硼磷烯基二维材料作为离子电池阳极材料的第一性原理研究进展
Research Progress on the First-Principle Study of Boron-Phosphorene-Based Two-Dimensional Materials as Anode Materials for Ion Batteries
DOI: 10.12677/ms.2024.145073, PDF, HTML, XML, 下载: 53  浏览: 103  科研立项经费支持
作者: 吴苗苗*:中国矿业大学(北京)化学工程系,北京;中国矿业大学(北京)材料科学与工程系,北京;李慧如, 王康俊, 王思远, 李泽宏, 马向东:中国矿业大学(北京)材料科学与工程系,北京;李建业, 宋双豪, 李怡璇:中国矿业大学(北京)化学工程系,北京
关键词: 硼磷烯二维材料第一性原理离子电池Boron Phosphorene Two-Dimensional Materials The First-Principle Ion Batteries
摘要: 硼磷烯是由B4P2六元环和B2P4六元环交替组成的一种类石墨烯的新型的二维平面材料。其独特的几何结构和电子性质使其具有优异的电化学性质。硼磷烯基二维材料具有较大的比表面积,自然终止表面无悬挂键,以及较高的吸附能,这为碱金属离子提供大量的吸附位点,从而有望极大地提高离子电池的理论容量。同时,硼磷烯基二维材料通常具有较小的扩散势垒。因此,硼磷烯基二维材料在电化学储能方面有较大的应用前景,有望成为碱金属离子电池的阳极材料。基于第一性原理,本文系统总结了硼磷烯基二维材料作为阳极材料的研究进展,包括其固有的结构、性质、在各种金属离子电池和锂硫电池中的应用性能等。
Abstract: Boron phosphorene is a new graphene-like two-dimensional planar material composed of alternating B4P2 six-membered rings and B2P4 six-membered rings. Its unique geometric structure and electronic properties give it excellent electrochemical properties. Boron-phosphorene-based two-dimensional materials have a large specific surface area, no dangling bonds on the naturally terminated surface, and high adsorption energy. This provides a large number of adsorption sites for alkali metal ions, which is expected to greatly improve the performance of ion batteries’ theoretical capacity. At the same time, boron-phosphorene-based two-dimensional materials usually have smaller diffusion barriers. Therefore, boron-phosphorene-based two-dimensional materials have great application prospects in electrochemical energy storage and are expected to become anode materials for alkali metal ion batteries. Based on the first-principle study, this article systematically summarizes the research progress of boron-phosphorene-based two-dimensional materials as anode materials, including their inherent structure, properties, and application performance in various metal ion batteries and lithium-sulfur batteries.
文章引用:吴苗苗, 李慧如, 王康俊, 李建业, 王思远, 李泽宏, 宋双豪, 李怡璇, 马向东. 硼磷烯基二维材料作为离子电池阳极材料的第一性原理研究进展[J]. 材料科学, 2024, 14(5): 663-678. https://doi.org/10.12677/ms.2024.145073

1. 引言

自19世纪中叶以来,各种类型的电化学电池被广泛应用于各个领域。但随着及电动汽车、可穿戴电子设备和电网系统的快速发展,使得以锂离子电池(LIBs)为首的离子电池成为最好的解决方案。LIBs最突出的特点包括可逆的存储容量 [1] 、高功率密度 [2] 、无污染和较长的生命周期 [3] 。然而,锂资源的稀缺性和不均匀分布,严重阻碍了LIBs [4] [5] 的大规模应用。同时,LIBs的逐步提高的储存容量开始渐渐无法满足高速进步中的电子器件的需求,这可以部分归因于金属离子电池阳极材料较慢的发展 [6] 。石墨作为目前LIBs最常用的阳极材料 [7] ,尽管其容量较低,但由于其相对较好的循环稳定性和较低的成本,仍是商业锂离子电池中首选的阳极材料 [8] [9] [10] 。

非锂离子电池(NLIBs),例如,钾(K) [11] [12] 、钠(Na) [13] 、钙(Ca) [14] 、镁(Mg) [15] 和铝(Al)离子 [16] 电池因为其较低的成本、更好的安全性和适宜的氧化还原电位被认为是传统锂电池的替代品。与LIBs类似,电极材料在纳米的电化学性质中起着关键作用,NLIBs的阳极材料由于其较大离子半径等原因发展也十分缓慢。在这种情况下,寻找新的阳极材料是非常可取的方法之一。

自从石墨烯 [17] 的成功合成以来,二维(2D)材料由于其奇特且通常更为优越的电子、光学和力学性能,提高了许多设备与技术的效率和性能,已经发展成为最具有潜力的新时代材料之一。其优势在于其较大的比表面积和独特的电子结构,这可以为金属离子的存储提供许多吸附位点,并为离子的快速扩散提供条件。这种独特的电化学特性促进了它们在储能 [18] 、光催化 [19] 、太阳能转换 [20] 和电催化反应 [21] 等领域的应用。特别是近几十年来,二维材料在电化学电池等能源相关应用中的应用出现了激增 [22] 。到目前为止,多种二维材料已经被探索作离子电池阳极的可行性,例如,石墨烯 [23] 、黑/蓝磷烯 [24] [25] 、硼烯 [26] 、二元金属氧化物 [27] [28] 、过渡金属二卤代化物(TMDs) [29] 和MXene [30] 。

所报道的许多新型二维材料显示了良好的电化学性能。例如,磷烯具有较高的理论容量(432.79 mAh/g),在锯齿形和扶手椅方向显示出了超快且具有各向异性的扩散性能 [31] 。磷烯/石墨烯已经在理论和实验上进行了探索,其异质结构揭示了增强的结合能、存储能力和导电率,同时保持了离子的高迁移率 [32] [33] 。此外,最近合成的硼烯具有金属导电性和高达1860 mAh/g的容量,同时其扩散势垒仅2.6 meV [34] [35] 。尽管如此,由于所提出的二维阳极材料的一些固有问题,所获得的NLIBs的电化学性质并不全然令人满意。例如,虽然黑色磷烯是一种高速率容量的电极材料,但它在充电放电过程中发生了较大的体积变化,导致循环寿命较差 [24] [29] 。此外,二硫化钼等一部分二维材料是电导率较低的半导体,严重影响了其速率性能 [29] 。

