/外周炎症、神经炎症或神经传递的替代治疗方法和药物,以期改善HE患者预后 [31] 。

2.2. 支架功能障碍

在TIPS应用初期,即金属裸支架时代,分流功能障碍的发生率很高,多项研究表明应用裸支架2年内支架功能障碍的发生率高达60%~80%。随着2004年新型膨体聚四氟乙烯(e-PTFE)覆膜支架的出现,分流功能障碍的发生率显著降低,在使用覆膜支架建立分流器2年后,TIPS功能障碍的发生率为20%~30% [32] 。支架功能障碍一般可分为由于错位、压迫、急性血栓形成导致的早期支架功能障碍和由于支架穿过区域损伤的肝实质、肝流出静脉假性内膜增生导致的晚期功能障碍 [33] 。Chen团队证实 [34] ,TIPS穿刺门静脉左支可以提高分流道的通畅率,显著降低原发性再狭窄的发生率。从解剖学上看,门静脉左支是门静脉主干的延伸段,肝静脉与门静脉左支之间的轨迹更直,支架的可塑性更强,发生假性内膜增生和分流道狭窄的可能性较小;从血液动力学角度来看,门静脉左支的层流剪切应力在分流道中引起的湍流较小,血小板不容易堆积,降低了血栓形成的风险。还有研究证实 [35] ,TIPS生成的初始支架位置是分流道首次通畅的重要决定因素,将支架流入道放置在门静脉左支,支架流出道的位置延伸至肝静脉与下腔静脉交界处,初始分流道通畅率和分流道通畅时间远高于放置在其他位置。在建立分流道的过程中,如果支架放置在肝静脉内,且重叠距离不超过2 cm,则支架与肝静脉之间可能会有间隙,在高速血流的情况下,容易形成剪切应力和湍流,静脉内膜增生修复导致分流功能障碍,因此将覆膜支架放置于肝静脉与下腔静脉的连接处,可以提高支架的通畅性。

为了准确检测支架功能障碍,通常需要进行门静脉造影以及测量门静脉压力梯度(portal pressure gradient, PPG)。虽然这种方法能在发现狭窄或闭塞时同时进行TIPS修正,但由于它是侵入性的操作且成本高昂,所以在临床上应用暂不广泛。在日常临床环境中成本低且准确诊断早期分流道闭塞目前仍具有挑战性。脾脏刚度的测量,被认为与门静脉压有很强的相关性,在这种情况下可能是一个有前途的断工具 [36] 。超声 [37] 在检测支架闭塞方面具有良好的性能,但其应用仅限于金属裸支架,对覆膜支架的适用性仍存在争议。未来需要一种新的无创工具来检测TIPS术后支架功能障碍或狭窄。在支架梗阻的情况下,目前可行且安全的重建分流道的手术方法有多种,如经皮门静脉再通、平行支架再通、闭塞TIPS激光再通、开窗术、联合y型支架修复术等,可根据患者的具体情况进行选择 [38] 。

3. 特殊的TIPS术后并发症

3.1. 肝性脊髓病

肝性脊髓病 [39] (hepatic myelopathy, HM)是TIPS术后的一种罕见且容易被忽视的并发症,表现为下肢进行性对称性痉挛性截瘫,几乎没有感觉和括约肌功能障碍,肌张力增加和反射亢进是最常见的表现,对上肢的影响最小。有研究表明 [40] ,国内TIPS术后HM的发病率约为7.13%,HM患者预后极差,他们通常对药物治疗抵抗,最终只能坐在轮椅上,生活质量极低。HM的组织学改变 [41] 包括侧锥体束髓鞘的对称丢失,开始于颈椎的脱髓鞘,可能与轴突损伤有关,在早期阶段,脱髓鞘占主导地位,随着疾病的进展,轴突逐渐受损并丧失功能,这可能是不可逆的进程,有时在腹侧锥体束、后柱和脊髓小脑束中也会发现脱髓鞘表现。HM的发病机制尚不清楚,即使在没有发现肝功能损害的情况下,HM的发生可能与广泛的门体分流有着密切的联系。这可能是由于血液的分流会使含氮分解产物或神经毒素绕过肝脏并损伤脊髓,特别是氨等含氮物质已被确定为HM发展的主要危险因素 [42] 。

