骨质疏松性椎体压缩性骨折椎体成形术后骨水泥移位的研究进展
Research Progress of Bone Cement Displacement after Vertebroplasty for Osteoporotic Vertebral Compression Fracture
摘要: 经皮脊柱后凸成形术(PKP)或经皮椎体成形术(PVP)常用于临床治疗OVCF,尽管如此,仍有急性并发症以及迟发性并发症的报道。骨水泥移位作为迟发性并发症的一种,已逐渐被学者认知并进行相关研究。本文旨在通过文献综述提出这种并发症的诊断、可能原因、治疗方案以及相应的预防措施,为临床工作提供部分指导。
Abstract: Percutaneous kyphoplasty (PKP) or percutaneous vertebroplasty (PVP) is the most widely used method for the treatment of OVCF at present. However, there are still reports of acute and delayed complications. As a kind of delayed complication, bone cement displacement has been gradually recognized by scholars and related research. The purpose of this paper is to put forward the diagnosis, possible causes, treatment and corresponding preventive measures of this complication through literature review, so as to provide some guidance for clinical work.
文章引用:周文逸, 赵郭盛, 汪洋, 柯珍勇. 骨质疏松性椎体压缩性骨折椎体成形术后骨水泥移位的研究进展[J]. 临床医学进展, 2024, 14(5): 2103-2110. https://doi.org/10.12677/acm.2024.1451656

1. 引言

骨质疏松性压缩性椎体骨折(OCVF)是由骨矿物质密度(BMD)降低引起的单个椎体或多个椎体的压缩性骨折。它可能导致背痛,脊柱畸形,老年人活动能力下降 [1] 。此外,随着人口老龄化日益严重,其发病率每年都在增加,这将导致医疗保健成本的增加 [2] 。经皮脊柱后凸成形术(PKP)或经皮椎体成形术(PVP)常用于临床治疗OVCF。通过PMMA (聚甲基丙烯酸甲酯)强化骨折椎体,实现即时的疼痛缓解,还可以通过恢复椎体的前部高度和改善局部脊柱后凸畸形来改善脊柱的矢状平衡 [3] 。尽管如此,仍有急性并发症的报道,例如穿刺部位出血、局部感染、骨水泥渗漏到椎管、邻近椎间盘、椎旁软组织或椎周静脉系统以及肺栓塞。迟发性并发症也有报道,如邻近椎体骨折、骨水泥移位以及脊柱感染等 [4] 。骨水泥移位(BCD)作为迟发性并发症的一种,在有椎体内真空裂隙(IVC)征的Kummell病中发生率更高,可能导致进行性严重背痛、脊柱不稳定、延迟截瘫和神经功能下降 [5] 。BCD的相关文献在早期大部分为病例报道,近三年逐渐有学者进行系统性回顾性研究,并在文献中报道。本文旨在通过文献综述提出这种并发症的诊断、可能原因、治疗方案以及相应的预防措施,为临床工作提供部分指导。

2. 资料和方法

2.1. 资料收集

应用计算机检中国知网、维普数据库、万方数据库以及PubMed英文数据库2000年1月到2024年2月的相关文章,中文检索词为“骨质疏松性椎体压缩性骨折,经皮椎体强化术,经皮椎体成形术,骨水泥移位,并发症”,英文检索词为“osteoporotic vertebral compression fracture, percutaneous vertebroplasty, bone cement displacement, bone cement dislodgment, complications。用布尔运算符与以上主题标题和关键字的组合进行检索。

