阿尔茨海默病患者血液中miRNA-3200-3p生物信息学分析
Bioinformatics Analysis of miRNA-3200-3p in Blood of Patients with Alzheimer’s Disease
DOI: 10.12677/acm.2024.1451612, PDF, HTML, XML, 下载: 31  浏览: 64 
作者: 闫林娜, 张 鑫, 王梓炫*:青岛大学附属医院老年医学科,山东 青岛
关键词: 阿尔茨海默病miRNA生物信息学GEOAlzheimer’s Disease miRNA Bioinformatics GEO
摘要: 目的:通过生物信息学方法,探讨阿尔茨海默病(AD)患者血液中差异表达微小RNA (miRNA)的生物学功能。方法:通过基因表达综合数据库(GEO)获取AD相关的数据集GSE46579,筛选AD患者血液中差异表达miRNAs,运用在线数据库TargetScan、miRDB及Starbase预测所选miRNA的靶基因,通过GSE97760数据集筛选差异表达基因,对差异表达靶基因进行分析。运用R软件进行基因本体论(GO)和分析和京都基因与基因组百科全书(KEGG)通路分析。通过String在线网站构建蛋白互作(PPI)网络,利用Cytoscape筛选5个关键基因。结果:共筛选出56个差异表达miRNAs,其中42个下调,14个上调。23个靶基因与差异表达基因重叠。GO和KEGG富集分析显示miRNA-3200-3p靶基因参与DNA分子结构与功能变化、神经元发育和突触传递等功能,以及流体剪切应力与动脉粥样硬化信号通路和丁酸代谢等信号通路。miRNA-3200-3p调控的5个关键基因为SRSF1、CHD1、ZRANB2、PURA和KDM5C。结论:miRNA-3200-3p可能在AD的发病机制中发挥重要作用,miRNA-3200-3p可能是AD潜在的生物标志物和治疗靶点。
Abstract: Objective: To explore the biological functions of differentially expressed microRNAs (miRNAs) in the blood of Alzheimer’s disease (AD) patients by bioinformatics analysis. Methods: Dataset GSE46579 were collected from the Gene Expression Omnibus (GEO) database. We selected differentially expressed miRNA in blood patients with AD, and online databases TargetScan, miRDB and Starbase were used to predict the target genes of selected miRNAs. Differentially expressed genes were selected from the GSE97760 dataset, and analyzing the differentially expressed target genes. R software was used for gene ontology (GO) and analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Constructing protein-protein interaction (PPI) networks through the String online website and utilizing Cytoscape to filter out five key genes. Results: A total of 56 differentially expressed miRNAs were screened, with 42 downregulated and 14 upregulated. Among them, 23 target genes overlapped with the differentially expressed genes. GO and KEGG enrichment analysis revealed that the target genes of miRNA-3200-3p are involved in functions such as DNA molecular structure and functional changes, neuronal development, synaptic transmission, as well as fluid shear stress and atherosclerosis signaling pathways, and Butanoate metabolism. The five key genes regulated by miRNA-3200-3p are SRSF1, CHD1, ZRANB2, PURA, and KDM5C. Conclusions: miRNA-3200-3p may play an important role in the pathogenesis of AD, and miRNA-3200-3p may be a potential biomarker and therapeutic target for AD.
文章引用:闫林娜, 张鑫, 王梓炫. 阿尔茨海默病患者血液中miRNA-3200-3p生物信息学分析[J]. 临床医学进展, 2024, 14(5): 1746-1755. https://doi.org/10.12677/acm.2024.1451612

1. 引言

阿尔茨海默病(Alzheimer’s disease, AD)是一种以记忆力减退、认知功能障碍及行为异常为主的神经退行性疾病,是老年期最常见的痴呆类型。目前,全球有5000万痴呆患者,我国AD患者近1000万人,疾病负担严重 [1] 。因此,迫切需要寻找更有效的治疗方法和生物标志物。