HM的诊断是在排除痉挛性截瘫的其他可能原因的基础上,根据临床依据确定的,由于HM背后的神经病理学基础很大程度上是未知的,且缺乏特异性的生物标志物,所以诊断HM有一定的困难。通过现代神经影像技术,特别是MRI中的弥散张量纤维束成像技术可以很好地观察到脊髓内脱髓鞘的轴突,对诊断HM有一定帮助,然而扩散张量纤维束成像非常昂贵,所以临床中不常规使用,而体感诱发电位(Somatosensory evoked potentials, SEP)和运动诱发电位(motor evoked potentials, MEP)研究可以很容易地在大多数神经生理学实验室进行,即使在临床检查正常的患者中,MEP也会出现异常,其为HM的早期诊断提供了可能性,有研究发现 [43] ,SEP对背柱和MEP对皮质–脊髓外侧束的电生理评估对于HM患者脊髓受累程度的功能评估具有相当大的价值。Wang [44] 等人的发现可能为大脑中的关联纤维束以及纤维束连接的运动相关皮层参与了HM的发生提供了证据,其研究证明了胼胝体和上纵束可能参与了TIPS术后HM患者痉挛性截瘫的发生,这种白质纤维的改变可以通过下肢肌力的下降来反映。传统上,HM的研究更多地关注脊髓和白质,但有一研究 [45] 揭示了HM患者运动相关灰质区域的异常,HM患者的右侧尾状核灰质体积增大同时伴有严重的下肢运动障碍,这可能可作为评估肝性脊髓病的预测标志物。关于HM的病理学机制和诊断方法仍待进一步研究,以期及早预防HM的发生。肝移植似乎是HM患者唯一有效的治疗方式,在Counsell和Warlow报道的病例中 [46] ,在脊髓病发病至少18个月后进行肝移植的患者,神经系统症状没有得到任何改善,所以在HM临床病程早期或在MEP没有明显异常的情况下进行早期肝移植,HM可能是可逆的,因此推荐早期诊断HM并进行肝移植治疗。

3.2. 肝功能衰竭

TIPS术后发生的肝功能衰竭(Post-TIPS liver failure, PTLF)是一种罕见但严重的并发症,预后很差。PTLF的病理生理学机制 [47] 因人而异,但均涉及对已受损肝脏的进一步损害,最重要的原因是门静脉灌流显著减少。TIPS术后肝内门静脉血流分流到体静脉,导致肝脏灌注不足,导致HE和肝功能恶化。其他相关的病理生理学机制包括技术因素造成的,如TIPS术后支架压迫或闭塞肝动脉和门静脉的一个或多个分支导致肝梗死;或覆膜支架阻塞肝静脉,导致肝静脉充血。胆红素和国际标准化比值(international normalization ratio, INR)是临床中公认的代表肝功能的指标。TIPS术后胆红素和INR短暂升高是常见现象,并非所有此类病例都会产生不良结果。然而其水平严重且长期升高可能是肝衰竭的标志 [48] 。有研究表明 [49] ,TIPS术后胆红素持续增加3倍的患者应被视为存在肝衰竭风险,需要积极治疗,包括转诊至移植中心。还有研究证实 [50] ,TIPS术前HVPG水平可作为术后潜在短期不良事件的预测因子。目前还没有关于PTLF客观防御的共识指南,Gaba [48] 等人在2016年提出了一个简单客观的PTLF定义和分类方案,该方案基于国际肝脏外科研究组(ISGLS)设计的经验证的肝切除术后肝衰竭(PHLF)定义和分级量表。Mukund [51] 等人在其基础上进一步研究发现近10%的肝硬化患者TIPS术后发生肝功能衰竭,PTLF与显著的早期死亡率相关,较高的基线Child-Pugh评分和既往HE病史被确定为PTLF的预测因素。对于TIPS术后的肝功能衰竭,应考虑支架的重新校准和肝移植,从源头解决问题。