2.2. 纳入与排除标准

纳入标准:研究治疗OVCF的经皮椎体强化术后骨水泥移位的相关文献,文章内容真实,杂志质量相对较高。排除对象:与本论文无关的,重复的,低质量的,过时的。

2.3. 数据提取

共检索到文献236篇,其中中文文献55篇、英文文献181篇,排除与研究目的无关及内容重复、陈旧的文献196篇,纳入40篇符合标准的文献进行综述。

3. 骨水泥移位发生率

BCD是一种相对罕见的椎体成形术后并发症。既往的文献大多数为案例报道,Qi等 [6] 的文献是目前唯一一篇统计了BCD发病率的系统性回顾研究。研究中纳入了896例接受了PKP治疗的OVCF患者,有56例(6.2%)被诊断为BCD,其中有症状的21例(2.3%)。作者得出结论PKP治疗患者症状性BCD的发生率为2.3%。除此之外Gao等 [7] 的一项系统性回顾研究中纳入了1538例接受了PKP治疗的OVCF患者,根据放射影像,有78例诊断为骨水泥移位,发生率为5.1%。Gao等 [8] 一项专门针对Kummell病的研究中共纳入了824例接受了经皮椎体增强术的I期和II期Kummell病患者,有150例被诊断为骨水泥移位,在I期和II期Kummell病患者中骨水泥移位的发生率为18.2%。可见Kummell病患者骨水泥强化术后骨水泥移位的发生率远远高于普通骨质疏松性压缩性骨折患者。

4. 骨水泥移位诊断

目前BCD并没有统一的、明确的诊断标准,根据现有文献中的报道,BCD的诊断主要是根据影像学表现。Gao等 [7] [8] 在他们的两篇研究中提出了BCD的诊断标准:(1) X线片显示椎体前皮质破裂,骨水泥前移位。(2) CT显示椎前皮层破裂,骨水泥前缘距椎体前缘2 mm以上。(3) MRI显示椎体塌陷,矢状T1加权图像和T2加权图像分别显示异常低信号和高信号。Qi等 [6] 的研究提出:BCD影像学诊断的标准是随访时骨水泥前缘与出院前相比移动 > 2 mm,以椎体前壁为参考。有症状患者的标准是背痛进行性恶化,随访时视觉模拟量表(VAS)评分比出院时增加 ≥ 3分,或新出现神经功能缺损,而无症状患者的标准仅包括BCD的影像学诊断。

5. 危险因素

近两年有三篇文献研究了OVCF骨水泥强化术后骨水泥移位的危险因素,其中一篇为针对Kummell病的研究。Gao等 [7] 的研究结果显示Cobb角恢复度高、前缘骨水泥渗漏、骨水泥交织程度小、骨水泥位置非靶向、支具佩戴时间短、非术后骨质疏松症治疗是OVCF骨水泥强化术后骨水泥移位的独立危险因素。Qi等 [6] 的研究结果显示前缘骨水泥渗漏、椎体内真空裂隙(IVC)征和骨水泥分布评分低是BCD的独立危险因素。

5.1. 椎体内真空裂隙(Intravertebral Vacuum Cleft, IVC)

椎体内真空裂隙(IVC)被认为是椎体缺血性坏死的一个征象 [9] 。Prabhu等 [10] 指出,椎体动脉的分布与缺血性坏死密切相关。2个相邻椎体的后部可由其侧支循环供应,而前1/3只能由终末血管供应,这可能会增加椎体前1/3缺血性坏死的风险。Ratcliffe等 [11] 进行的解剖学研究也表明IVC的存在与缺血性坏死相关。病理证实IVC表面有明显的纤维增生性瘢痕组织或硬化的坏死骨,注入的水泥没有与周围椎体的松质结构进行机械整合,不利于骨折愈合和骨水泥–骨界面稳定性,是手术后骨水泥移位的一个重要原因。

5.2. 前缘骨水泥渗漏

Gao和Qi等 [6] [7] 的研究结果均证实了前缘骨水泥渗漏是骨水泥移位的独立危险因素。Ding等 [12] 认为骨水泥皮质渗漏与椎体皮质破坏密切相关,前骨水泥渗漏是椎体前壁损伤的征象,骨水泥更容易破裂并导致移位。Nagad等 [13] 认为,骨水泥渗漏可引起椎间不稳定或椎内不稳定,导致骨水泥移位延迟。Nakano等 [14] 在随访中发现水泥渗漏后水泥松动的风险增加。因此,在注射骨水泥时,应密切进行透视控制,如果发生溢出,应立即停止。避免水泥渗漏可以降低水泥移位的风险。