微小RNA (microRNA, miRNA)是一类长约18~25个核苷酸的非编码RNA分子,通过与靶mRNA的3’非翻译区(UTR)结合,介导蛋白质编码基因的转录后调控,影响靶mRNA的翻译和稳定性 [2] 。在调控许多生物学功能过程中发挥重要作用,包括细胞增值、分化、凋亡和代谢等 [3] 。研究表明,miRNA可以调控大约60%的人类基因,单个miRNA可以调控多个基因的功能,因此miRNA可以作为多靶点治疗的潜在选择 [2] 。

研究发现,一些miRNA在AD疾病过程中发挥重要作用 [2] [3] 例如,miR-148a-3p的过表达通过靶向ROCK1基因减弱了Aβ诱导的神经毒性 [4] ;microRNA-425-5p通过靶向热休克蛋白B8 (HSPB8)促进阿尔茨海默病tau磷酸化和细胞凋亡 [5] 。本研究通过生物信息学方法,筛选和分析AD患者外周血中差异表达的miRNA,通过对miRNA靶基因进行富集分析,探索miRNA在AD发病机制中的潜在作用,为AD的分子机制研究提供新线索。

2. 材料与方法

2.1. 材料

在GEO (http://www.ncbi.nlm.nih.gov/geo)数据库检索“Alzheimer’s disease (All Fields) AND miRNA (All Fields)”,物种为人类“(Homo sapiens)”,检索出高通量测序的非编码RNA谱GSE46579,包括48名AD患者和22名对照组血液样本的miRNA信息。

2.2. 差异表达miRNA的筛选和数据处理

采用R软件(版本4.2.2) GEO query包读取并处理下载的数据文件,使用DESeq2进行差异表达分析。以|log2Fold Chang| ≥ 1和P < 0.05为筛选条件得到差异表达miRNAs,采用ggplot2包绘制数据集的差异表达miRNAs的火山图。

2.3. miRNA靶基因预测

采用TargetScan8.0 [6] (https://www.targetscan.org/vert_80/)、miRDB [7] (https://mirdb.org/)和Starbase [8] (http://starbase.sysu.edu.cn/)在线数据库,物种选择为人类,输入miRNA-3200-3p分别预测miRNA的靶基因并导出。为使结果更准确,利用微生信Venn图绘制工具(https://www.bioinformatics.com.cn/static/others/jvenn/example.html)得到三个网站的交集靶基因合集。

2.4. 筛选差异表达基因中的靶基因

在GEO数据库中检索“Alzheimer’s disease (All Fields) AND gene (All Fields)”,物种为人类“(Homo sapiens)”,下载基因芯片数据集GSE97760 (9例AD、10例健康对照),通过GEO2R在线数据分析工具,获得差异表达的基因,以|log2Fold Chang| ≥ 1和P < 0.05为筛选条件。纳入靶基因与差异表达基因的重叠基因进行后续分析。通过Cytoscape (版本3.0.1)构建miRNA-靶基因网络图进行可视化。

2.5. 基因本体论(GO)分析和京都基因与基因组百科全书(KEGG)通路分析

通过R软件clusterProfiler包对差异表达的靶基因进行GO和KEGG通路的富集分析,GO富集分析按照生物过程(biological process, BP)、细胞组成( cellular component, CC)和分子功能(molecular function, MF)对基因进行注释和分类,选择每个部分富集最显著(P-value水平)的10个GO功能及10条pathway进行可视化。

2.6. 蛋白互作(PPI)网络构建及关键基因筛选

通过STRING数据库 [9] (https://string-db.org/),以Confidence score = 0.4为筛选条件,构建靶基因的蛋白互作网络。通过Cytoscape软件cytoHubb插件,筛选5个关键基因,作为miRNA-3200-3p调控的关键靶基因。

3. 结果

3.1. 差异表达miRNAs

根据AD组和健康对照组的log2Fold Chang和P值筛选差异表达的miRNAs,与健康对照组相比,AD组共筛出56个差异表达miRNAs,42个miRNAs下调,14个miRNAs上调,其中miRNA-3200-3p为差异表达最显著的miRNA (图1)。