近年来,具有超高载流子迁移率和弹道电荷输运特性的狄拉克(Dirac)锥材料在纳米尺度器件,特别是储能系统中,表现出了巨大的潜力 [36] 。由于二维狄拉克材料的高导电率,它们被广泛认为可作为NLIBs的无束缚阳极材料使用 [37] [38] [39] 。最近,基于遗传算法方法和第一性原理计算,硼磷烯被预测为一种新的二维各向异性狄拉克锥体材料 [40] 。硼磷烯单层作为一种新的磷化硼同种异构体,已被证实其较高的结构稳定性和实验获得的可行性 [41] 。且与硼烯和磷烯不同,它是半金属性的,在费米能级附近存在一个鲁棒的狄拉克锥,有着高载流子迁移率和良好的电导率。硼磷烯与磷的屈曲结构不同,具有平面晶格,这是设计快速充放电率电池的关键因素之一 [42] 。

在本文中,我们回顾了硼磷烯基于第一性原理计算在储能领域应用的最新进展。我们分别对其结构稳定性、合成的可行性、吸附特性、存储能力、扩散势垒等方面进行讨论,并有效地并简短地提到所进行的DFT模拟的细节,希望为未来的理论研究提供有用的指导。

2. 结构特征

优化后的硼磷烯单分子层的结构(N-BP)如图1所示 [43] 。从图中可以看出,其结构是由硼和磷元素以化学计量1:1组成的六角蜂窝结构。其优化后的晶格常数为a = 3.23Å和b = 5.59Å,与先前H.R. Jiang等人报道的h-BP结构(B原子和P原子交替排列)的晶格常数(a = b = 3.18Å)非常相近。然而,硼磷烯中的键合环境更为复杂,因为其中有B4P2环和B2P4环两种六角形蜂窝结构。N-BP中B-P、B-B和B-P的键长分别为1.85Å、1.67Å和2.11Å [44] ,和h-BP结构中的B-P键(1.83Å) [45] ,硼烯中的B-B键(1.62Å) [46] ,磷烯中的P-P键(2.22Å) [47] 相当,也表明了硼磷烯中较高的化学键强度。

一般认为,单层的形成能可以证明二维材料的结构热力学稳定性,其计算公式如下 [48] :

E f = E ( B m P m ) m*E ( B ) n*E ( P ) m + n (1)

其中E(B)和E(P)对应元素B和P的能量,m和n分别代表衬底中B和P原子的数量。根据公式(1),N-BP单层的形成能为5.903 eV,介于多孔石墨烯(7.209至8.124 eV) [48] 和黑磷烯(3.27 eV) [49] 之间。

基于密度泛函微扰理论(DFPT) [50] [51] ,硼磷烯结构的动力学稳定性可通过声子谱计算进行评估,W.L. Du等人对其的计算结果如图2所示 [44] 。显然,在N-BP单层的声子谱中没有发现虚频,结果表明硼磷烯是动力学稳定的。利用从头算分子动力学(MD)模拟,Yang Zhang等人进一步研究了硼磷烯的热稳定性。他们采用一个大的6 × 4超胞,将结构加热到300和600 K,尺寸分别为19.33和22.26A。在每一种情况下,模拟持续10 ps,时间步长为1.5 fs,从不同方向查看的快照如图3所示 [41] 。在室温下,硼磷烯能很好地保持其平面结构。即使在600 K的高温下,它仍然可以承受轻微的扭曲,不足以破坏B-B、P-P和B-P化学键,该结果表明硼磷烯具有高度的热稳定性。

内聚能是评估实验合成的可行性的关键因素之一,计算可根据公式 [52] [53] [54] :

E C = ( E B + E P E BP ) / 2 (2)

其中EB、EP、EBP分别是单个B原子、单个P原子和单个BP分子的总能量。根据Yang Zhang等人的计算结果,硼磷烯合成的内聚能为4.82 eV/atom [41] ,略小于h-BP单层(4.99 eV/atom),远高于黑色和蓝色磷烯(均为3.48 eV/atom)。该结果表明,其可以在一定的实验条件下合成。

剥离能是于评价材料实验合成的可行性的另一个公认的参数。计算公式如下 [55] :

E exf ( n ) = E iso ( n ) E bulk n / m A (3)

Figure 1. Top and side views of a monolayer boron-phosphine alkene with structural parameters and Li adsorption sites indicated by a and b. The light blue and orange spheres represent boron and phosphorus atoms, respectively [43]

图1. 单层硼磷烯的俯视图和侧视图,结构参数和Li吸附位点由a和b表示,浅蓝色和橙色的球体分别代表硼原子和磷原子 [43]

Figure 2. Phonon spectrum of N-BP monolayer [44]

图2. N-BP单层的声子谱 [44]

Figure 3. Snapshots of borophosphorene at (a) 300 and (b) 600 K temperatures after 10 ps MD simulation from scratch [41]

图3. 从头开始10 ps MD模拟后,在(a) 300和(b) 600 K温度下的硼磷烯快照 [41]

其中,Eiso(n)为真空中孤立的n层的BP单胞能量,Ebulk为m层BP块体材料的单胞能量,A为块体BP单胞的面积。根据公式(2),N-BP单层对应n = 1的剥落能为12 meV/Å2。N-BP的剥落能小于石墨,大于C4N4 [55] [56] 。表明N-BP可以通过实验机械剥离的方法制备单层。

h-BN的制备通常由三氯化硼和氨或癸烷和氨混合物通过化学气相沉积(CVD)法实现 [57] 。Shiping Wang等人认为,鉴于B-B和P-P对的键合特征,可以使用CVD方法尝试使用B2Cl4和H2PPH2混合物来合成硼磷烯 [43] 。

3. 电子特性

基于第一性原理计算的硼磷烯的电子能带结构和态密度如图4所示 [58] 。可以看出,可以看出,N-BP是沿Γ-X方向在狄拉克点处零带隙的半金属。经计算其费米速度估计为6.5 × 105 ms−1,也与石墨烯(8.2 × 105 ms−1)相同数量级 [59] 。这些表明了具有良好的电导率。此外,态密度进一步证明了狄拉克锥是由B原子和P原子中p轨道的杂化形成的。一般来说,硼磷烯由于几何结构中的平面和单原子厚度,以及电子结构中的狄拉克锥和金属特性,对锂离子存储具有很大的优势。He Lin等人通过电子定位函数(ELF)分析了B2P2的键合特征,如图5所示 [58] ,电子定位主要分布在B-B、P-P和B-P键中,这意味着它具有共价键的特征。相反,在空心位置很少发生电子定位,这有利于金属离子的插入,从而形成离子扩散通道。