5.3. 骨水泥分布评分低

研究发现不同的骨水泥分布和体积因素在很大程度上决定了椎体的力学稳定性和并发症的出现 [15] 。目前有不同的方法可以评估PVA后骨水泥的分散分布。Gao等 [7] 开发了一种新的参数(骨水泥的交织度),该参数使用三维有限元方法进行测量,以评估其分布,并发现骨水泥的交织度 < 0.2是BCD的独立危险因素。然而,这些方法过于复杂,无法用于临床实践。Qi等 [6] 选择了一种X射线测量方法来评估骨水泥分布,并认为低分布评分可能表明骨水泥分布较差,骨水泥与小梁微观结构之间的结合松散,这更有可能导致BCD的出现。因此,在手术过程中将骨水泥均匀分散并尽可能与骨小梁固定,以避免骨水泥团的形成,可以减少骨水泥移位的发生。

5.4. 术后未佩戴支具

患者在椎体成型术后是否佩戴支具目前存在争议。Zhang等 [16] 认为,胸腰椎支具不能改善患者的生活质量和术后并发症的预后。然而,有研究建议患者在PVP术后佩戴脊柱支具,以防止背痛、椎体塌陷甚至骨坏死的发生 [17] [18] 。Gao等 [7] 的研究结果表明,手术后佩戴支具时间的增加可以显着减少骨水泥移位的发生(OR = 3.207, 95%CI: 2.036~4.348, P < 0.001)。作者认为胸腰椎支具可以减少躯干运动,改善骨排列,并在一定程度上降低椎骨组织压力、小梁摩擦和小关节运动。此外,当患者术后弯曲和负重时,由于受伤椎骨的屈曲,骨水泥和小梁之间的界面应力增加,这增加了BCD的风险 [9] 。

5.5. 术后未抗骨质疏松治疗

骨密度较低是脊柱手术后并发症的重要危险因素,而且与患者满意度有关 [19] 。此外,术后标准化的抗骨质疏松治疗对提高患者的预后和生存率起着重要作用 [20] 。既往研究表明,骨质疏松症会引起椎体微观结构改变,增加局部应力,导致手术后骨水泥移位。有效的抗骨质疏松药物可以纠正骨转换失衡,维持骨小梁结构,提高骨力学强度,改善骨质疏松症症状 [21] 。GAO等 [7] 的研究表明,标准化的抗骨质疏松治疗是术后水泥移位的保护因素。在临床实践中,坚持规范化治疗是抗骨质疏松药物疗效的重要因素。因此,医生应做好围手术期对患者的健康教育,明确告知患者属于重症骨质疏松症人群,严格按照标准的治疗方案使用抗骨质疏松药物,并随访关注患者的抗骨质疏松治疗。

6. 治疗

回顾既往文献中报道的骨水泥移位的案例,共报道了18例骨水泥移位的病例,其中1例是由于外伤导致的骨水泥移位,其余病人均没有明显外伤史,所有病人均出现明显加重的背痛,部分病人出现脊柱后凸畸形。针对病人的治疗,有4例患者选择了非手术治疗,结局较差,背痛持续存在;有1例患者选择重复椎体成形术,术后背痛缓解;其余13例患者为内固定治疗,包括单纯后路以及前后路联合,术后症状明显改善且随访期间未出现内固定失败 [22] - [35] 。然而文献中只报道了出现症状的骨水泥移位患者,在临床实践中,也存在无症状的患者,对于这部分患者,目前推荐长期随访影像学进展,无需手术干预。对于有症状的患者,保守治疗是可以接受的。然而,如果确诊血管和神经压迫或进行性脊柱后凸症状,则应更积极地推荐后续翻修手术 [36] 。Qi等 [6] 认为骨水泥移位的及时翻修手术总能缓解症状,在没有禁忌证的情况下,建议进行翻修手术以缓解症状。针对翻修手术方式,Yang SC等 [33] 认为前路和后路联合手术仍然是治疗骨水泥移位并发症的最安全方法,并建议用各种骨水泥增强椎弓根螺钉固定,以在重度骨质疏松患者中提供器械的初始强度和疲劳强度。大多数有症状的椎体成形术失败的患者都是老年人,健康状况相当差。这些患者可能由于肺功能不佳、并发躯体疾病、既往手术而不适合前路入路。此外,联合治疗的缺点,包括需要长时间麻醉和手术、分离手术伤口以及需要进行横膈膜切除和肋骨切割,往往会伤害这一脆弱人群。Chiu等 [22] 创新性地将单期后路经椎弓根入路(PTA)的环形清创术和前路重建手术应用到椎体成形术后并发症和失败的病例中,可同时完成环形减压、腓骨同种异体移植物前置和补充后体器械,以挽救有症状的椎体成形术失败的患者。这种独特的技术可以实现良好的临床结果和低并发症发生率,对于脆弱的老年患者,单期PTA手术可以特别考虑作为前后联合手术的替代方法。