3.3. 心力衰竭

TIPS通过在门静脉和体循环之间建立分流道来降低门静脉压力,由此产生的血流动力学变化包括全身血管阻力降低、肺毛细血管楔形压增加、心脏前负荷以及心输出量增加。然而,肝硬化患者本身具有高动力循环,支架植入可能会加剧这种情况,进而导致TIPS术后心力衰竭(heart failure, HF)。TIPS术后可导致心输出量立即增加至4 L/min,随后减弱,多达20%的患者在TIPS术后的第一年内表现出心脏失代偿的迹象 [52] 。HF是TIPS术后的一种重要并发症并与生存率降低相关,它的发展是一个不良的预后因素。Modha [53] 等人发现凝血酶原时间和白蛋白水平较高的老年患者在TIPS后更有可能发生HF,门脉压力特别高(>25 mmHg)的患者在手术后应密切监测心功能。有研究发现 [54] ,TIPS术后的肝硬化患者中有10%发生心力衰竭,所有病例均发生在术后90天内,术前超声心动图变量,包括右心房大小、肺动脉收缩压峰值以及左心室收缩末期和舒张末期容积与TIPS术后心力衰竭的发生显著相关,而TIPS术后心力衰竭与较差的1年生存率相关。这些术前变量可用于指导考虑支架植入的肝硬化患者的风险分级。Billey [52] 等人也发现结合BNP或NT-proBNP水平和超声心动图参数可以更好地选择关于TIPS术后心脏失代偿风险的患者,这种方法需要进一步验证。术前排查出TIPS术后HF高危患者对提高患者生存率有重要意义,目前仍需要进一步深入研究。

本文中综述了TIPS术后并发症的研究进展,但是由于目前对于TIPS术后并发症相关的研究数据量非常大,所以本文并没有深入详细的介绍,而是提取后精炼了内容,这可能会导致部分内容不够详细。

4. 结语

TIPS拯救了无数患者,但术后的并发症也是临床上目前的痛点。影响术后并发症发生的因素多种多样,虽然相关的研究很多,但是目前并无一个统一的标准来系统、准确地预测TIPS术后预后情况及并发症发生率。及时避免术后并发症的种种高危因素从而预防并发症的发生对患者有着极其重要的意义,这也是今后的研究需要着重进行深入研究的方向。