Figure 1. Volcano plot of differentially expressed miRNAs in blood. Note: Blue represents significantly downregulated miRNAs, red represents significantly upregulated miRNAs, and gray represents miRNAs with no significant difference

图1. 血液中差异表达miRNAs的火山图。注:蓝色代表显著下调的miRNAs,红色代表显著上调的miRNAs,灰色代表无显著差异的miRNAs

3.2. miRNA-3200-3p靶基因

分别通过TargetScan、miRDB及Starbase在线数据库检索出173个、2348个和254个miRNA-3200-3p的靶基因,为确保预测结果的可靠性,利用韦恩图在线工具将3个数据库得到的miRNAs交集得到47个靶基因(图2)。

3.3. 血液中差异表达的靶基因及miRNA-靶基因网络构建

根据AD组和健康对照组的log2Fold Chang和P值,筛选出血液中15,550个差异表达的基因。其中,23个miRNA-3200-3p靶基因与差异表达的基因存在重叠,并且仅有RAS激酶抑制因子连接增强蛋白2 (CNKSR2)基因下调,余22个基因上调。通过构建miRNA-靶基因网络图进行可视化(图3)。

3.4. 靶基因的富集分析

对23个筛选后的靶基因进行GO功能和KEGG通路富集分析。GO结果显示(图4),靶基因主要参与DNA双链解螺旋、DNA构象变化、树突生长、联合轴突引导及突触囊泡成熟等生物过程,参与高尔基体转运网络、谷氨酸能突触、丝状伪足、吞噬小泡及突触膜外部组分等细胞组分;参与PDZ结构域结合、共受体活性、生长因子结合、Wnt受体活性及电压门控氯离子通道活性等分子功能。KEGG结果显示(图5),参与流体剪切应力与动脉粥样硬化信号通路、调节干细胞多能性的信号传导途径、丁酸代谢、癌症中的蛋白多糖及萜类骨架的生物合成等通路有关。

Figure 2. Venn diagram for screening potential target genes of miRNA-3200-3p

图2. miRNA-3200-3p潜在靶基因筛选韦恩图

Figure 3. miRNA-3200-3p target gene network

图3. miRNA-3200-3p-靶基因网络

Figure 4. GO enrichment analysis of miRNA-3200-3p target genes

图4. miRNA-3200-3p靶基因的GO富集分析

Figure 5. KEGG pathway enrichment analysis of miRNA-3200-3p target genes. Note: Circles represent the number of genes, with larger circles indicating a higher number of genes enriched in that pathway. The bluer the color, the higher the enrichment level of genes in that pathway

图5. miRNA-3200-3p靶基因的KEGG通路富集分析。注:圆圈代表基因数,越大表示富集到该通路的基因数越多,颜色越蓝,代表基因在该通路的富集程度越高

3.5. 靶基因相互作用网络分析

通过cytoHubb插件分析构建蛋白互作网络(图6),筛选5个关键基因,包括丝氨酸/精氨酸富集剪接因子1 (SRSF1)、染色质解旋酶DNA结合蛋白1 (CHD1)、锌指Ran结合结构域蛋白(ZRANB2)、嘌呤富集元件结合蛋白A (PURA)、(赖氨酸特异性去甲基化酶5C) KDM5C。

Figure 6. Five key genes regulated by miRNA-3200-3p

图6. miRNA-3200-3p调控的5个关键基因

4. 讨论

AD是一种起病隐匿的神经退行性疾病,病因机制尚未完全明确,且现有治疗手段治理效果不佳。研究表明,AD的发病涉及Aβ生成、tau蛋白磷酸化、炎症反应、氧化应激、细胞凋亡及突触功能异常等过程 [2] 。在AD发病早期,临床症状不明显,但脑组织已发生病理改变 [10] 。因此,寻找早期诊断AD的标志物至关重要。

