帕博利珠单抗致甲状腺功能减退症1例病例报道及文献复习
A Case Report and Literature Review of Hypothyroidism Caused by Pembrolizumab
DOI: 10.12677/acm.2024.1451597, PDF, HTML, XML, 下载: 34  浏览: 59 
作者: 贾慧萍, 苏永娥, 赵萌萌, 郭 转, 郝金荣, 袁淑梅, 张梦姣, 毛媛媛:西安市中心医院内分泌科,陕西 西安;延安大学医学院,陕西 延安;田竹芳*:西安市中心医院内分泌科,陕西 西安
关键词: 帕博利珠单抗免疫检查点抑制剂免疫相关不良事件甲状腺功能减退症Pembrolizumab Immune Checkpoint Inhibitors Immune-Related Adverse Events Hypothyroidism
摘要: 近年来,肿瘤免疫治疗在临床应用越来越广泛,已经取得了较好的疗效。但在治疗过程中可能会产生免疫相关不良事件(Immue-Related Adverse Events, irAEs),帕博利珠单抗属于免疫检查点抑制剂(Immune Checkpoint Inhibitors, ICIs)里的PD-1抑制剂。甲状腺功能减退症是免疫相关内分泌毒性常见的一种。本文报告一例帕博利珠单抗导致甲状腺功能减退症,结合相关文献对免疫检查点抑制剂相关的甲状腺功能减退症进行复习,为临床医生应对免疫相关不良事件提供更多经验。
Abstract: In recent years, tumor immunotherapy has been applied more and more widely in clinical practice, and has achieved good curative effect. However, immune-related adverse events (irAEs) may occur during treatment. Pembrolizumab belongs to the PD-1 inhibitor in the immune checkpoint inhibitors (ICIs). Hypothyroidism is a common type of immune-related endocrine toxicity. This paper reports a case of pembrolizumab-induced hypothyroidism, and reviews immune checkpoint inhibitor-related hypothyroidism in conjunction with relevant literature to provide clinicians with more experience in dealing with immune-related adverse events.
文章引用:贾慧萍, 苏永娥, 赵萌萌, 郭转, 郝金荣, 袁淑梅, 张梦姣, 毛媛媛, 田竹芳. 帕博利珠单抗致甲状腺功能减退症1例病例报道及文献复习[J]. 临床医学进展, 2024, 14(5): 1627-1632. https://doi.org/10.12677/acm.2024.1451597

1. 引言

肿瘤免疫疗法是指激活患者体内的免疫细胞和增强机体抗肿瘤免疫应答,从而使免疫系统有效地清除恶性肿瘤。目的肿瘤免疫治疗策略包括免疫检查点抑制剂(Immune Checkpoint Inhibitors, ICIs)、溶瘤病毒、过继T细胞转移和肿瘤疫苗等 ‎[1] 。免疫检查点抑制剂疗法是一种革命性的治疗方法,它通过使用单克隆抗体靶向阻断对免疫调节至关重要的分子去破坏肿瘤,这种分子就是免疫检查点受体,包括细胞毒性T淋巴细胞相关抗原4 (CTLA-4)、程序性细胞死亡受体1 (PD-1)和程序性死亡配体1 (PD-L1)等 ‎[2] 。当免疫检查点受体被阻断时,T细胞保持激活并释放更强大的效应功能,最终导致肿瘤细胞的破坏 ‎[3] ‎[4] 。这种治疗方法的缺点是,激活的T细胞除了识别肿瘤抗原外,还会识别自身抗原,因此可能会导致广泛的免疫相关不良事件 (Immune-Related Adverse Events, irAEs) ‎[5] 。其中内分泌系统的不良反应最为常见,主要累及垂体、甲状腺和肾上腺等内分泌腺体。而甲状腺功能异常是ICIs引起的最常见的内分泌疾病 ‎[5] - ‎[13] 。本文介绍一例帕博利珠单抗导致甲状腺功能减退症发生的诊疗经过并报道如下,结合相关文献进行复习,以提高对irAEs的认识。