NOTES

*通讯作者。

参考文献

[1] Rösch, J., Hanafee, W., Snow, H., et al. (1971) Transjugular Intrahepatic Portacaval Shunt. An Experimental Work. American Journal of Surgery, 121, 588-592.
https://doi.org/10.1016/0002-9610(71)90147-4
[2] Richter, G.M., Palmaz, J.C., Nöldge, G., et al. (1989) The Transjugular Intrahepatic Portosystemic Stent-Shunt. A New Nonsurgical Percutaneous Method. Der Radiologe, 29, 406-411.
[3] Kibble, H. and Shawcross, D.L. (2024) The Assessment and Management of Cirrhotic Patients with Encephalopathy. United European Gastroenterology Journal, 12, 187-193.
https://doi.org/10.1002/ueg2.12530
[4] Vilstrup, H., Amodio, P., Bajaj, J., et al. (2014) Hepatic Encephalopathy in Chronic Liver Disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology (Baltimore, Md), 60, 715-735.
https://doi.org/10.1002/hep.27210
[5] Riggio, O., Nardelli, S., Moscucci, F., et al. (2012) Hepatic Encephalopathy after Transjugular Intrahepatic Portosystemic Shunt. Clinics in Liver Disease, 16, 133-146.
https://doi.org/10.1016/j.cld.2011.12.008
[6] Zuo, L., Lv, Y., Wang, Q., et al. (2019) Early-Recurrent Overt Hepatic Encephalopathy Is Associated with Reduced Survival in Cirrhotic Patients after Transjugular Intrahepatic Portosystemic Shunt Creation. Journal of Vascular and Interventional Radiology: JVIR, 30, 148-153.E2.
https://doi.org/10.1016/j.jvir.2018.08.023
[7] Ortiz, M., Jacas, C. and Córdoba, J. (2005) Minimal Hepatic Encephalopathy: Diagnosis, Clinical Significance and Recommendations. Journal of Hepatology, 42, S45-S53.
https://doi.org/10.1016/j.jhep.2004.11.028
[8] Weissenborn, K. (2015) Diagnosis of Minimal Hepatic Encephalopathy. Journal of Clinical and Experimental Hepatology, 5, S54-S59.
https://doi.org/10.1016/j.jceh.2014.06.005
[9] Karanfilian, B.V., Park, T., Senatore, F., et al. (2020) Minimal Hepatic Encephalopathy. Clinics in Liver Disease, 24, 209-218.
https://doi.org/10.1016/j.cld.2020.01.012
[10] Sharma, P., Sharma, B.C., Puri, V., et al. (2007) Critical Flicker Frequency: Diagnostic Tool for Minimal Hepatic Encephalopathy. Journal of Hepatology, 47, 67-73.
https://doi.org/10.1016/j.jhep.2007.02.022
[11] Torlot, F.J., Mcphail, M.J. and Taylor-Robinson, S.D. (2013) Meta-Analysis: The Diagnostic Accuracy of Critical Flicker Frequency in Minimal Hepatic Encephalopathy. Alimentary Pharmacology & Therapeutics, 37, 527-536.
https://doi.org/10.1111/apt.12199
[12] Berlioux, P., Robic, M.A., Poirson, H., et al. (2014) Pre-Transjugular Intrahepatic Portosystemic Shunts (TIPS) Prediction of Post-TIPS Overt Hepatic Encephalopathy: The Critical Flicker Frequency Is More Accurate than Psychometric Tests. Hepatology (Baltimore, Md), 59, 622-629.
https://doi.org/10.1002/hep.26684
[13] Hadjihambi, A., Harrison, I.F., Costas-Rodríguez, M., et al. (2019) Impaired Brain Glymphatic Flow in Experimental Hepatic Encephalopathy. Journal of Hepatology, 70, 40-49.
https://doi.org/10.1016/j.jhep.2018.08.021
[14] Bjerring, P.N., Gluud, L.L. and Larsen, F.S. (2018) Cerebral Blood Flow and Metabolism in Hepatic Encephalopathy—A Meta-Analysis. Journal of Clinical and Experimental Hepatology, 8, 286-293.
https://doi.org/10.1016/j.jceh.2018.06.002
[15] Görg, B., Karababa, A. and Häussinger, D. (2018) Hepatic Encephalopathy and Astrocyte Senescence. Journal of Clinical and Experimental Hepatology, 8, 294-300.