Figure 4. Energy band structure of B2P2 calculated using PBE (black line) and HSE06 (red line) and the PDOS function [58]

图4. 使用PBE (黑线)和HSE06 (红线)以及PDOS功能计算的B2P2的能带结构 [58]

Figure 5. ELF diagram for B2P2 [58]

图5. B2P2的ELF [58]

4. 机械性能

通过计算线性弹性常数,Yang Zhang等人研究了硼磷酸烯的力学稳定性。二维线性弹性常数的计算结果如下:C11 = 154.7 N/m、C22 = 136.6 N/m、C12 = 34.8 N/m、C44 = 49.6 N/m。对于正交二维单分子层,其稳定性标准如下:C11 > 0、C22 > 0、C44 > 0和C11C22 > C 12 2 [60] 。所有的弹性常数都满足上述条件,证实了硼磷酸烯是机械稳定的。随后,沿任意方向θ (θ是相对于薄片的正x方向的角度)的平面内杨氏模量和泊松比可以表示为 [61] :

E ( θ ) = C 11 C 22 C 12 2 C 11 s 4 + C 22 c 4 + ( C 11 C 22 C 12 2 C 44 2 C 12 ) c 2 s 2 (4)

ν ( θ ) = ( C 11 + C 22 C 11 C 22 C 12 2 C 44 ) c 2 s 2 C 12 ( c 4 + s 4 ) C 11 s 4 + C 22 c 4 + ( C 11 C 22 C 12 2 C 44 2 C 12 ) c 2 s 2 (5)

其中c = cos(θ)和s = sin(θ)。硼磷烯的E(θ)和v(θ)的极性图如图6所示。可以发现,平面内的杨氏模量和泊松比都是高度各向异性的。杨氏模量范围为126.2~145.8 N/m。沿锯齿状方向观察到最大值,而与x轴以60˚和120˚的角度观察到最小值。与其他典型的二维纳米片,如石墨烯(~340 ± 40 N/m) [62] 、BC3 (~316 N/m) [63] 、和BN (~267 N/m) [64] 相比,硼磷烯的平面内杨氏模量要小得多,表明其单层要软得多。即便如此,硼磷烯仍然比实验合成的硅烯(~62 N/m)要硬得多 [65] ,证实了这种平面材料的高键合强度。此外,在锯齿形和扶手椅的方向上,N-BP的极限应变分别为21%和16% [58] ,与石墨烯(15%的双轴极限应变 [66] )相比,N-BP可以承受更大的应变从而实现更好的可拉伸性。结合适中的杨氏模量和较大的极限应变,硼磷烯表现出良好的机械灵活性,在柔性电极中表现出很大的前景。

5. 吸附性能

金属原子在N-BP衬底上的吸附能的计算公式如下 [67] 。

Figure 6. (a) In-plane Young’s modulus and (b) Poisson’s ratio polarity plots of borophosphorene [41]

图6. 硼磷烯的(a) 平面内杨氏模量和(b) 泊松比极性图 [41]

E ad = ( E M + BP E BP xE M ) / x (6)

其中,ExM+BP表示吸附系统的总能量。EBP表示不吸附金属原子的N-BP的总能量。x和EM分别表示吸附的金属原子数和金属原子的平均能量。负的Ead表示所吸附的金属原子没有聚集成为团簇,在电池运行过程中可以避免短路等金属树突形成引起的问题。

对硼磷烯而言,最有利的金属离子吸附位点一般为两种六元环,即B4P2 (HB位点)和B2P4 (HP位点)环的中心位置,如图7所示 [68] 。和铝最有利的吸附位点是位点HB,而钙离子更喜欢吸附在HP位点上 [58] [68] 。值得注意的是,锂、钠、钾和钙的吸附能为负,而镁和铝的吸附能为正。这说明镁离子和铝离子在充放电过程中倾向于形成金属团簇,最终导致较差的库仑效率。因此,硼磷烯不是一种适合用于镁和铝离子电池的阳极材料。对于锂、钠、钾和钙离子,其吸附能分别为−0.97 eV、−0.68 eV、−1.27 eV和−0.81 eV [58] [68] ,较大的吸附能可以避免金属枝晶的形成,实现良好的可逆性。

Figure 7. Metal ion adsorption sites on borophosphorene, dark yellow and orange balls indicate B and P atoms, respectively [68]

图7. 硼磷烯上金属离子吸附位点,深黄色、橙色的球分别表示B、P原子 [68]

电荷密度差可以帮助我们更直观地理解金属原子与衬底之间的电子相互作用。金属原子吸附的电荷密度差可以通过以下公式计算 [69] :

Δ ρ = ρ total ρ N BP ρ M (7)

其中, totalN-BPM分别描述了金属原子吸附的N-BP单层、N-BP衬底和外加原子的电荷密度。黄色和青色的区域表示电子的积累和损失。

图8是吸附在N-BP表面的Li原子的电荷密度差,图9(a)~(c)是Na、K、Ca吸附在N-BP上的电荷密度差。不难发现,体系中发生了显著的电荷再分布。电荷积累主要发生在N-BP上,电荷消耗主要发生在金属离子周围。这表明从金属离子到N-BP有显著的电荷转移。此外,通过Hirshfeld方法 [70] [71] 。计算出Li的电荷转移量约为0.3e,从一个锂原子转移到N-BP单层的电子一般小于0.5e [72] 。通过Bader电荷分析,发现Na、K和Ca向N-BP的电荷转移量分别为0.88e、0.88e和1.40e [58] 。这些结果共同证实了金属离子与N-BP之间的相互作用主要是离子性的,Li/Na/K/Ca离子可以稳定地吸附在N-BP上。

Figure 8. Charge density difference of Li atoms adsorbed on the surface of N-BP, the orange, purple and green balls represent B, P and Li atoms, respectively [44]

图8. 吸附在N-BP表面的Li原子的电荷密度差,橙色、紫色和绿色的球分别代表B、P原子和Li原子 [44]

Figure 9. Difference in charge densities of adsorbed (a) Na, (b) K, and (c) Ca on N-BP, with green and purple balls representing B and P atoms, respectively [58]

图9. 吸附在N-BP上(a) Na、(b) K和(c) Ca的电荷密度差,绿色、紫色的球分别代表B、P原子 [58]