2. 病例资料

2.1. 基本资料

患者,男,65岁,汉族,因“发现右侧颌下肿块6月”于2021年4月6日收入院。6月前,患者无明显诱因出现右侧颌下包块,感轻度胀痛不适,无发热、盗汗,无咳嗽、咳痰,就诊于外院,行颈部超声提示右侧颌下稍低回声淋巴结不排除,给予口服抗感染药物治疗1月,效果不佳,后口服中药及外敷药物治疗2月,效果仍欠佳。病程中食纳、夜休可,大小便正常,体重未见明显变化。既往糖尿病病史20余年,口服降糖药物及皮下注射胰岛素降糖治疗,血糖控制平稳。不吸烟,偶尔饮酒,否认食物、药物过敏史。家族中无自身免疫疾病病史。查体:T:36.5℃,P:94次/分,R:20次/分,Bp:146/77 mmHg。神志清楚,精神可。全身皮肤粘膜无黄染及出血点,颜面及眼睑无水肿,睑结膜无苍白,巩膜无黄染。颈软,无抵抗,颈静脉无充盈,肝颈静脉回流征阴性,气管居中,甲状腺无肿大,右侧颌下可触及5.0*4.0 cm大小包块,质硬,无压痛,活动度不佳,左侧颌下未触及明显包块,颈部未触及肿大淋巴结,颈部未闻及血管杂音。双肺叩诊呈清音,两肺呼吸音清,未闻及干湿性啰音及哮鸣音,心率94次/分,律齐,各瓣膜听诊区未闻及病理性杂音,腹平坦,未见肠型及蠕动波,肝脾肋下未及,肠鸣音4次/分,双下肢无水肿。

2.2. 检查与诊断

入院后查血常规、尿常规、粪常规、输血前四项检查、电解质、肝功、肾功、心肌酶、血脂、心脏彩超、心电图未见异常。空腹静脉血糖:8.04 mmol/L (3.9~6.1 mmol/L),糖化白蛋白:13.22% (11%~16%),颈部、胸部及全腹部CT示:右侧颌下区占位病变伴右颈部多发肿大淋巴结;双肺轻度坠积性改变;双肺散在纤维灶;动脉、冠状动脉粥样硬化;双肾囊肿;前列腺钙化灶;直肠壁稍增厚;甲状腺左右叶及峡部形态、大小及密度未见明显异常。头颅MR平扫(3.0T) + MRA + DWI示:左侧桥臂腔隙性脑梗死;双侧额叶、侧脑室旁、右侧半卵圆中心区多发腔隙性脑梗死;轻度脑白质脱髓鞘。入院2天后行右侧颌下包块切除术,病理检查结果示转移性鳞状细胞癌。术后鼻咽部CT结果示:右侧颌下区包块切除术后改变,术区软组织肿胀伴渗出、积气,右侧局部多发肿大淋巴结;双侧下鼻甲肥大;左侧上颌窦及右侧蝶窦炎。PET/CT示:右侧1b 2a 3区多发肿大淋巴结,葡萄糖代谢增高,提示恶性病变,全身未见明确原发肿瘤迹象,右侧颈部术后改变。出院诊断为右侧颌下淋巴结转移性鳞状细胞癌,2型糖尿病,腔隙性脑梗死。

2.3. 治疗与随访

Table 1. Reexamination results of thyroid function and adjustment of medication dosage