https://doi.org/10.1016/j.jceh.2018.05.003
[16] Weiss, N., Barbier, S., Hilaire, P., Colsch, B., et al. (2016) Cerebrospinal Fluid Metabolomics Highlights Dysregulation of Energy Metabolism in Overt Hepatic Encephalopathy. Journal of Hepatology, 65, 1120-1130.
https://doi.org/10.1016/j.jhep.2016.07.046
[17] Dam, G., Keiding, S., Munk, O.L., et al. (2013) Hepatic Encephalopathy Is Associated with Decreased Cerebral Oxygen Metabolism and Blood Flow, Not Increased Ammonia Uptake. Hepatology (Baltimore, Md), 57, 258-265.
https://doi.org/10.1002/hep.25995
[18] Lu, K., Zimmermann, M., Görg, B., et al. (2019) Hepatic Encephalopathy Is Linked to Alterations of Autophagic Flux in Astrocytes. EBioMedicine, 48, 539-553.
https://doi.org/10.1016/j.ebiom.2019.09.058
[19] Coronado, W.M., Ju, C., Bullen, J., et al. (2020) Predictors of Occurrence and Risk of Hepatic Encephalopathy after TIPS Creation: A 15-Year Experience. Cardiovascular and Interventional Radiology, 43, 1156-1164.
https://doi.org/10.1007/s00270-020-02512-7
[20] Bai, M., Qi, X., Yang, Z., et al. (2011) Predictors of Hepatic Encephalopathy after Transjugular Intrahepatic Portosystemic Shunt in Cirrhotic Patients: A Systematic Review. Journal of Gastroenterology and Hepatology, 26, 943-951.
https://doi.org/10.1111/j.1440-1746.2011.06663.x
[21] Casadaban, L.C., Parvinian, A., Minocha, J., et al. (2015) Clearing the Confusion over Hepatic Encephalopathy after TIPS Creation: Incidence, Prognostic Factors, and Clinical Outcomes. Digestive Diseases and Sciences, 60, 1059-66.
https://doi.org/10.1007/s10620-014-3391-0
[22] Nardelli, S., Lattanzi, B., Torrisi, S., et al. (2017) Sarcopenia Is Risk Factor for Development of Hepatic Encephalopathy after Transjugular Intrahepatic Portosystemic Shunt Placement. Clinical Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American Gastroenterological Association, 15, 934-936.
https://doi.org/10.1016/j.cgh.2016.10.028
[23] Luo, S.H., Zhou, M.M., Cai, M.J., et al. (2023) Reduction of Portosystemic Gradient during Transjugular Intrahepatic Portosystemic Shunt Achieves Good Outcome and Reduces Complications. World Journal of Gastroenterology, 29, 2336-2348.
https://doi.org/10.3748/wjg.v29.i15.2336
[24] Li, J., Feng, D., Pang, N., et al. (2022) Controlling Nutritional Status Score as a New Indicator of Overt Hepatic Encephalopathy in Cirrhotic Patients Following Transjugular Intrahepatic Portosystemic Shunt. Clinical Nutrition (Edinburgh, Scotland), 41, 560-566.
https://doi.org/10.1016/j.clnu.2021.12.036
[25] Fallahzadeh, M.A. and Rahimi, R.S. (2022) Hepatic Encephalopathy: Current and Emerging Treatment Modalities. Clinical Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American Gastroenterological Association, 20, S9-S19.
https://doi.org/10.1016/j.cgh.2022.04.034
[26] Wang, M.W., Ma, W.J., Wang, Y., et al. (2023) Comparison of the Effects of Probiotics, Rifaximin, and Lactulose in the Treatment of Minimal Hepatic Encephalopathy and Gut Microbiota. Frontiers in Microbiology, 14, Article ID: 1091167.
https://doi.org/10.3389/fmicb.2023.1091167
[27] Sharma, B.C., Sharma, P., Agrawal, A., et al. (2009) Secondary Prophylaxis of Hepatic Encephalopathy: An Open-Label Randomized Controlled Trial of Lactulose versus Placebo. Gastroenterology, 137, 885-891.E1.
https://doi.org/10.1053/j.gastro.2009.05.056
