溶酶体V-ATPase调节肿瘤的pH稳态
Lysosomal V-ATPase Regulates pH Homeostasis in Tumors
DOI: 10.12677/pi.2024.133024, PDF, HTML, XML, 下载: 52  浏览: 84 
作者: 陈丹桢*, 温 娜:浙江工业大学长三角绿色制药协同创新中心,浙江 杭州
关键词: 溶酶体V-ATPase肿瘤pH稳态Lysosome V-ATPase Tumor pH Homeostasis
摘要: 癌细胞产生大量的细胞质质子,作为异常激活的有氧糖酵解和乳酸发酵的副产物。为了避免细胞内酸化的不利影响,癌细胞激活了促进胞内碱化和胞外酸化的质子清除途径。越来越多的证据表明,除了质膜中一些特殊的离子泵和转运蛋白外,癌细胞溶酶体为此发生重新编程。溶酶体膜上的液泡型H –三磷酸腺苷酶(V-ATPase)的表达和活性增加,且伴随溶酶体体积的增大,大大增加了溶酶体的质子存储能力,从而维持pH梯度逆转,促进癌细胞的生存和生长。本文主要对肿瘤细胞中的溶酶体V-ATPase的作用进行综述。
Abstract: Cancer cells generate large quantities of cytoplasmic protons as byproducts of aberrantly activated aerobic glycolysis and lactate fermentation. To avoid the adverse effects of intracellular acidification, cancer cells activate multiple acid-removal pathways that promote cytosolic to the alkalization and extracellular acidification. Accumulating evidence suggests that in addition to the ion pumps and exchangers in the plasma membrane, cancer cell lysosomes are also reprogrammed for this purpose. The increased expression and activity of the vacuolar-type H -ATPase (V-ATPase) on the lysosomal limiting membrane combined with the larger volume of the lysosomal compartment increases the lysosomal proton storage capacity substantially, thereby maintaining the reversal of pH gradient and promoting the survival and growth of cancer cells. This review focuses on the role of lysosomal V-ATPase in tumor cells.
文章引用:陈丹桢, 温娜. 溶酶体V-ATPase调节肿瘤的pH稳态[J]. 药物资讯, 2024, 13(3): 198-203. https://doi.org/10.12677/pi.2024.133024

1. 引言

溶酶体是存在于细胞胞质内的膜结合细胞器。这种细胞器于1955年首次被发现,因其含有多种水解酶而得名 [1] 。溶酶体利用管腔内60多种水解酶,通过胞吞、吞噬、自噬等途径降解大分子物质,维持细胞代谢平衡和正常功能 [2] [3] 。V-ATPase是一种膜蛋白复合物,由位于膜外侧的ATP水解V1结构域和位于膜内侧的膜整合的V0质子通道组成 [4] 。V-ATPase负责将ATP的能量转化为质子梯度并将质子泵入溶酶体中,从而维持溶酶体腔内的酸性环境 [5] ,因此V-ATPase也被称为质子泵。溶酶体的pH值对其维持多种功能至关重要。近年来的研究表明,溶酶体在肿瘤的发生、发展中起着重要作用。溶酶体不仅为癌细胞提供能量和必要的大分子,还维持着一些癌症特征,包括生长信号、血管生成、侵袭、转移、pH梯度逆转和耐药性 [6] [7] 。

肿瘤细胞通过有氧糖酵解产生大量乳酸,导致细胞内H+浓度增加。为了应对过量乳酸生成所致的酸性环境,癌细胞激活多种途径排出质子,从而阻止质子回流,导致细胞内碱化(pH > 7.2)和细胞外酸化(pH < 6.8)。这种现象被称为pH梯度逆转 [8] 。通过增强V-ATPase的活性,肿瘤细胞能够有效清除细胞质中多余的H+,从而维持pH梯度逆转 [7] [8] 。这种机制有助于癌细胞适应酸性环境,促进其生存和生长 [8] 。