越来越多的证据表明,生物体液中的各种miRNA与AD发病机制有关。一些miRNAs与痴呆的严重程度有关,例如,miR-223、miR-331-3p和miR-28-3p [11] [12] [13] 。此外,miR-433通过靶向JAK2改善Aβ诱导的神经毒性 [14] ;miR-124-3p通过调节Caveolin-1-PI3K/Akt/GSK3β通路抑制Tau的异常过度磷酸化,在AD中发挥保护作用 [15] ;miR-107-5p通过抑制Toll样受体4 (TLR4)/NF-κB通路,减少AD小鼠的神经损伤、氧化应激和免疫反应 [16] 。

miRNA-3200-3p是一种新型miRNA,相关研究较少,且主要关注在癌症领域。例如,体外miRNA-3200-3p通过抑制钙/钙调蛋白依赖性蛋白激酶2a (CAMK2A)调控神经胶质瘤的增殖和转移 [17] ;在非小细胞肺癌中,血管内皮生长因子受体(VEGFR2)通过调节miRNA-3200-3p表达,影响调节性T (Treg)细胞衰老 [18] ;此外,miRNA-3200-3p可能通过调节Wnt/β-连环蛋白(β-catenin)通路参与癌细胞的迁移和侵袭过程 [19] 。然而,有研究指出CAMK2A与记忆和长时程增强作用(LTP)有关 [20] ;研究发现,激活Wnt/β-catenin信号通路可抑制Aβ的神经毒性,减轻血脑屏障功能障碍 [21] [22] 。这些研究表明miRNA-3200-3p在AD疾病中亦发挥重要作用。

为进一步探究miRNA-3200-3p在AD中潜在作用,本研究通过在线数据库预测靶基因,并结合数据集GSE97760筛选的差异表达的基因,最终获得23个差异表达的靶基因并进行功能富集分析。GO分析显示靶基因可能通过DNA分子结构与功能变化、神经元发育、突触传递、细胞信号转导和生长因子调控等生物学功能参与AD疾病。KEGG通路分析显示靶基因可能通过流体剪切应力与动脉粥样硬化信号通路、调节干细胞多能性的信号传导途径及丁酸代谢等信号通路影响AD的发生和发展。一项研究发现,AD海马体差异表达基因与海马体流体剪切应力与动脉粥样硬化信号通路相关 [23] 。此外,丁酸盐是结肠中必需的代谢产物,具有免疫调节和抗炎作用 [24] 。一项研究表明,AD老年的粪便中产生丁酸盐的细菌减少 [25] ,进一步支持了肠脑轴理论。

STRING在线网站及Cytoscape软件,得到5个miRNA-3200-3p调节的关键靶基因(SRSF1、CHD1、ZRANB2、PURA、KDM5C)。研究发现,SRSF1与阿尔茨海默病风险相关的唾液酸结合免疫球蛋白样凝集素3 (CD33)外显子-2的单核苷酸多态性(SNP)有关 [26] 。在缺氧细胞中,剪切因子SRSF1改变了AD相关的Tau基因mRNA剪接变体的形成 [27] 。CHD1是一种染色质重塑因子,属于CHD家族,可以调控DNA转录、复制和损伤修复等过程 [28] 。研究发现,在AD大脑中,CHD1作为关键转录因子,与AD相关疾病的有关,包括糖尿病、中风和睡眠障碍等 [29] 。ZRANB2是一种RNA结合蛋白,最初在大鼠球旁细胞中发现 [30] ,关于中枢神经系统疾病的研究较少。有研究表明,多巴胺受体D2 (DRD2)的rs1076560多态性可能通过影响与ZRANB2的结合,导致认知功能损害以及增加患精神分裂症的风险 [31] 。PURA是PUR蛋白家族的成员,通过与单链或双链DNA或RNA结合,在DNA复制、转录和RNA翻译中发挥重要作用,人参代谢产物20(S)-原人参二醇(PPD)与转录靶标PURA结合调控认知功能障碍相关靶基因的转录水平 [32] 。KDMC5是一种组蛋白赖氨酸去甲基化酶(KDM),被认为是X连锁智力障碍中最常见的突变基因之一。研究发现,KDM1A缺失加速神经元的衰老 [33] 。KDMC5在神经发育过程中可调控WNT-β-catenin信号通路影响认知功能 [34] 。目前,SRSF1、CHD1、ZRANB2、PURA、KDM5C在神经退行性疾病中的作用尚不完全清楚,需要进一步探索。