表1. 甲功复查结果及药物剂量调整

患者于外院就诊病理结果提示鳞状细胞癌,2021年4月23日查甲状腺功能:TSH 0.37 uIU/mL (0.25~5 uIU/mL),FT3 6.49 pmol/L (2.91~9.08 pmol/L),FT4 15.15 pmol/L (9.05~25.5 pmol/L),T3 1.31 ng/mL (0.78~2.2 ng/mL),T4 8.38 ug/dL (4.2~13.5 ug/dL),TGAb 11.2% (<30%),TMAb 6.7% (<20%);血清促肾上腺皮质激素:22.6 pg/mL (7.2~66.3 pg/mL);血清皮质醇:27 ug/dL (5~28 g/dL)。2021年5月6日给予化疗联合帕博利珠单抗治疗,每21天注射一次帕博利珠单抗。第17个周期前(2022年3月28日)于外院查甲状腺功能:TSH < 0.07 uIU/mL (0.25~5 uIU/mL),FT3 9.48 pmol/L (2.91~9.08 pmol/L),FT4 19.26 pmol/L (9.05~25.5 pmol/L),T3 1.81 ng/mL (0.78~2.2 ng/mL),T4 13.71 ug/dL (4.2~13.5 ug/dL),TGAb 6.67% (<30%),TPOAb 329.95 U/mL (<15 U/mL),TMAb 6.02% (<20%),未予治疗,皮质醇:27.4 ug/dL (5~28 g/dL)。2022年7月7日于我院查甲状腺超声:甲状腺内部光点增粗,回声不均匀,双侧颈部淋巴结可见。2022年9月5日于外院查:甲状腺弥漫性病变,双侧颈部淋巴结可见。2022年9月6日于外院查甲状腺功能:TSH:96.95 uIU/mL (0.25~5 uIU/mL),FT4 5.4 pmol/L (9.05~25.5 pmol/L),FT3 3.85 pmol/L (2.91~9.08 pmol/L)。2022年9月8日就诊于我院,考虑自身免疫性甲状腺炎 甲状腺功能减退症,给予“左甲状腺素钠片25 ug 1次/日(睡前)”治疗。后于我院规律复查(复查结果及药物剂量调整见表1)。2023年6月15日以后患者于当地医院进行随诊。

3. 讨论

本例患者使用帕博利珠单抗治疗前查甲状腺功能及形态正常,治疗第17个周期前实验室检查示FT3、T4、TPOAB升高,TSH降低,5月后复查FT4降低,TSH升高,结合甲状腺超声结果提示患者甲状腺功能变化符合一过性甲状腺功能亢进症到甲状腺功能减退症变化。患者甲状腺功能的变化与帕博利珠单抗的使用在时间上具有相关性,因此考虑此患者为药物相关性甲状腺功能减退症。

帕博利珠单抗属于PD⁃1抑制剂。PD-1是一种免疫检查点分子,它可以抑制免疫细胞的活性,而PD-L1则是一种表达在肿瘤细胞表面的分子,它可以与PD-1结合来抑制免疫细胞的攻击 ‎[14] 。帕博利珠单抗可以阻断PD-1与PD-L1之间的相互作用,从而解除对T细胞的免疫抑制,激活机体免疫系统,使其能够攻击肿瘤细胞 ‎[15] ‎[16] ‎[17] 。应用免疫检查点抑制剂后已经报告了许多的不良反应事件,主要影响皮肤、胃肠道和内分泌腺,内分泌系统最常受累的是垂体、甲状腺和肾上腺等腺体 ‎[18] 。该患者在帕博利珠单抗治疗前后查血清促肾上腺皮质激素、血清皮质醇均正常,电解质、血压均在正常范围,血糖控制平稳,提示垂体及肾上腺未累及,患者为老年男性,因此未对患者性腺功能进行评估。免疫相关不良事件中甲状腺功能异常表现为甲状腺毒症和甲状腺功能减退症,甲状腺毒症又分为破坏性甲状腺炎和甲状腺功能亢进(Graves病)。患者在接受PD-1抑制剂治疗时甲状腺功能异常较为常见,大多数甲状腺毒症为破坏性甲状腺炎,其特点是早发,其发生通常是由于甲状腺细胞被破坏,先会发生短暂的无症状的甲状腺功能亢进,最终发展为甲状腺功能减退症,大多数甲状腺功能减退症患者表现为无症状或轻微症状,可以继续进行免疫治疗 ‎[19] - ‎[24] 。Abdel-Rahman等人对10项随机对照研究进行荟萃分析,评估了抗CTLA-4或抗PD-1治疗后发生甲状腺功能减退症和甲状腺功能亢进症的相对风险,分别为8.3 (4.7~14.6 95%的可信区间)和5.5 (1.3~22.5 95%的可信区间) ‎[25] 。Osorio等人的一项系统回顾和荟萃分析包括35项临床试验,在所选择的试验中他们采用了抗CTLA-4、抗PD-1及抗PD-L1,既可以单药使用又可以联合使用,在抗PD-1治疗的黑色素瘤患者甲状腺功能异常的发生率为7.5%,明显高于抗CTLA-4治疗组3.6%,而抗PD-L1药物治疗后没有观察到自身免疫性甲状腺不良事件的出现,并且在使用抗PD-1治疗后甲状腺功能异常的发生率不随肿瘤类型而改变 ‎[20] 。不同免疫疗法联合应用可诱发较强而持久的抗肿瘤免疫反应但同时也加重了不良反应的负担。Larkin等人在一项研究中发现接受PD-1单抗和CTLA-4单抗联合治疗的患者中,25%的患者出现甲状腺功能异常,但在接受PD-1单抗或CTLA-4单抗单独治疗的患者中,分别只有13%或5% ‎[26] 。复发性小细胞肺癌患者在接受3 mg/kg PD-1单抗 + 1 mg/kg CTLA-4单抗或1 mg/kg PD-1单抗 + 3 mg/kg CTLA-4单抗治疗后发生出现甲状腺功能异常的概率相似,分别是13%、28%,在单独使用抗PD-1治疗后,甲状腺功能异常的发生率明显减少(5%) ‎[27] 。尽管会发生甲状腺功能异常,但很少有患者需要停止治疗或导致致命事件 ‎[1] 。