7. 预防骨水泥移位的手术技术

解决骨水泥位移的并发症和增强骨水泥在椎体中的稳定性仍然是需要解决的问题。对于椎体成形术中恢复机械性稳定性的理想骨水泥注射技术,目前还没有明确的共识。近年来,不断有学者提出了不同方法来提高骨水泥在椎体中的稳定性,以减少骨水泥移位的发生率。Kim等 [27] 认为在经皮椎体成形术治疗Kummell病时,为了防止骨不连引起的不稳定,注入的骨水泥量应大于椎间隙的体积。Zhong等 [5] 应用新型空心椎弓根螺钉联合脊柱后凸成形术(HPS-KP)来治疗无神经压迫症状的Kummell病,22例患者超过八个月的随访中未发生骨水泥移位。Wang等 [37] 证实了新型骨水泥螺钉系统联合椎体成形术在预防骨水泥移位方面的优异中短期治疗效果。此外,Wang等 [38] 通过有限元模型对水泥螺杆系统进行生物力学评估。与普通的单椎体成形术和椎体成形术联合椎弓根成形术相比,骨水泥螺钉系统结合椎体成形术的骨水泥松动或移位风险较低,稳定性和安全性更好。Zhong等 [39] 使用旋转切割机-PVP (RC-PVP)治疗Kummell病患者,在水泥注入前使用旋转切割机来破坏IVC结构和周围的坏死骨。发现旋转切割机产生的内部稳定性可以有效防止水泥与骨骼之间的微运动,从而有效减少水泥位移的发生。Wang等 [40] 采用机器人辅助椎弓根成形术联合椎体成形术治疗无神经症状的胸腰椎Kummell病患者。椎弓根成形术作为“桥梁”,使椎体前缘的骨水泥通过椎弓根内水泥固定在椎体中,可有效防止骨水泥移位。类似的办法,Dai等 [41] 采用PVP双侧椎弓根锚固技术将椎体骨水泥和椎弓根骨水泥的使用相结合,增强了骨水泥的稳定性。高等 [42] 采用经皮椎弓根骨水泥螺钉锚定治疗Kummell病患者。姚等 [43] 则采用椎弓根内骨水泥灌注联合椎体后凸成形术的方式,并且李等 [44] 建立了术前和术后脊柱功能单元的三维有限元模型,证实了椎弓根内骨水泥灌注联合椎体后凸成形术能够有效改善术后相邻椎体终板和椎间盘的应力分布,并能够减小应力,最终降低术后再骨折风险以及显著延缓椎间盘退变。从文献中报道来看,这些手术方式临床效果明显,中长期随访效果满意。

8. 总结

近年来,对于骨水泥移位的研究越来越多,对骨水泥移位的认知也越发清晰,针对Kummell病逐渐出现各种改良的椎体成形术,其目的都旨在增强骨水泥的稳定性,防止水泥与骨组织之间的微运动,从而避免骨水泥移位。希望今后能有更多的研究,从而真正避免术后出现骨水泥移位的并发症,减少病人的痛苦。