5. 结论

综上所述,本研究通过生物信息学方法,筛选血液中差异表达miRNAs,选择显著下调的miRNA-3200-3p进行深入分析。通过对miRNA-3200-3p靶基因进行GO功能及KEGG通路富集分析,初步探讨其在AD中可能参与的生物学功能及信号通路。同时,通过分析miRNA-3200-3p调控的5个关键基因,进一步探索miRNA-3200-3p在AD中的潜在作用。据此,我们推测miRNA-3200-3p可能在AD中发挥重要作用,有望成为AD潜在的治疗靶点及诊断标志物,然而,miRNA-3200-3p在AD中的分子机制及临床意义仍需进一步研究。

NOTES

*通讯作者。

参考文献

[1] 徐勇, 王军, 王虹峥, 等. 2023中国阿尔茨海默病数据与防控策略[J]. 阿尔茨海默病及相关病, 2023, 6(3): 175-192.
[2] Abdelmaksoud, N.M., Sallam, A.M., Abulsoud, A.I., et al. (2024) Unraveling the Role of MiRNAs in the Diagnosis, Progression, and Therapeutic Intervention of Alzheimer’s Disease. Pathology: Research and Practice, 253, Article ID: 155007.
https://doi.org/10.1016/j.prp.2023.155007
[3] Liu, S., Fan, M., Zheng, Q., et al. (2022) MicroRNAs in Alzheimer’s Disease: Potential Diagnostic Markers and Therapeutic Targets. Biomedicine & Pharmacotherapy, 148, Article ID: 112681.
https://doi.org/10.1016/j.biopha.2022.112681
[4] Zhang, H., Liu, W., Ge, H., et al. (2021) Aberrant Expression of MiR-148a-3p in Alzheimer’s Disease and Its Protective Role against Amyloid-β Induced Neurotoxicity. Neuroscience Letters, 756, Article ID: 135953.
https://doi.org/10.1016/j.neulet.2021.135953
[5] Yuan, J., Wu, Y., Li, L., et al. (2020) MicroRNA-425-5p Promotes Tau Phosphorylation and Cell Apoptosis in Alzheimer’s Disease by Targeting Heat Shock Protein B8. Journal of Neural Transmission, 127, 339-346.
https://doi.org/10.1007/s00702-019-02134-5
[6] Lewis, B.P., Burge, C.B. and Bartel, D.P. (2005) Conserved Seed Pairing, Often Flanked by Adenosines, Indicates That Thousands of Human Genes Are MicroRNA Targets. Cell, 120, 15-20.
https://doi.org/10.1016/j.cell.2004.12.035
[7] Wong, N. and Wang, X. (2015) MiRDB: An Online Resource for MicroRNA Target Prediction and Functional Annotations. Nucleic Acids Research, 43, D146-D152.
https://doi.org/10.1093/nar/gku1104
[8] Dennis Jr., G., Sherman, B.T., Hosack, D.A., et al. (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biology, 4, Article No. P3.
https://doi.org/10.1186/gb-2003-4-5-p3
[9] Szklarczyk, D., Franceschini, A., Wyder, S., et al. (2015) STRING V10: Protein-Protein Interaction Networks, Integrated over the Tree of Life. Nucleic Acids Research, 43, D447-D452.
https://doi.org/10.1093/nar/gku1003
[10] Xia, L., Zhang, F., Li, Y., et al. (2023) A New Perspective on Alzheimer’s Disease: M6A Modification. Frontiers in Genetics, 14, Article 1166831.
https://doi.org/10.3389/fgene.2023.1166831
[11] Jia, L.H. and Liu, Y.N. (2016) Downregulated Serum MiR-223 Servers as Biomarker in Alzheimer’s Disease. Cell Biochemistry and Function, 34, 233-237.
https://doi.org/10.1002/cbf.3184