免疫检查点抑制剂引发甲状腺功能失调的具体机制尚需进一步明确。Morris等人在一项自身免疫性甲状腺炎实验模型中发现通过CTLA-4的依赖机制,调节性T细胞(Treg细胞)有助于疾病的改善。CTLA-4在Treg细胞上高表达,因此CTLA-4通路对于Treg细胞的发育、维持和功能至关重要,而Treg细胞本身具有较强的免疫抑制作用,所以抑制Treg细胞会导致不良事件的发生 ‎[28] 。在静息Treg细胞上,PD-1和PD-L1都有表达,阻断PD-1/PD-L1通路可能会降低Treg的功能,进而激活自身免疫,导致甲状腺炎的发生 ‎[29] 。另一个潜在机制是单克隆抗体与甲状腺细胞的直接结合。近期在正常的甲状腺组织中也检测到了PD-L1和PD-L2 ‎[30] 。这一发现提示,表达PD-1的淋巴细胞与表达PDL的甲状腺细胞之间的相互影响,可能在维护甲状腺不受自身免疫攻击方面发挥了一定的作用。因此,给予PD-1或PD-L1抗体会破坏这种相互作用,导致自身反应性T和B淋巴细胞浸润甲状腺,最终导致甲状腺炎 ‎[1] 。而也有学者认为甲状腺破坏的机制似乎和甲状腺自身抗体无关,可能包括T细胞、NK细胞和/或单核细胞介导的途径 ‎[31] 。因此,由免疫抑制剂引发的甲状腺功能减退的机制仍需进一步探究。

4. 小结

综上,应用PD-1抑制剂后可能导致免疫相关的内分泌系统不良反应,在严密监测甲状腺功能的同时,也要注意其他内分泌腺体的受损情况,一旦发现异常情况应及时处理以免影响患者的肿瘤免疫治疗。