NOTES

*通讯作者。

参考文献

[1] Parreira, P., Maher, C.G., Megale, R.Z., et al. (2017) An Overview of Clinical Guidelines for the Management of Vertebral Compression Fracture: A Systematic Review. The Spine Journal, 17, 1932-1938.
https://doi.org/10.1016/j.spinee.2017.07.174
[2] Li, Y., Feng, X., Pan, J., et al. (2021) Percutaneous Vertebroplasty versus Kyphoplasty for Thoracolumbar Osteoporotic Vertebral Compression Fractures in Patients with Distant Lumbosacral Pain. Pain Physician, 24, E349-E356.
https://doi.org/10.36076/ppj.2021/24/E349
[3] Cao, Z., Wang, G., Hui, W., et al. (2020) Percutaneous Kyphoplasty for Osteoporotic Vertebral Compression Fractures Improves Spino-Pelvic Alignment and Global Sagittal Balance Maximally in the Thoracolumbar Region. PLOS ONE, 15, e228341.
https://doi.org/10.1371/journal.pone.0228341
[4] Zhang, Y., Zhang, T., Ge, X., et al. (2022) A Three-Dimensional Cement Quantification Method for Decision Prediction of Vertebral Recompression after Vertebroplasty. Computational and Mathematical Methods in Medicine, 2022, Article ID: 2330472.
https://doi.org/10.1155/2022/2330472
[5] Zhong, S., Bao, F., Fan, Q., et al. (2023) Prevention of Bone Cement Displacement in Kümmell Disease without Neurological Deficits through Treatment with a Novel Hollow Pedicle Screw Combined with Kyphoplasty. Orthopaedic Surgery, 15, 2515-2522.
https://doi.org/10.1111/os.13815
[6] Qi, J., Hu, Y., Yang, Z., et al. (2022) Incidence, Risk Factors, and Outcomes of Symptomatic Bone Cement Displacement Following Percutaneous Kyphoplasty for Osteoporotic Vertebral Compression Fracture: A Single Center Study. Journal of Clinical Medicine, 11, Article 7530.
https://doi.org/10.3390/jcm11247530
[7] Gao, X., Du, J., Gao, L., et al. (2022) Risk Factors for Bone Cement Displacement after Percutaneous Vertebral Augmentation for Osteoporotic Vertebral Compression Fractures. Frontiers in Surgery, 9, Article 947212.
https://doi.org/10.3389/fsurg.2022.947212
[8] Gao, X., Du, J., Zhang, Y., et al. (2022) Predictive Factors for Bone Cement Displacement Following Percutaneous Vertebral Augmentation in Kümmell’s Disease. Journal of Clinical Medicine, 11, Article 7479.
https://doi.org/10.3390/jcm11247479
[9] Yu, W., Jiang, X., Liang, D., et al. (2017) Intravertebral Vacuum Cleft and Its Varied Locations within Osteoporotic Vertebral Compression Fractures: Effect on Therapeutic Efficacy. Pain Physician, 20, E979-E986.
https://doi.org/10.36076/ppj.20.5.E979
[10] Prakash Prabhu, L.V., Saralaya, V.V., et al. (2007) Vertebral Body Integrity: A Review of Various Anatomical Factors Involved in the Lumbar Region. Osteoporosis International, 18, 891-903.
https://doi.org/10.1007/s00198-007-0373-5
[11] Ratcliffe, J.F. (1980) The Arterial Anatomy of the Adult Human Lumbar Vertebral Body: A Microarteriographic Study. Journal of Anatomy, 131, 57-79.
[12] Ding, J., Zhang, Q., Zhu, J., et al. (2016) Risk Factors for Predicting Cement Leakage Following Percutaneous Vertebroplasty for Osteoporotic Vertebral Compression Fractures. European Spine Journal, 25, 3411-3417.
https://doi.org/10.1007/s00586-015-3923-0
[13] Nagad, P., Rawall, S., Kundnani, V., et al. (2012) Postvertebroplasty Instability. Journal of Neurosurgery: Spine, 16, 387-393.
https://doi.org/10.3171/2011.12.SPINE11671
[14] Nakano, M., Hirano, N., Ishihara, H., et al. (2005) Calcium Phosphate Cement Leakage after Percutaneous Vertebroplasty for Osteoporotic Vertebral Fractures: Risk Factor Analysis for Cement Leakage. Journal of Neurosurgery: Spine, 2, 27-33.