本文将简单讨论肿瘤细胞中的溶酶体V-ATPase的作用,对于溶酶体V-ATPase在肿瘤进展中作用机制的研究,有助于靶向溶酶体的新型抗癌策略的开发。

2. V-ATPase使溶酶体成为细胞内主要的质子储存库

作为带正电荷的离子,质子只能通过特定的转运体和通道通过脂双层。溶酶体膜上的质子泵是一种多亚单位复合型空泡型H+-ATPase (V-ATPase)。它由外周V1结构域和膜整合的V0结构域组成。V0和V1结构域的可逆组装调节V-ATPase活性,从而影响溶酶体的pH。例如,氨基酸饥饿促进V-ATPase组装和溶酶体酸化 [9] 。由于大多数V-ATPase被运送到溶酶体限膜上,大多数细胞质质子被V-ATPase泵入溶酶体 [10] [11] 。因此,成熟的溶酶体是细胞内酸性最强的细胞器,也是细胞内储存质子的主要场所。

3. 溶酶体功能调节pH梯度逆转

溶酶体的质子存储能力由V-ATPase活性和溶酶体体积决定。目前为止,V-ATPase亚基的表达水平、V0/V1组装和分子间激活都是已知的调节V-ATPase活性的因素。

3.1. V-ATPase的转录调控

由于肿瘤受到营养限制,它们必须通过巨胞饮 [12] 和自噬 [13] 获得替代能源并构建生物大分子(如蛋白质、核酸和多糖)的基本单元。巨胞饮是是一种细胞内过程,细胞通过这种方式吞噬并内化大量的外部液体和溶质。自噬是指蛋白质和细胞器在细胞内的清除和降解。为了满足这种分解代谢的需求,癌细胞需要发展更相配的溶酶体。因此,与正常的组织相比,肿瘤细胞中有更多、更大的溶酶体。例如,TGFbeta-1诱导恶性乳腺上皮细胞发生溶酶体生物发生,这些细胞失去了细胞极性,获得了迁移和侵袭的特性 [14] 。此外,转化了Src基因的小鼠成纤维细胞发育出异常增大的溶酶体 [15] 。在K-RAS诱导的乳腺上皮细胞恶性转化过程中也发现类似现象 [16] 。在上述情况中,这些溶酶体变化的发生机制的仍不清楚。然而,由于溶酶体的pH在癌基因驱动的转化过程中保持不变或变得更加酸性 [16] [17] ,溶酶体总体积的增加会导致溶酶体质子存储的增加和更碱的胞质pH [17] 。另一方面,有少数肿瘤具有由转录因子驱动的溶酶体生物发生增强。这些转录因子结合溶酶体基因的启动子,包括V-ATPase的组分,并上调它们的表达。

TFEB、TFE3和MITF (MIT/TFE蛋白)是促进脊椎动物正常细胞中溶酶体生物发生的主要转录因子 [18] [19] [20] 。MiT/TFE转录因子与DNA的结合是由E-box序列(CACGTG)的识别所介导 [21] ,该序列通常由其他bHLH-Zip转录因子识别。MiT/TFE转录因子会优先识别另一种特定类型的E-box序列(GTCACGTGAC),其两侧有特定的核苷酸残基,被称为“协调溶酶体表达和调节”(CLEAR)元件 [22] 。一些肿瘤会上调MIT/TFE蛋白的表达水平,以促进溶酶体的酸化并提高其降解活性。例如,高表达MIT/TFE蛋白的胰腺导管腺癌(PDA)细胞比正常胰腺细胞具有更多和更大的溶酶体 [23] 。此外,PDA细胞中TFE3的敲除使溶酶体碱化,但不会减少溶酶体的体积和数量,表明MIT/TFE蛋白是V-ATPase转录和活性的重要调节因子 [24] 。同样,与癌旁的正常组织相比,TFEB在少数乳腺癌 [25] 和结直肠癌 [26] 中的表达水平也较高。TFEB的表达与病理分级呈正相关,且患有TFEB高表达肿瘤的患者其存活率通常较低 [25] [26] 。在一些罕见的肿瘤中,基因组重排和易位也会诱导MIT/TFE蛋白的过度表达。肾细胞癌就是一个典型的例子,一小部分肾癌具有易位引起的TFE3/TFEB融合,导致其过度表达 [27] 。同样,肺泡软组织肉瘤含有ASPSCR1-TFE3融合,导致该嵌合蛋白具有比TFE3更强的转录活性 [28] 。此外,MITF在黑色素瘤中通过扩增而上调,异位表达MITF结合BRAF突变体可以转化原代人类黑色素细胞 [29] 。作为MITF的靶基因,V-ATPase的3个亚基ATP6V1G1、ATP6V1C1和ATP6V0D2在黑色素瘤细胞中高表达 [30] 。