众所周知,在单层二维材料的制造过程中,空位缺陷是不可避免的。目前对有空位缺陷硼磷烯的电化学性质也有了一定的研究,He Lin等人构建了三种单空位(SV1、SV2、SV3)。如图10(a)~(c)所示 [58] 。通过计算,他们发现SV1、SV2和SV3的形成能分别为3.23 eV、5.12 eV和3.71eV,比在石墨烯中要小得多 [73] ,表明这些缺陷都是结构稳定且容易形成的。其中,SV1缺陷很可能是由于其最小的形成能而产生的。图10(d)~(f)显示各种金属离子在缺陷N-BP上的吸附位点 [58] 。研究发现,Na/K/Ca离子更喜欢吸附在SV1缺陷处,而不是吸附在N-BP的表面,且SV1缺陷的存在可以显著提高对金属离子的吸附能。

Figure 10. Top views of N-BPs with (a) SV1, (b) SV2 and (c) SV3 defects, (d) Na, (e) K and (f) Ca adsorption sites on SV1 defects [58]

图10. 带有(a) SV1、(b) SV2和(c) SV3缺陷的N-BP的俯视图,(d) Na、(e) K和(f) Ca在SV1缺陷上的吸附位点 [58]

Haona Zhang等人对硼磷烯在锂硫电池中的应用做了研究,计算得到硼磷烯对LiPSs团簇的吸附能在0.637~2.546 eV的范围内,此外,对于可溶性高位Li2Sn,真空中的吸附能明显大于常用电解液溶剂DOL和DME,说明以硼磷烯作为锚定材料可以有效避免可溶性Li2Sn在电解液中的溶解 [42] 。

6. 扩散性能

扩散势垒是更好地评价阳极材料性能的重要参数之一,它评价离子电池的速率能力。一般来说,扩散势垒越小,电池的充放电能力越好。确认金属离子在离子电池中的最小扩散路径一般使用CI-NEB方法。Li在N-BP表面的扩散路径和扩散势垒曲线如图11所示。通常,扩散路径设置为从底物最稳定的吸附点到最近最稳定的吸附点。根据N-BP的对称结构,W.L. Du等人选择了三种可能的路径,如图11中插入图中显示为path1、path2和path3。可以看出,锂原子在N-BP衬底上的最佳扩散方式是路径3,其最小值为0.19 eV。该扩散势垒的优化后最小值不仅低于Li在h-BP (0.364 eV) [45] 、硅烯(0.57 eV) [74] 和磷烯(0.76 eV) [75] ,也小于石墨(0.4 eV) [76] 。较小的势垒意味着电池充放电速度要快得多。根据阿伦尼乌斯方程 [77] ,可以计算出与温度相关的分子跃迁速率。在300K时,Li在N-BP单层上的转变速率比h-BP上的快8.33 × 102倍,比在石墨上的快3.35 × 103倍 [44] 。研究还发现,Na和K离子可以在N-BP表面很容易扩散,其能垒分别为0.10 eV和0.07 eV。然而,Ca扩散显示出较高的能垒,为0.33 eV。Na/K在N-BP上的扩散大约是Ca的7.31 × 103/2.33 × 104倍。尽管如此,Ca的能垒仍然远低于GeP3单层 [72] ,并且与一些二维材料的能垒相当(例如WS2 [78] ,MoO2 [79] )。因此,可以认为当以N-BP为阳极材料时,能获得金属离子的高迁移率和良好的速率能力。

随着吸附能的增加,空位可能会在缺陷区域产生潜在的陷阱。研究发现扩散过程中Ca会被困在SV1缺陷中,存在SV1缺陷时Na和K的扩散能量势垒分别降低到0.16和0.12 eV [58] 。这严重阻碍了Na/K远离空位的快速扩散,因此有缺陷的N-BP不具有离子迁移率高和充放电速度快的优点,对于硼磷烯在部分金属离子电池中的应用,应当避免N-BP中缺陷的形成。

Figure 11. Energy distribution of Li diffusion on the surface of N-BP monolayer. The isosurface is set to 0.002e/Å3 [44]

图11. Li在N-BP单层表面扩散的能量分布。等值面设置为0.002 e/Å3 [44]

对于锂硫电池,研究发现Li2Sn在硼磷烯衬底上的最小扩散能垒为0.42 eV [42] ,远低于h-BP单层(0.85 eV) [80] 和β12-硼烯(0.99 eV) [81] 。可以发现,吸附能大的硼烯与Li2Sn结合过强,导致了较高的扩散势垒(0.99 eV),而黑磷的吸附能较弱,扩散势垒碍低(0.28 eV) [82] 。由于Li2Sn在硼磷烯上的吸附能中等,0.42 eV的迁移势垒可以满足快速充放电的要求。因此,硼磷酸可以看作是锂硫电池的一种有前途的锚定候选材料。

7. 比容量

比容量是评价离子电池能量密度的一个关键参数,它取决于基底上金属原子的最大合理吸附数量,通常根据金属原子在衬底的双侧模型吸附来评估一个二维材料的比容量,计算公式为 [83] [84] :

C = xzF / M (8)

x表示吸附在N-BP衬底上的最大金属原子数量,z表示金属离子的价电子数量,F为法拉第常数(26802.10 mAh/mol),M为N-BP衬底的相对分子量。

除了比容量外,开路电压(OCV)是表征金属离子电池性能的另一个关键因素。经计算,以N-BP为阳极的离子电池理论容量和OCV分别为Li:1283 mAh/g,0.17 V~0.99 V、Na:1282 mAh/g,0.05~0.68 V、K:855 mAh/g,0.08~1.27 V和Ca:1282 mAh/g,0.02~0.082 V [44] [58] 。可以发现以硼磷烯为阳极的金属电池有着较高的理论容量,且OCV落在有利的范围(0.10~1.00 V) [85] ,能够最大限度地提高功率密度。此外,通过分子动力学(MD)研究了最终充电产物的热稳定性的结果如图12图13所示 [44] [58] 。在模拟过程中,N-BP衬底既没有结构重建也没有键断裂,仍然保持良好的褶皱结构,这保证了硼磷烯的循环稳定性。

Figure 12. Structure of lithium ions adsorbed on the N-BP molecular layer at 350 K [44]

图12. 350K时吸附在N-BP分子层上的锂离子的结构图 [44]

Figure 13. Side views of (a, b) Na36B18P18, (c, d) K24B18, and (e, f) Ca18B18P18 after 300 K, 6 ps, and temperature and energy fluctuations [58]

图13. 300 K、6 ps后,(a、b) Na36B18P18、(c、d) K24B18、和(e、f) Ca18B18P18的侧视图以及温度和能量波动 [58]