https://doi.org/10.3171/spi.2005.2.1.0027
[15] Mo, L., Wu, Z., Liang, D., et al. (2021) Influence of Bone Cement Distribution on Outcomes Following Percutaneous Vertebroplasty: A Retrospective Matched-Cohort Study. Journal of International Medical Research, 49, Article No. 03000605211022287.
https://doi.org/10.1177/03000605211022287
[16] Zhang, J., Fan, Y., He, X., et al. (2019) Bracing after Percutaneous Vertebroplasty for Thoracolumbar Osteoporotic Vertebral Compression Fractures Was Not Effective. Clinical Interventions in Aging, 14, 265-270.
https://doi.org/10.2147/CIA.S192821
[17] Heo, D.H., Chin, D.K., Yoon, Y.S., et al. (2009) Recollapse of Previous Vertebral Compression Fracture after Percutaneous Vertebroplasty. Osteoporosis International, 20, 473-480.
https://doi.org/10.1007/s00198-008-0682-3
[18] Lavelle, W.F., Cheney, R. (2006) Recurrent Fracture after Vertebral Kyphoplasty. Spine Journal, 6, 488-493.
https://doi.org/10.1016/j.spinee.2005.10.013
[19] Liu, Y., Dash, A., Krez, A., et al. (2020) Low Volumetric Bone Density Is a Risk Factor for Early Complications after Spine Fusion Surgery. Osteoporosis International, 31, 647-654.
https://doi.org/10.1007/s00198-019-05245-7
[20] Svejme, O., Ahlborg, H.G., Nilsson, J.Å., et al. (2013) Low BMD Is an Independent Predictor of Fracture and Early Menopause of Mortality in Post-Menopausal Women—A 34-Year Prospective Study. Maturitas, 74, 341-345.
https://doi.org/10.1016/j.maturitas.2013.01.002
[21] Arceo-Mendoza, R.M. and Camacho, P.M. (2021) Postmenopausal Osteoporosis: Latest Guidelines. Endocrinology and Metabolism Clinics of North America, 50, 167-178.
https://doi.org/10.1016/j.ecl.2021.03.009
[22] Chiu, Y.C., Yang, S.C., Chen, H.S., et al. (2015) Posterior Transpedicular Approach with Circumferential Debridement and Anterior Reconstruction as a Salvage Procedure for Symptomatic Failed Vertebroplasty. Journal of Orthopaedic Surgery and Research, 10, Article No. 28.
https://doi.org/10.1186/s13018-015-0169-9
[23] Ha, K.Y., Kim, K.W., Kim, Y.H., et al. (2010) Revision Surgery after Vertebroplasty or Kyphoplasty. Clinics in Orthopedic Surgery, 2, 203-208.
https://doi.org/10.4055/cios.2010.2.4.203
[24] Ha, K.Y., Kim, Y.H., Yoo, S.R., et al. (2015) Bone Cement Dislodgement: One of Complications Following Bone Cement Augmentation Procedures for Osteoporotic Spinal Fracture. Journal of Korean Neurosurgical Society, 57, 367-370.
https://doi.org/10.3340/jkns.2015.57.5.367
[25] Huang, A., Fang, S., Wang, L., et al. (2019) Vertebral Collapse and Polymethylmethacrylate Breakage after Vertebroplasty: A Case Report. Medicine, 98, e16831.
https://doi.org/10.1097/MD.0000000000016831
[26] Jeong, Y.H., Lee, C.J., Yeon, J.T., et al. (2016) Insufficient Penetration of Bone Cement into the Trabecular Bone: A Potential Risk for Delayed Bone Cement Displacement after Kyphoplasty? Regional Anesthesia & Pain Medicine, 41, 616-618.
https://doi.org/10.1097/AAP.0000000000000445
[27] Kim, J.E., Choi, S.S., Lee, M.K., et al. (2017) Failed Percutaneous Vertebroplasty Due to Insufficient Correction of Intravertebral Instability in Kummell’s Disease: A Case Report. Pain Practice, 17, 1109-1114.
https://doi.org/10.1111/papr.12561
[28] Mueller, M., Daniels-Wredenhagen, M., Besch, L., et al. (2009) Postoperative Aseptic Osteonecrosis in a Case of Kyphoplasty. European Spine Journal, 18, 213-216.
https://doi.org/10.1007/s00586-008-0843-2