在大多数V-ATPase亚基异常高表达的肿瘤中,通过抑制V-ATPase的活性破坏肿瘤pH稳态,可以抑制肿瘤细胞的存活或侵袭 [4] 。例如,巴佛洛霉素A1 (Baf-A1),一种经典的V-ATPase抑制剂,可以诱导胰腺癌细胞和胃癌细胞的凋亡 [31] [32] 。此外,V-ATPase亚基V1A基因的敲除也可以降低胃癌细胞的侵袭力 [33] 。这些结果表明溶酶体对胞质质子的清除作用在肿瘤进展中的重要性。

总之,转录因子上调V-ATPase亚基的表达是促进溶酶体摄取质子和维持肿瘤细胞pH梯度逆转的重要途径。

3.2. V0/V1的组装

另一种调节V-ATPase活性的机制是V1和V0结构域的可逆组装 [34] [35] 。在酵母中,葡萄糖匮乏会触发V-ATPase的解体和溶酶体的碱化 [36] 。相反,葡萄糖的再供给导致V-ATPase的重组和溶酶体的酸化。按照V1/V0组装的循环,葡萄糖匮乏会导致胞质酸化,而葡萄糖再供给则会使胞质pH恢复正常 [37] ,这表明V-ATPase的组装可以调节质子平衡。在哺乳动物细胞中,氨基酸匮乏或急性缺糖可以诱导V-ATPase的组装,而慢性缺糖则触发V-ATPase复合体的解体 [9] [35] 。从以上证据可以看出,癌细胞可能通过两种方式促进V0/V1组装以维持pH梯度逆转。一种是肿瘤可能使用一些未知的机制来调节V0/V1组装,另一种是肿瘤中C亚基的急剧上调,如黑色素瘤 [30] 和口腔鳞状细胞癌 [38] ,这确保了V0/V1的有效组装和质子的清除。

3.3. 分子间激活

V-ATPase活性也通过分子间激活来调节。STAT3是一个致癌蛋白,可以通过激活STAT3调节V-ATPase活性 [39] 。STAT3促进肿瘤发生的主要方式是调控肿瘤的细胞增殖、生存、血管生成、迁移、分化、侵袭和免疫抑制 [40] 。一个小的STAT3库以卷曲线圈结构域依赖的方式被招募到溶酶体膜上,STAT3与溶酶体V-ATPase结合并激活,但不调节癌细胞中的V0/V1组装。STAT3的缺失会导致溶酶体碱化和胞质酸化,证明了STAT3和V-ATPase的相互作用在维持pH梯度逆转中的重要性。此外,急性胞质酸化可以诱导过多的STAT3从细胞核转移到溶酶体,以抵消应激 [39] 。根据一项蛋白相互作用的研究,除了STAT3,还有超过170种蛋白质可能与V-ATPase相互作用 [41] 。然而,其中只有几个,如含有TCP1亚基的伴侣蛋白、SNX27和DMXL1,得到了进一步验证 [41] 。因此,可能存在更多的V-ATPase分子间激活,以增加溶酶体对质子的摄入,并使胞质碱化。这一推断被磷酸果糖激酶1 (PFK1)与小鼠肾脏中ATP6V0A4相互作用的结论所证实 [42] 。体内和体外研究表明,这种相互作用的破坏会严重影响质子运输和ATPase活性,但不影响V-ATPase组装 [43] 。然而,这种相互作用及其生理意义还未在癌细胞中得到证实。综上所述,分子间激活在调节癌细胞的V-ATPase活性和pH动态平衡方面也起着重要作用。