[28] Han, X., Luo, Z., Wang, W., et al. (2021) Efficacy and Safety of Rifaximin versus Placebo or Other Active Drugs in Critical Ill Patients with Hepatic Encephalopathy. Frontiers in Pharmacology, 12, Article ID: 696065.
https://doi.org/10.3389/fphar.2021.696065
[29] Hudson, M. and Schuchmann, M. (2019) Long-Term Management of Hepatic Encephalopathy with Lactulose and/or Rifaximin: A Review of the Evidence. European Journal of Gastroenterology & Hepatology, 31, 434-450.
https://doi.org/10.1097/MEG.0000000000001311
[30] Rocco, A., Sgamato, C., Compare, D., et al. (2021) Gut Microbes and Hepatic Encephalopathy: From the Old Concepts to New Perspectives. Frontiers in Cell and Developmental Biology, 9, Article ID: 748253.
https://doi.org/10.3389/fcell.2021.748253
[31] Balzano, T., Llansola, M., Arenas, Y.M., et al. (2023) Hepatic Encephalopathy: Investigational Drugs in Preclinical and Early Phase Development. Expert Opinion on Investigational Drugs, 32, 1055-1069.
https://doi.org/10.1080/13543784.2023.2277386
[32] Bureau, C., Garcia Pagan, J.C., Layrargues, G.P., et al. (2007) Patency of Stents Covered with Polytetrafluoroethylene in Patients Treated by Transjugular Intrahepatic Portosystemic Shunts: Long-Term Results of a Randomized Multicentre Study. Liver International: Official Journal of the International Association for the Study of the Liver, 27, 742-747.
https://doi.org/10.1111/j.1478-3231.2007.01522.x
[33] Cura, M., Cura, A., Suri, R., et al. (2008) Causes of TIPS Dysfunction. AJR American Journal of Roentgenology, 191, 1751-1757.
https://doi.org/10.2214/AJR.07.3534
[34] Chen, S.L., Hu, P., Lin, Z.P., et al. (2019) The Effect of Puncture Sites of Portal Vein in TIPS with EPTFE-Covered Stents on Postoperative Long-Term Clinical Efficacy. Gastroenterology Research and Practice, 2019, Article ID: 2935498.
https://doi.org/10.1155/2019/2935498
[35] Luo, S.H., Chu, J.G., Huang, H., et al. (2017) Effect of Initial Stent Position on Patency of Transjugular Intrahepatic Portosystemic Shunt. World Journal of Gastroenterology, 23, 4779-4787.
https://doi.org/10.3748/wjg.v23.i26.4779
[36] Buechter, M., Manka, P., Theysohn, J.M., et al. (2018) Spleen Stiffness Is Positively Correlated with HVPG and Decreases Significantly after TIPS Implantation. Digestive and Liver Disease: Official Journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver, 50, 54-60.
https://doi.org/10.1016/j.dld.2017.09.138
[37] Manatsathit, W., Samant, H., Panjawatanan, P., et al. (2019) Performance of Ultrasound for Detection of Transjugular Intrahepatic Portosystemic Shunt Dysfunction: A Meta-Analysis. Abdominal Radiology (New York), 44, 2392-2402.
https://doi.org/10.1007/s00261-019-01981-w
[38] Li, Z., Jiao, D.C., Si, G., et al. (2020) Use of Fenestration to Revise Shunt Dysfunction after Transjugular Intrahepatic Portosystemic Shunt. Abdominal Radiology (New York), 45, 556-562.
https://doi.org/10.1007/s00261-019-02329-0
[39] Nardone, R., Höller, Y., Storti, M., et al. (2014) Spinal Cord Involvement in Patients with Cirrhosis. World Journal of Gastroenterology, 20, 2578-2585.
https://doi.org/10.3748/wjg.v20.i10.2578
[40] 马富权, 黄金, 李伟之, 等. 减少门腔分流量对肝硬化患者经颈静脉肝内门体分流术后肝性脊髓病的影响[J]. 中华肝脏病杂志, 2022, 30(10): 1063-1068.
[41] Lewis, M. and Howdle, P.D. (2003) The Neurology of Liver Failure. QJM: Monthly Journal of the Association of Physicians, 96, 623-633.