[29] Nüchterlein, M. and Bail, H.J. (2013) [A Rare Complication of Kyphoplasty Is PMMA-Cement Loosening—Case Report and Literature Review]. Zeitschrift für Orthopädie und Unfallchirurgie, 151, 463-467.
https://doi.org/10.1055/s-0033-1350861
[30] Tsai, T.T., Chen, W.J., Lai, P.L., et al. (2003) Polymethylmethacrylate Cement Dislodgment Following Percutaneous Vertebroplasty: A Case Report. Spine, 28, E457-E460.
https://doi.org/10.1097/01.BRS.0000096668.54378.25
[31] Wagner, A.L. and Baskurt, E. (2006) Refracture with Cement Extrusion Following Percutaneous Vertebroplasty of a Large Interbody Cleft. American Journal of Neuroradiology, 27, 230-231.
[32] Wang, H.S., Kim, H.S., Ju, C.I., et al. (2008) Delayed Bone Cement Displacement Following Balloon Kyphoplasty. Journal of Korean Neurosurgical Society, 43, 212-214.
https://doi.org/10.3340/jkns.2008.43.4.212
[33] Yang, S.C., Chen, W.J., Yu, S.W., et al. (2008) Revision Strategies for Complications and Failure of Vertebroplasties. European Spine Journal, 17, 982-988.
https://doi.org/10.1007/s00586-008-0680-3
[34] Yoshii, T., Ueki, H., Kato, T., et al. (2014) Severe Kyphotic Deformity Resulting From Collapses of Cemented and Adjacent Vertebrae Following Percutaneous Vertebroplasty Using Calcium Phosphate Cement. A Case Report. Skeletal Radiology, 43, 1477-1480.
https://doi.org/10.1007/s00256-014-1912-8
[35] Zhang, C., Wang, G., Liu, X., et al. (2017) Failed Percutaneous Kyphoplasty in Treatment of Stage 3 Kummell Disease: A Case Report and Literature Review. Medicine, 96, e8895.
https://doi.org/10.1097/MD.0000000000008895
[36] Ha, K.Y., Kim, Y.H., Chang, D.G., et al. (2013) Causes of Late Revision Surgery after Bone Cement Augmentation in Osteoporotic Vertebral Compression Fractures. Asian Spine Journal, 7, 294-300.
https://doi.org/10.4184/asj.2013.7.4.294
[37] Wang, B., Wang, Y., Zhang, H., et al. (2021) A Novel Bone Cement Screw System Combined with Vertebroplasty for the Treatment of Kummell Disease with Bone Deficiency at the Vertebral Anterior Border: A Minimum 3-Year Follow-Up Study. Clinical Neurology and Neurosurgery, 201, Article ID: 106434.
https://doi.org/10.1016/j.clineuro.2020.106434
[38] Wang, B., Zhan, Y., Bai, Y., et al. (2022) Biomechanical Analysis of a Novel Bone Cement Bridging Screw System for the Treatment of Kummell Disease: A Finite Element Analysis. American Journal of Translational Research, 14, 7052-7062.
[39] Zhong, C., Min, G., Liu, X.W., et al. (2021) Percutaneous Vertebroplasty Using a Rotary Cutter for Treating Kümmell’s Disease with Intravertebral Vacuum Cleft. Pain Physician, 24, E477-E482.
https://doi.org/10.36076/ppj.2021.24.E477
[40] Wang, B., Wang, Y., Zhao, Q., et al. (2020) Pediculoplasty Combined with Vertebroplasty for the Treatment of Kummell’s Disease without Neurological Impairment: Robot-Assisted and Fluoroscopy-Guided. American Journal of Translational Research, 12, 8019-8029.
[41] Dai, S., Du, Y., Chen, L., et al. (2023) A Mid-and Long-Term Follow-Up Study on the Bilateral Pedicle Anchoring Technique with Percutaneous Vertebroplasty for the Treatment of Kümmell’s Disease. Frontiers in Surgery, 10, Article 1061498.
https://doi.org/10.3389/fsurg.2023.1061498
[42] 高鼎智, 石磊, 晏铮剑, 等. 经皮椎弓根骨水泥螺钉锚定结合椎体成形术治疗Kümmell病的疗效探讨[J]. 重庆医学, 2023, 52(22): 3413-3418, 3424.
[43] 姚汝斌, 王仕永, 杨开舜. 椎弓根内骨水泥灌注联合椎体后凸成形治疗Kummell病: 增强椎体内骨水泥团块稳定性[J]. 中国组织工程研究, 2021, 25(28): 4435-4440.
[44] 李红桃, 潘泓宇, 雷杨, 等. 经皮椎体成形联合椎弓根强化治疗重度骨质疏松性椎体骨折: 有限元分析[J/OL]. 中国组织工程研究, 2024: 1-6.