8. 结论

综上所述,各研究结果已经证实了硼磷烯作为阳极材料的应用潜力。该材料已被证明是动态、热和机械稳定的,并在。此外,能带结构中的狄拉克锥表明了硼磷烯的金属性质,保证了高速导电性。硼磷烯对Li、Na、K、Ca离子具有较高的吸附能(−0.97 eV、−0.68 eV、−1.27 eV和−0.81 eV),能够保证这些金属离子被稳定地吸附在硼磷烯上。低离子扩散势垒(Li: 0.19 eV、Na: 0.10 eV、K: 0.07 eV、Ca: 0.33 eV)保证了电池的速率性能。此外,Li、Na、K和Ca离子电池的有着较高的比容量,分别为1283 mAh/g、1282 mAh/g、855 mAh/g和1282 mAh/g。对于锂硫电池,硼磷烯对的LiPSs团簇吸附能在0.637~2.546 eV的范围内,不仅能有效抑制可溶性LiPSs的穿梭效应,还会降低迁移垒,实现快速充放电(能垒低至0.42 eV)。分子动力学模拟表明,硼磷烃在充放电过程中具有良好的循环性,无结构坍塌。同时,其表现出中度杨氏症模量和优良的机械灵活性,可以适应其在充电放电过程中的体积膨胀和收缩。我们得出结论,硼磷烯是一种具有高能密度、热稳定性和高速充放电性能的优良电极材料。

基金项目

中央高校基本科研业务费专项资金资助(2022YQJD01,2023JCCXJD01和2023ZKPYJD07),国家大学生创新训练项目资助(202304061和202403010)。