[12] Liu, Q. and Lei, C. (2021) Neuroprotective Effects of MiR-331-3p through Improved Cell Viability and Inflammatory Marker Expression: Correlation of Serum MiR-331-3p Levels with Diagnosis and Severity of Alzheimer’s Disease. Cell Biochemistry and Function, 144, Article ID: 111187.
https://doi.org/10.1016/j.exger.2020.111187
[13] Zhang, M., Han, W., Xu, Y., et al. (2021) Serum MiR-128 Serves as a Potential Diagnostic Biomarker for Alzheimer’s Disease. Neuropsychiatric Disease and Treatment, 17, 269-275.
https://doi.org/10.2147/NDT.S290925
[14] Wang, R. and Zhang, J. (2020) Clinical Significance of MiR-433 in the Diagnosis of Alzheimer’s Disease and Its Effect on Aβ-Induced Neurotoxicity by Regulating JAK2. Experimental Gerontology, 141, Article ID: 111080.
https://doi.org/10.1016/j.exger.2020.111080
[15] Kang, Q., Xiang, Y., Li, D., et al. (2017) MiR-124-3p Attenuates Hyperphosphorylation of Tau Protein-Induced Apoptosis via Caveolin-1-PI3K/Akt/GSK3β Pathway in N2a/APP695swe Cells. Oncotarget, 8, 24314-24326.
https://doi.org/10.18632/oncotarget.15149
[16] Hu, G.J., Jiang, X.Y., Du, S.Y., et al. (2024) MiR-107-5p Ameliorates Neurological Damage, Oxidative Stress, and Immune Responses in Mice with Alzheimer’s Disease by Suppressing the Toll-Like Receptor 4 (TLR4)/Nuclear Factor-κB(NF-κB) Pathway. The Kaohsiung Journal of Medical Sciences, 40, 119-130.
https://doi.org/10.1002/kjm2.12797
[17] Wang, H., Zeng, Z., Yi, R., et al. (2022) MicroRNA-3200-3p Targeting CAMK2A Modulates the Proliferation and Metastasis of Glioma in Vitro. Bioengineered, 13, 7785-7797.
https://doi.org/10.1080/21655979.2022.2048995
[18] Hui, K., Dong, C., Hu, C., et al. (2024) VEGFR Affects MiR-3200-3p-Mediated Regulatory T Cell Senescence in Tumour-Derived Exosomes in Non-Small Cell Lung Cancer. Functional & Integrative Genomics, 24, Article No. 31.
https://doi.org/10.1007/s10142-024-01305-2
[19] 冯豆, 张洪, 范月莹, 等. MiR-3200-3p调控Wnt/β-catenin通路影响肝癌细胞的迁移和侵袭[J]. 南昌大学学报(医学版), 2022, 62(2): 14-19.
https://doi.org/10.13764/j.cnki.ncdm.2022.02.003
[20] Fang, X., Tang, W., Yang, F., et al. (2019) A Comprehensive Analysis of the CaMK2A Gene and Susceptibility to Alzheimer’s Disease in the Han Chinese Population. Frontiers in Aging Neuroscience, 11, Article 84.
https://doi.org/10.3389/fnagi.2019.00084
[21] Fessel, J. (2023) The Several Ways to Authentically Cure Alzheimer’s Dementia. Ageing Research Reviews, 92, Article ID: 102093.
https://doi.org/10.1016/j.arr.2023.102093
[22] Wang, Q., Huang, X., Su, Y., et al. (2022) Activation of Wnt/β-Catenin Pathway Mitigates Blood-Brain Barrier Dysfunction in Alzheimer’s Disease. Brain, 145, 4474-4488.
https://doi.org/10.1093/brain/awac236
[23] Xia, P., Ma, H., Chen, J., et al. (2023) Differential Expression of Pyroptosis-Related Genes in the Hippocampus of Patients with Alzheimer’s Disease. BMC Medical Genomics, 16, Article No. 56.