https://doi.org/10.1093/qjmed/hcg110
[42] Weissenborn, K., Tietge, U.J., Bokemeyer, M., et al. (2003) Liver Transplantation Improves Hepatic Myelopathy: Evidence by Three Cases. Gastroenterology, 124, 346-351.
https://doi.org/10.1053/gast.2003.50062
[43] Nardone, R., Orioli, A., Höller, Y., et al. (2014) Central Motor and Sensory Conduction in Patients with Hepatic Myelopathy. Spinal Cord, 52, 439-443.
https://doi.org/10.1038/sc.2014.61
[44] Wang, L.X., Guo, L., Guo, F., et al. (2017) Brain White Matter Fiber Tracts Involved in Post-Transjugular Intrahepatic Portosystemic Shunt Hepatic Myelopathy. Neuroreport, 28, 1164-1169.
https://doi.org/10.1097/WNR.0000000000000898
[45] Liu, K., Chen, G., Ren, S.Y., et al. (2019) Regional Gray Matter Abnormality in Hepatic Myelopathy Patients after Transjugular Intrahepatic Portosystemic Shunt: A Voxel-Based Morphometry Study. Neural Regeneration Research, 14, 850-857.
https://doi.org/10.4103/1673-5374.249233
[46] Counsell, C. and Warlow, C. (1996) Failure of Presumed Hepatic Myelopathy to Improve after Liver Transplantation. Journal of Neurology, Neurosurgery, and Psychiatry, 60, 590.
https://doi.org/10.1136/jnnp.60.5.590
[47] López-Méndez, E., Zamora-Valdés, D., Díaz-Zamudio, M., et al. (2010) Liver Failure after an Uncovered TIPS Procedure Associated with Hepatic Infarction. World Journal of Hepatology, 2, 167-170.
https://doi.org/10.4254/wjh.v2.i4.167
[48] Gaba, R.C. and Lakhoo, J. (2016) What Constitutes Liver Failure after Transjugular Intrahepatic Portosystemic Shunt Creation? A Proposed Definition and Grading System. Annals of Hepatology, 15, 230-235.
[49] Rajesh, S., George, T., Philips, C.A., et al. (2020) Transjugular Intrahepatic Portosystemic Shunt in Cirrhosis: An Exhaustive Critical Update. World Journal of Gastroenterology, 26, 5561-5596.
https://doi.org/10.3748/wjg.v26.i37.5561
[50] Yao, Y., Satapathy, S.K., Fernandes, E.S.M., et al. (2022) Hepatic Venous Pressure Gradient (HVPG) Predicts Liver Failure after Transjugular Intrahepatic Portal Shunt: A Retrospective Cohort Study. Annals of Translational Medicine, 10, 1122.
https://doi.org/10.21037/atm-22-4737
[51] Mukund, A., Aravind, A., Jindal, A., et al. (2024) Predictors and Outcomes of Post-Transjugular Intrahepatic Portosystemic Shunt Liver Failure in Patients with Cirrhosis. Digestive Diseases and Sciences, 69, 1025-1034.
https://doi.org/10.1007/s10620-023-08256-x
[52] Billey, C., Billet, S., Robic, M.A., et al. (2019) A Prospective Study Identifying Predictive Factors of Cardiac Decompensation after Transjugular Intrahepatic Portosystemic Shunt: The Toulouse Algorithm. Hepatology (Baltimore, Md), 70, 1928-1941.
https://doi.org/10.1002/hep.30934
[53] Modha, K., Kapoor, B., Lopez, R., et al. (2018) Symptomatic Heart Failure after Transjugular Intrahepatic Portosystemic Shunt Placement: Incidence, Outcomes, and Predictors. Cardiovascular and Interventional Radiology, 41, 564-571.
https://doi.org/10.1007/s00270-017-1848-1
[54] Ali, A., Sarwar, A., Patwardhan, V.R., et al. (2022) Echocardiographic and Other Preprocedural Predictors of Heart Failure after TIPS Placement in Patients with Cirrhosis: A Single-Center 15-Year Analysis. AJR American Journal of Roentgenology, 219, 110-118.
https://doi.org/10.2214/AJR.21.26947