NOTES

*通讯作者。

参考文献

[1] Idota, Y., Kubota, T., Matsufuji, A., et al. (1997) Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material. Science, 276, 1395-1397.
https://doi.org/10.1126/science.276.5317.1395
[2] Oyama, N., Tatsuma, T., Sato, T., et al. (1995) Dimercaptan-Polyaniline Composite Electrodes for Lithium Batteries with High Energy Density. Nature, 373, 598-600.
https://doi.org/10.1038/373598a0
[3] Whittingham, M.S. (1976) Electrical Energy Storage and Intercalation Chemistry. Science, 192, 1126-1127.
https://doi.org/10.1126/science.192.4244.1126
[4] Shi, Y., Gao, S., Yuan, Y., et al. (2020) Rooting MnO2 into Protonated g-C3N4 by Intermolecular Hydrogen Bonding for Endurable Supercapacitance. Nano Energy, 77, Article 105153.
https://doi.org/10.1016/j.nanoen.2020.105153
[5] Lin, H., Jin, R., Wang, A., et al. (2019) Transition Metal Embedded C2N with Efficient Polysulfide Immobilization and Catalytic Oxidation for Advanced Lithium-Sulfur Batteries: A First Principles Study. Ceramics International, 45, 17996-18002.
https://doi.org/10.1016/j.ceramint.2019.06.018
[6] Fergus, J.W. (2010) Recent Developments in Cathode Materials for Lithium Ion Batteries. Journal of Power Sources, 195, 939-954.
https://doi.org/10.1016/j.jpowsour.2009.08.089
[7] Erickson, E.M., Ghanty, C. and Aurbach, D. (2014) New Horizons for Conventional Lithium Ion Battery Technology. Journal of Physical Chemistry Letters, 5, 3313-3324.
https://doi.org/10.1021/jz501387m
[8] Winter, M., Besenhard, J.O., Spahr, M.E. and Novák, P. (1998) Insertion Electrode Materials for Rechargeable Lithium Batteries. Advanced Materials, 10, 725-763.
https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
[9] Hui, W. and Yi, C. (2012) Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries. Nano Today, 7, 414-429.
https://doi.org/10.1016/j.nantod.2012.08.004
[10] Zhang, W.J. (2011) Lithium Insertion/Extraction Mechanism in Alloy Anodes for Lithium-Ion Batteries. Journal of Power Sources, 196, 877-885.
https://doi.org/10.1016/j.jpowsour.2010.08.114
[11] Zhang, W., Mao, J., Li, S., et al. (2017) Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode. Journal of the American Chemical Society, 139, 3316-3319.
https://doi.org/10.1021/jacs.6b12185
[12] Fan, L., Ma, R., Zhang, Q., et al. (2019) Graphite Anode for a Potassium-Ion Battery with Unprecedented Performance. Angewandte Chemie International Edition, 58, 10500-10505.
https://doi.org/10.1002/anie.201904258
[13] Wang, G., Bi, X., et al. (2019) Sacrificial Template Synthesis of Hollow C@MoS2@PPy Nanocomposites as Anodes for Enhanced Sodium Storage Performance. Nano Energy, 60, 362-370.
https://doi.org/10.1016/j.nanoen.2019.03.065
[14] Li, Z., Fuhr, O., Fichtner, M. and Zhao-Karger, Z. (2019) Towards Stable and Efficient Electrolytes for Room-Temperature Rechargeable Calcium Batteries. Energy & Environmental Science, 12, 3496-3501.
https://doi.org/10.1039/C9EE01699F
[15] Tang, H., Xu, N., Pei, C., et al. (2017) H2V3O8 Nanowires as High-Capacity Cathode Materials for Magnesium-Based Battery. ACS Applied Materials & Interfaces, 9, 28667-28673.
https://doi.org/10.1021/acsami.7b09924
[16] Zhang, E., Wang, J., Wang, B., et al. (2019) Unzipped Carbon Nanotubes for Aluminum Battery. Energy Storage Materials, 23, 72-78.
https://doi.org/10.1016/j.ensm.2019.05.030
[17] Oli, B.D., Bhattarai, C., Nepal, B. and Adhikari, N.P. (2013) First-Principles Study of Adsorption of Alkali Metals (Li, Na, K) on Graphene. In: Giri, P.K., Goswami, D.K. and Perumal, A., Eds., Advanced Nanomaterials and Nanotechnology. Springer Proceedings in Physics, Vol. 143, Springer, Berlin, 515-529.
https://doi.org/10.1007/978-3-642-34216-5_51
[18] Zhang, X., Hou, L., Ciesielski, A. and Samorì, P. (2016) 2D Materials beyond Graphene for High-Performance Energy Storage Applications. Advanced Energy Materials, 6, Article 1600671.
https://doi.org/10.1002/aenm.201600671
[19] Zheng, Y., Jiao, Y., Zhu, Y., et al. (2014) Hydrogen Evolution by a Metal-Free Electrocatalyst. Nature Communications, 5, Article No. 3783.
https://doi.org/10.1038/ncomms4783
[20] Zhang, Y. and Antonietti, M. (2010) Photocurrent Generation by Polymeric Carbon Nitride Solids: An Initial Step towards a Novel Photovoltaic System. Chemistry: An Asian Journal, 5, 1307-1311.
https://doi.org/10.1002/asia.200900685
[21] Liu, X. and Dai, L. (2016) Carbon-Based Metal-Free Catalysts. Nature Reviews Materials, 1, Article No. 16064.
https://doi.org/10.1038/natrevmats.2016.64
[22] Abbas, G., Alay-e-Abbas, S.M., Laref, A., et al. (2020) Two-Dimensional B3P Monolayer as a Superior Anode Material for Li and Na Ion Batteries: A First-Principles Study. Materials Today Energy, 17, Article 100486.
https://doi.org/10.1016/j.mtener.2020.100486
[23] Persson, K., Hinuma, Y., Meng, Y.S., et al. (2010) Thermodynamic and Kinetic Properties of the Li-Graphite System from First-Principles Calculations. Physical Review B, 82, Article 125416.
https://doi.org/10.1103/PhysRevB.82.125416
[24] Wu, X., Wang, H., Zhao, Z., et al. (2020) Interstratification-Assembled 2D Black Phosphorene and V2CTx MXene as Superior Anodes for Boosting Potassium-Ion Storage. Journal of Materials Chemistry A, 8, 12705-12715.
https://doi.org/10.1039/D0TA04506C
[25] Mukherjee, S., Kavalsky, L. and Singh, C.V. (2018) Ultrahigh Storage and Fast Diffusion of Na and K in Blue Phosphorene Anodes. ACS Applied Materials & Interfaces, 10, 8630-8639.
https://doi.org/10.1021/acsami.7b18595
[26] Xiang, P., Chen, X., Zhang, W., et al. (2017) Metallic Borophene Polytypes as Lightweight Anode Materials for Non-Lithium-Ion Batteries. Physical Chemistry Chemical Physics, 19, 24945-24954.
https://doi.org/10.1039/C7CP04989G
[27] Mei, J., Liao, T. and Sun, Z. (2018) Two-Dimensional Metal Oxide Nanosheets for Rechargeable Batteries. Journal of Energy Chemistry, 27, 117-127.
https://doi.org/10.1016/j.jechem.2017.10.012
[28] Deng, X., Chen, Z. and Cao, Y. (2018) Transition Metal Oxides Based on Conversion Reaction for Sodium-Ion Battery Anodes. Materials Today Chemistry, 9, 114-132.
https://doi.org/10.1016/j.mtchem.2018.06.002
[29] Mukherjee, S. and Singh, G. (2019) Two-Dimensional Anode Materials for Non-Lithium Metal-Ion Batteries. ACS Applied Energy Materials, 2, 932-955.
https://doi.org/10.1021/acsaem.8b00843
[30] Fan, K., Ying, Y., Li, X., et al. (2019) Theoretical Investigation of V3C2 MXene as Prospective High Capacity Anode Material for Metal-Ion (Li, Na, K, and Ca) Batteries. The Journal of Physical Chemistry C, 123, 18207-18214.