NOTES

*通讯作者。

参考文献

[1] Chalan, P., Di Dalmazi, G., Pani, F., et al. (2018) Thyroid Dysfunctions Secondary to Cancer Immunotherapy. Journal of Endocrinological Investigation, 41, 625-638.
https://doi.org/10.1007/s40618-017-0778-8
[2] Cuenca, D., Rodríguez-Meléndez, E., Aguilar-Soto, M., et al. (2021) Incidence and Clinical Characteristics of Thyroid Abnormalities in Cancer Patients Treated with Immune Checkpoint Inhibitors. Gaceta Médica De México, 157, 305-310.
https://doi.org/10.24875/GMM.M21000560
[3] Darnell, E.P., Mooradian, M.J., Baruch, E.N., et al. (2020) Immune-Related Adverse Events (IrAEs): Diagnosis, Management, and Clinical Pearls. Current Oncology Reports, 22, Article No. 39.
https://doi.org/10.1007/s11912-020-0897-9
[4] Haanen, J., Obeid, M., Spain, L., et al. (2022) Management of Toxicities from Immunotherapy: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Annals of Oncology, 33, 1217-1238.
https://doi.org/10.1016/j.annonc.2022.10.001
[5] Barroso-Sousa, R., Barry, W.T., Garrido-Castro, A.C., et al. (2018) Incidence of Endocrine Dysfunction Following the Use of Different Immune Checkpoint Inhibitor Regimens: A Systematic Review and Meta-Analysis. JAMA Oncology, 4, 173-182.
https://doi.org/10.1001/jamaoncol.2017.3064
[6] Arnaud-Coffin, P., Maillet, D., Gan, H.K., et al. (2019) A Systematic Review of Adverse Events in Randomized Trials Assessing Immune Checkpoint Inhibitors. International Journal of Cancer, 145, 639-648.
https://doi.org/10.1002/ijc.32132
[7] Byun, D.J., Wolchok, J.D., Rosenberg, L.M., et al. (2017) Cancer Immunotherapy—Immune Checkpoint Blockade and Associated Endocrinopathies. Nature Reviews Endocrinology, 13, 195-207.
https://doi.org/10.1038/nrendo.2016.205
[8] Ferrari, S.M., Fallahi, P., Galetta, F., et al. (2018) Thyroid Disorders Induced by Checkpoint Inhibitors. Reviews in Endocrine and Metabolic Disorders, 19, 325-333.
https://doi.org/10.1007/s11154-018-9463-2
[9] Sznol, M., Postow, M.A., Davies, M.J., et al. (2017) Endocrine-Related Adverse Events Associated with Immune Checkpoint Blockade and Expert Insights on Their Management. Cancer Treatment Reviews, 58, 70-76.
https://doi.org/10.1016/j.ctrv.2017.06.002
[10] Muir, C.A., Menzies, A.M., Clifton-Bligh, R., et al. (2020) Thyroid Toxicity Following Immune Checkpoint Inhibitor Treatment in Advanced Cancer. Thyroid, 30, 1458-1469.
https://doi.org/10.1089/thy.2020.0032
[11] 罗景梅, 杨中策, 潘俐, 张丽华. 免疫检查点抑制剂所致内分泌不良反应处理流程研究进展[J]. 解放军医学杂志, 2021(2): 200-206.
[12] Rubino, R., Marini, A., Roviello, G., et al. (2021) Endocrine-Related Adverse Events in a Large Series of Cancer Patients Treated with Anti-PD1 Therapy. Endocrine, 74, 172-179.
https://doi.org/10.1007/s12020-021-02750-w
[13] Li, X., Wang, X., Wang, S., et al. (2023) Thyroid Dysfunction Induced by Immune Checkpoint Inhibitors and Tumor Progression during Neoadjuvant Therapy of Non-Small Cell Lung Cancer: A Case Report and Literature Review. Oncology Letters, 26, Article No. 496.
https://doi.org/10.3892/ol.2023.14083
[14] Wang, Y., Wang, C., Qiu, J., et al. (2022) Targeting CD96 Overcomes PD-1 Blockade Resistance by Enhancing CD8 TIL Function in Cervical Cancer. Journal for Immunotherapy of Cancer, 10, e003667.
https://doi.org/10.1136/jitc-2021-003667
[15] Meng, X., Liu, X., Guo, X., et al. (2018) FBXO38 Mediates PD-1 Ubiquitination and Regulates Anti-Tumour Immunity of T Cells. Nature, 564, 130-135.
https://doi.org/10.1038/s41586-018-0756-0
[16] Bhardwaj, M., Chiu, M.N. and Pilkhwal Sah, S. (2022) Adverse Cutaneous Toxicities by PD-1/PD-L1 Immune Checkpoint Inhibitors: Pathogenesis, Treatment, and Surveillance. Cutaneous and Ocular Toxicology, 41, 73-90.
https://doi.org/10.1080/15569527.2022.2034842