https://doi.org/10.1186/s12920-023-01479-x
[24] Riviere, A., Selak, M., Lantin, D., et al. (2016) Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Frontiers in Microbiology, 7, Article 979.
https://doi.org/10.3389/fmicb.2016.00979
[25] Haran, J.P., Bhattarai, S.K., Foley, S.E., et al. (2019) Alzheimer’s Disease Microbiome Is Associated with Dysregulation of the Anti-Inflammatory P-Glycoprotein Pathway. mBio, 10, e00632-19.
https://doi.org/10.1128/mBio.00632-19
[26] Van Bergeijk, P., Seneviratne, U., Aparicio-Prat, E., et al. (2019) SRSF1 and PTBP1 Are Trans-Acting Factors That Suppress the Formation of A CD33 Splicing Isoform Linked to Alzheimer’s Disease Risk. Molecular and Cellular Biology, 39, e00568-18.
https://doi.org/10.1128/MCB.00568-18
[27] Jakubauskiene, E., Vilys, L., Peciuliene, I., et al. (2021) The Role of Hypoxia on Alzheimer’s Disease-Related APP and Tau MRNA Formation. Gene, 766, Article ID: 145146.
https://doi.org/10.1016/j.gene.2020.145146
[28] Wang, Y.Z., Qian, Y.C., Yang, W.J., et al. (2023) CHD1 Deletion Stabilizes HIF1alpha to Promote Angiogenesis and Glycolysis in Prostate Cancer. Asian Journal of Andrology, 25, 152-157.
https://doi.org/10.4103/aja202287
[29] Potashkin, J.A., Bottero, V., Santiago, J.A., et al. (2019) Computational Identification of Key Genes That May Regulate Gene Expression Reprogramming in Alzheimer’s Patients. PLOS ONE, 14, e0222921.
https://doi.org/10.1371/journal.pone.0222921
[30] Jiang, X. and Chen, D. (2020) LncRNA FAM181A-AS1 Promotes Gliomagenesis by Sponging MiR-129-5p and Upregulating ZRANB2. Aging, 12, 20069-20084.
https://doi.org/10.18632/aging.103391
[31] Cohen, O.S., Weickert, T.W., Hess, J.L., et al. (2016) A Splicing-Regulatory Polymorphism in DRD2 Disrupts ZRANB2 Binding, Impairs Cognitive Functioning and Increases Risk for Schizophrenia in Six Han Chinese Samples. Molecular Psychiatry, 21, 975-982.
https://doi.org/10.1038/mp.2015.137
[32] Chen, F., Zhang, W., Xu, S., et al. (2023) Discovery and Validation of PURA as a Transcription Target of 20(S)-Protopanaxadiol: Implications for the Treatment of Cognitive Dysfunction. Journal of Ginseng Research, 47, 662-671.
https://doi.org/10.1016/j.jgr.2023.04.007
[33] Del Blanco, B., Ninerola, S., Martin-Gonzalez, A.M., et al. (2024) Kdm1a Safeguards the Topological Boundaries of PRC2-Repressed Genes and Prevents Aging-Related Euchromatinization in Neurons. Nature Communications, 15, Article No. 1781.
https://doi.org/10.1038/s41467-024-45773-3
[34] Karwacki-Neisius, V., Jang, A., Cukuroglu, E., et al. (2024) WNT Signalling Control by KDM5C During Development Affects Cognition. Nature, 627, 594-603.
https://doi.org/10.1038/s41586-024-07067-y