https://doi.org/10.1021/acs.jpcc.9b03963
[31] Li, W.F., Yang, Y.M., Zhang, G., et al. (2015) Ultrafast and Directional Diffusion of Lithium in Phosphorene for High-Performance Lithium-Ion Battery. Nano Letters, 15, 1691-1697.
https://doi.org/10.1021/nl504336h
[32] Sun, J., Lee, H.-W., Pasta, M., et al. (2015) A Phosphorene-Graphene Hybrid Material as a High-Capacity Anode for Sodium-Ion Batteries. Nature Nanotechnology, 10, 980-985.
https://doi.org/10.1038/nnano.2015.194
[33] Guo, G.C., Wang, D., Wei, X.L., et al. (2015) First-Principles Study of Phosphorene and Graphene Heterostructure as Anode Materials for Rechargeable Li Batteries. Journal of Physical Chemistry Letters, 6, 5002-5008.
https://doi.org/10.1021/acs.jpclett.5b02513
[34] Jiang, H.R., Lu, Z.H., Wu, M.C., et al. (2016) Borophene: A Promising Anode Material offering High Specific Capacity and High Rate Capability for Lithium-Ion Batteries. Nano Energy, 23, 97-104.
https://doi.org/10.1016/j.nanoen.2016.03.013
[35] Mannix, A.J., Zhou, X.F., Kiraly, B., et al. (2015) Synthesis of Borophenes: Anisotropic, Two-Dimensional Boron Polymorphs. Science, 350, 1513-1516.
https://doi.org/10.1126/science.aad1080
[36] Culcer, D., Keser, A.C., Li, Y., et al. (2020) Transport in Two-Dimensional Topological Materials: Recent Developments in Experiment and Theory. 2D Materials, 7, Article 022007.
https://doi.org/10.1088/2053-1583/ab6ff7
[37] Yu, Q., Liu, J., Li, X., et al. (2018) Interpenetrating Silicene Networks: A Topological Nodal-Line Semimetal with Potential as an Anode Material for Sodium Ion Batteries. Physical Review Materials, 2, Article 084201.
https://doi.org/10.1103/PhysRevMaterials.2.084201
[38] Lei, S., Chen, X., Xiao, B., Zhang, W., et al. (2019) Excellent Electrolyte Wettability and High Energy Density of B2S as a Two-Dimensional Dirac Anode for Non-Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 11, 28830-28840.
https://doi.org/10.1021/acsami.9b07219
[39] Tian, B., Du, W., Chen, L., et al. (2020) Probing Pristine and Defective NiB6 Monolayer as Promising Anode Materials for Li/Na/K Ion Batteries. Applied Surface Science, 527, Article 146580.
https://doi.org/10.1016/j.apsusc.2020.146580
[40] Zhang, Y., Kang, J., Zheng, F., et al. (2019) Borophosphene: A New Anisotropic Dirac Cone Monolayer with a High Fermi Velocity and a Unique Self-Doping Feature. Journal of Physical Chemistry Letters, 10, 6656-6663.
https://doi.org/10.1021/acs.jpclett.9b02599
[41] Sun, W.C., Wang, S.S. and Dong, S. (2021) Two-Dimensional Metallic BP as Anode Material for Lithium-Ion and Sodium-Ion Batteries with Unprecedented Performance. Journal of Materials Science, 56, 13763-13771.
https://doi.org/10.1007/s10853-021-06174-9
[42] Zhang, H., Wang, S., Wang, Y., et al. (2021) Borophosphene: A Potential Anchoring Material for Lithium-Sulfur Batteries. Applied Surface Science, 562, Article 150157.
https://doi.org/10.1016/j.apsusc.2021.150157
[43] Wang, S., Zhang, W., Lu, C., et al. (2020) Enhanced Ion Diffusion Induced by Structural Transition of Li-Modified Borophosphene. Physical Chemistry Chemical Physics, 22, 21326-21333.
https://doi.org/10.1039/D0CP03247F
[44] Du, W.L., Chen, L., Guo, J.Y. and Shu, H.B. (2021) Novel Borophosphene as a High Capacity Anode Material for Li-Ion Storage. Journal of Solid State Chemistry, 296, Article 121950.
https://doi.org/10.1016/j.jssc.2020.121950
[45] Jiang, H.R., Shyy, W., Liu, M., et al. (2017) Boron Phosphide Monolayer as a Potential Anode Material for Alkali Metal-Based Batteries. Journal of Materials Chemistry A, 5, 672-679.
https://doi.org/10.1039/C6TA09264K
[46] Zhang, Y., Wu, Z.-F., Gao, P.-F., et al. (2016) Could Borophene Be Used as a Promising Anode Material for High-Performance Lithium Ion Battery? ACS Applied Materials & Interfaces, 8, 22175-22181.
https://doi.org/10.1021/acsami.6b05747
[47] Zhang, Y., Wu, Z.-F., Gao, P.-F., et al. (2016) Structural, Elastic, Electronic, and Optical Properties of the Tricycle-Like Phosphorene. Physical Chemistry Chemical Physics, 19, 2245-2251.
https://doi.org/10.1039/C6CP07575D
[48] Li, T., He, C. and Zhang, W. (2021) Rational Design of Porous Carbon Allotropes as Anchoring Materials for Lithium Sulfur Batteries. Journal of Energy Chemistry, 52, 121-129.
https://doi.org/10.1016/j.jechem.2020.04.042
[49] Sun., X. and Wang, Z., et al. (2018) Sodium Adsorption and Diffusion on Monolayer Black Phosphorus with Intrinsic Defects. Applied Surface Science, 427, 189-197.
https://doi.org/10.1016/j.apsusc.2017.08.199
[50] Baroni, S., de Gironcoli, S., Dal Corso, A. and Giannozzi, P. (2001) Phonons and Related Crystal Properties from Density-Functional Perturbation Theory. Reviews of Modern Physics, 73, 515-562.
https://doi.org/10.1103/RevModPhys.73.515
[51] He, C., Zhang, M., Li, T.T. and Zhang, W.X. (2019) Electric Field-Modulated High Sensitivity and Selectivity for NH3 on α-C2N2 Nanosheet: Insights from DFT Calculations. Applied Surface Science, 505, Article 144619.
https://doi.org/10.1016/j.apsusc.2019.144619
[52] Yang, L.-M., Bacic, V., Popov, I.A., et al. (2015) Two-Dimensional Cu2Si Monolayer with Planar Hexacoordinate Copper and Silicon Bonding. Journal of the American Chemical Society, 46, 2757-2762.
https://doi.org/10.1002/chin.201523001
[53] Zhang, H., Li, Y., Hou, J., et al. (2016) FeB6 Monolayers: The Graphene-Like Material with Hypercoordinate Transition Metal. Journal of the American Chemical Society, 138, 5644-5651.
https://doi.org/10.1021/jacs.6b01769
[54] Yu, T., Zhao, Z., Liu, L., et al. (2018) TiC3 Monolayer with High Specific Capacity for Sodium-Ion Batteries. Journal of the American Chemical Society, 140, 5962-5968.
https://doi.org/10.1021/jacs.8b02016
[55] Li, T., He, C. and Zhang, W. (2020) Two-Dimensional Porous Transition Metal Organic Framework Materials with Strongly Anchoring Ability as Lithium-Sulfur Cathode. Energy Storage Materials, 25, 866-875.
https://doi.org/10.1016/j.ensm.2019.09.003
[56] Li, T., He, C. and Zhang, W. (2019) A Novel Porous C4N4 Monolayer as a Potential Anchoring Material for Lithium-Sulfur Battery Design. Journal of Materials Chemistry A, 7, 4134-4144.
https://doi.org/10.1039/C8TA10933H
[57] Rozenberg, A.S., Sinenko, Y.A. and Chukanov, N.V. (1993) Regularities of Pyrolytic Boron Nitride Coating Formation on a Graphite Matrix. Journal of Materials Science, 28, 5528-5533.
https://doi.org/10.1007/BF00367825