[17] Tang, Q., Chen, Y., Li, X., et al. (2022) The Role of PD-1/PD-L1 and Application of Immune-Checkpoint Inhibitors in Human Cancers. Frontiers in Immunology, 13, Article ID: 964442.
https://doi.org/10.3389/fimmu.2022.964442
[18] Suijkerbuijk, K.P.M., Kapiteijn, E. and Verheijden, R.J. (2020) Management of Immune-Related Adverse Events Affecting Outcome in Patients Treated with Checkpoint Inhibitors. JAMA Oncology, 6, 1300-1301.
https://doi.org/10.1001/jamaoncol.2020.1932
[19] Kobayashi, T., Iwama, S., Yasuda, Y., et al. (2018) Patients with Antithyroid Antibodies Are Prone to Develop Destructive Thyroiditis by Nivolumab: A Prospective Study. Journal of the Endocrine Society, 2, 241-251.
https://doi.org/10.1210/js.2017-00432
[20] Osorio, J.C., Ni, A., Chaft, J.E., et al. (2017) Antibody-Mediated Thyroid Dysfunction during T-Cell Checkpoint Blockade in Patients with Non-Small-Cell Lung Cancer. Annals of Oncology, 28, 583-589.
https://doi.org/10.1093/annonc/mdw640
[21] Fentiman, I.S., Balkwill, F.R., Thomas, B.S., et al. (1988) An Autoimmune Aetiology for Hypothyroidism Following Interferon Therapy for Breast Cancer. European Journal of Cancer and Clinical Oncology, 24, 1299-1303.
https://doi.org/10.1016/0277-5379(88)90219-2
[22] Lowndes, S.A., Asher, R. and Middleton, M.R. (2010) Thyrotoxicosis with Pegylated Interferon Alfa-2b. Archives of Dermatology, 146, 1273-1275.
https://doi.org/10.1001/archdermatol.2010.306
[23] Scalzo, S., Gengaro, A., Boccoli, G., et al. (1990) Primary Hypothyroidism Associated with Interleukin-2 and Interferon Alpha-2 Therapy of Melanoma and Renal Carcinoma. European Journal of Cancer and Clinical Oncology, 26, 1152-1156.
https://doi.org/10.1016/0277-5379(90)90275-X
[24] Atkins, M.B., Mier, J.W., Parkinson, D.R., et al. (1988) Hypothyroidism after Treatment with Interleukin-2 and Lymphokine-Activated Killer Cells. New England Journal of Medicine, 318, 1557-1563.
https://doi.org/10.1056/NEJM198806163182401
[25] Abdel-Rahman, O., ElHalawani, H. and Fouad, M. (2016) Risk of Endocrine Complications in Cancer Patients Treated with Immune Check Point Inhibitors: A Meta-Analysis. Future Oncology, 12, 413-425.
https://doi.org/10.2217/fon.15.222
[26] Larkin, J., Chiarion-Sileni, V., Gonzalez, R., et al. (2015) Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. New England Journal of Medicine, 373, 23-34.
https://doi.org/10.1056/NEJMoa1504030
[27] Hellmann, M.D., Rizvi, N.A., Goldman, J.W., et al. (2017) Nivolumab plus Ipilimumab as First-Line Treatment for Advanced Non-Small-Cell Lung Cancer (CheckMate 012): Results of an Open-Label, Phase 1, Multicohort Study. The Lancet Oncology, 18, 31-41.
https://doi.org/10.1016/S1470-2045(16)30624-6
[28] Morris, G.P., Brown, N.K. and Yi-Chi, M.K. (2009) Naturally-Existing CD4 CD25 Foxp3 Regulatory T Cells Are Required for Tolerance to Experimental Autoimmune Thyroiditis Induced by Either Exogenous or Endogenous Autoantigen. Journal of Autoimmunity, 33, 68-76.
https://doi.org/10.1016/j.jaut.2009.03.010
[29] Francisco, L.M., Sage, P.T. and Sharpe, A.H. (2010) The PD-1 Pathway in Tolerance and Autoimmunity. Immunological Reviews, 236, 219-242.
https://doi.org/10.1111/j.1600-065X.2010.00923.x
[30] Yamauchi, I., Sakane, Y., Fukuda, Y., et al. (2017) Clinical Features of Nivolumab-Induced Thyroiditis: A Case Series Study. Thyroid, 27, 894-901.
https://doi.org/10.1089/thy.2016.0562
[31] Delivanis, D.A., Gustafson, M.P., Bornschlegl, S., et al. (2017) Pembrolizumab-Induced Thyroiditis: Comprehensive Clinical Review and Insights into Underlying Involved Mechanisms. The Journal of Clinical Endocrinology & Metabolism, 102, 2770-2780.
https://doi.org/10.1210/jc.2017-00448