[58] Lin, H., Liu, G., Zhu, L., Zhang, Z., et al. (2021) Flexible Borophosphene Monolayer: A Potential Dirac Anode for High-Performance Non-Lithium Ion Batteries. Applied Surface Science, 544, Article 148895.
https://doi.org/10.1016/j.apsusc.2020.148895
[59] Malko, D., Neiss, C., Vines, F. and Görling, A. (2012) Competition for Graphene: Graphynes with Direction-Dependent Dirac Cones. Physical Review Letters, 108, Article 086804.
https://doi.org/10.1103/PhysRevLett.108.086804
[60] Mouhat, F. and Coudert, F.-X., et al. (2014) Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems. Physical Review B: Condensed Matter and Materials Physics, 90, Article 224104.
https://doi.org/10.1103/PhysRevB.90.224104
[61] Cadelano, E., Palla, P.L., Giordano, S. and Colombo, L. (2010) Elastic Properties of Hydrogenated Graphene. Physical Review B, 82, Article 235414.
https://doi.org/10.1103/PhysRevB.82.235414
[62] Lee, C., Wei, X., Kysar, J.W. and Hone, J. (2008) Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321, 385-388.
https://doi.org/10.1126/science.1157996
[63] Zhang, Y., Wu, Z.-F., Gao, P.-F., et al. (2018) Strain-Tunable Electronic and Optical Properties of BC3 Monolayer. RSC Advances, 8, 1686-1692.
https://doi.org/10.1039/C7RA10570C
[64] Topsakal, M., Cahangirov, S. and Ciraci, S. (2010) The Response of Mechanical and Electronic Properties of Graphane to the Elastic Strain. Applied Physics Letters, 96, Article 091912.
https://doi.org/10.1063/1.3353968
[65] Ding, Y. and Wang, Y. (2013) Density Functional Theory Study of the Silicene-Like SiX and XSi3 (X = B, C, N, Al, P) Honeycomb Lattices: The Various Buckled Structures and Versatile Electronic Properties. Journal of Physical Chemistry C, 117, 18266-18278.
https://doi.org/10.1021/jp407666m
[66] Shao, Y., Gong, P., Pan, H. and Shi, X. (2019) H-/DT-MoS2-on-MXene Heterostructures as Promising 2D Anode Materials for Lithium-Ion Batteries: Insights from First Principles. Advanced Theory and Simulations, 2, Article 1900045.
https://doi.org/10.1002/adts.201900045
[67] Kim, T., Song, W., Son, D.-Y., et al. (2019) Lithium-Ion Batteries: Outlook on Present, Future, and Hybridized Technologies. Journal of Materials Chemistry A, 7, 2942-2964.
https://doi.org/10.1039/C8TA10513H
[68] Zhang, Y., Zhang, E.-H., Xia, M.-G. and Zhang, S.-L. (2020) Borophosphene as a Promising Dirac Anode with Large Capacity and High-Rate Capability for Sodium-Ion Batteries. Physical Chemistry Chemical Physics, 22, 20851-20857.
https://doi.org/10.1039/D0CP03202F
[69] Yang, Z., Li, W. and Zhang, J. (2021) First-Principles Study of Borophene/Phosphorene Heterojunction as Anode Material for Lithium-Ion Batteries. Nanotechnology, 33, Article 075403.
https://doi.org/10.1088/1361-6528/ac3686
[70] Ullah, S., Denis, P.A. and Sato, F. (2018) First-Principles Study of Dual-Doped Graphene: Towards Promising Anode Materials for Li/Na-Ion Batteries. New Journal of Chemistry, 42, 10842-10851.
https://doi.org/10.1039/C8NJ01098F
[71] Kumar, S., Kaur, S.P. and Kumar, T.J.D. (2019) Hydrogen Trapping Efficiency of Li Decorated Metal-Carbyne Framework: A First Principles Study. The Journal of Physical Chemistry C, 123, 15046-15052.
https://doi.org/10.1021/acs.jpcc.9b03007
[72] Deng, X., Chen, X., Huang, Y. and Du, H. (2019) Two-Dimensional GeP3 as a High Capacity Anode Material for Non-Lithium-Ion Batteries. The Journal of Physical Chemistry C, 123, 4721-4728.
https://doi.org/10.1021/acs.jpcc.8b11574
[73] Lin, H., Yang, D.-D., Lou, N., et al. (2019) Defect Engineering of Black Phosphorene towards an Enhanced Polysulfide Host and Catalyst for Lithium-Sulfur Batteries: A First Principles Study. Journal of Applied Physics, 125, Article 094303.
https://doi.org/10.1063/1.5082782
[74] Malyi, O., Kulish, V.V., Tan, T.L., et al. (2013) A Computational Study of the Insertion of Li, Na, and Mg Atoms into Si(111) Nanosheets. Nano Energy, 2, 1149-1157.
https://doi.org/10.1016/j.nanoen.2013.04.007
[75] Zhao, S., Wei, K. and Xue, J. (2014) The Potential Applications of Phosphorene as an Anode Materials in Li-Ion Batteries. Journal of Materials Chemistry A, 2, 19046-19052.
https://doi.org/10.1039/C4TA04368E
[76] Tarascon, J.M. and Armand, M. (2001) Issues and Challenges Facing Rechargeable Lithium Batteries. Nature, 414, 359-367.
https://doi.org/10.1038/35104644
[77] Qi, S., Li, F., Wang, J., et al. (2018) Prediction of a Flexible Anode Material for Li/Na Ion Batteries: Phosphorous Carbide Monolayer (α-PC). Carbon, 141, 444-450.
https://doi.org/10.1016/j.carbon.2018.09.031
[78] Vakili-Nezhaad, G.R., Gujarathi, A.M., Rawahi, N.A., et al. (2019) Performance of WS2 Monolayers as a New Family of Anode Materials for Metal-Ion (Mg, Al and Ca) Batteries. Materials Chemistry and Physics, 230, 114-121.
https://doi.org/10.1016/j.matchemphys.2019.02.086
[79] Rao, Y.-C., Yu, S., Gu, X., et al. (2019) Prediction of MoO2 as High Capacity Electrode Material for (Na, K, Ca)-Ion Batteries. Applied Surface Science, 479, 64-69.
https://doi.org/10.1016/j.apsusc.2019.01.206
[80] Yu, T.-T., Gao, P.-F., Zhang, Y. and Zhang, S.-L. (2019) Boron-Phosphide Monolayer as a Potential Anchoring Material for Lithium-Sulfur Batteries: A First-Principles Study. Applied Surface Science, 486, 281-286.
https://doi.org/10.1016/j.apsusc.2019.05.019
[81] Grixti, S., Mukherjee, S. and Singh, C.V. (2017) Two-Dimensional Boron as an Impressive Lithium-Sulphur Battery Cathode Material. Energy Storage Materials, 13, 80-87.
https://doi.org/10.1016/j.ensm.2017.12.024
[82] Li, L., Chen, L., Mukherjee, S., Gao, J., Sun, H., et al. (2017) Phosphorene as a Polysulfide Immobilizer and Catalyst in High-Performance Lithium-Sulfur Batteries. Advanced Materials, 29, Article 1602734.
https://doi.org/10.1002/adma.201602734
[83] Tao, B., Liu, P.-F., et al. (2019) Tetragonal and Trigonal Mo2B2 Monolayers: Two New Low-Dimensional Materials for Li-Ion and Na-Ion Batteries. Physical Chemistry Chemical Physics, 21, 5178-5188.
https://doi.org/10.1039/C9CP00012G
[84] Yu, Y., Guo, Z., Peng, Q., et al. (2019) Novel Two-Dimensional Molybdenum Carbides as High Capacity Anodes for Lithium/Sodium-Ion Batteries. Journal of Materials Chemistry A, 7, 12145-12153.
https://doi.org/10.1039/C9TA02650A
[85] Guo, G.-C., Wang, R.-Z., Ming, B.-M., Wang, C., et al. (2019) Trap Effects on Vacancy Defect of C3N as Anode Material in Li-Ion Battery. Applied Surface Science, 475, 102-108.
https://doi.org/10.1016/j.apsusc.2018.12.275