因此,V-ATPase活性的增强和溶酶体体积的增大都显著提高了溶酶体的质子存储能力,并使癌细胞的胞质碱化,维持pH梯度逆转。

4. 总结与展望

在致癌基因和转录因子的驱动下,作为细胞内主要质子储存库的溶酶体被重新编程,经过增加其质子存储能力来适应有氧糖酵解产生的过量质子,确保了溶酶体对质子的有效清除。由此,癌细胞中的pH稳态得到了精准的调控。通过抑制溶酶体V-ATPase来干扰肿瘤细胞内的pH稳态,可以有效抑制肿瘤细胞的生长和扩散。因此,溶酶体V-ATPase在肿瘤治疗中的研究和应用具有潜在意义,可以为开发新的治疗策略和药物提供新的思路和方向。

NOTES

*通讯作者。

参考文献

[1] De Duve, C., Pressman, B.C., Gianetto, R., et al. (1955) Tissue Fractionation Studies. 6. Intracellular Distribution Patterns of Enzymes in Rat-Liver Tissue. Biochemical Journal, 60, 604-617.
https://doi.org/10.1042/bj0600604
[2] Martina, J.A., Raben, N. and Puertollano, R. (2020) SnapShot: Lysosomal Storage Diseases. Cell, 180, 602-602.E1.
https://doi.org/10.1016/j.cell.2020.01.017
[3] Ballabio, A. and Bonifacino, J.S. (2020) Lysosomes as Dynamic Regulators of Cell and Organismal Homeostasis. Nature Reviews Molecular Cell Biology, 21, 101-118.
https://doi.org/10.1038/s41580-019-0185-4
[4] Chen, F., Kang, R., Liu, J., et al. (2022) The V-ATPases in Cancer and Cell Death. Cancer Gene Therapy, 29, 1529-1541.
https://doi.org/10.1038/s41417-022-00477-y
[5] Jefferies, K.C., Cipriano, D.J. and Forgac, M. (2008) Function, Structure and Regulation of the Vacuolar (H )-ATPases. Archives of Biochemistry and Biophysics, 476, 33-42.
https://doi.org/10.1016/j.abb.2008.03.025
[6] Chen, R., Jäättelä, M. and Liu, B. (2020) Lysosome as a Central Hub for Rewiring PH Homeostasis in Tumors. Cancers, 12, Article No. 2437.
https://doi.org/10.3390/cancers12092437
[7] Ellegaard, A.M., Bach, P. and Jäättelä, M. (2023) Targeting Cancer Lysosomes with Good Old Cationic Amphiphilic Drugs. Reviews of Physiology, Biochemistry and Pharmacology, 185, 107-152.
https://doi.org/10.1007/112_2020_56
[8] Webb, B.A., Chimenti, M., Jacobson, M.P., et al. (2011) Dysregulated PH: A Perfect Storm for Cancer Progression. Nature Reviews Cancer, 11, 671-677.
https://doi.org/10.1038/nrc3110
[9] Stransky, L.A. and Forgac, M. (2015) Amino Acid Availability Modulates Vacuolar H -ATPase Assembly. Journal of Biological Chemistry, 290, 27360-27369.
https://doi.org/10.1074/jbc.M115.659128
[10] Liao, Y., Fan, Z., Deng, H., et al. (2018) Zika Virus Liquid Biopsy: A Dendritic Ru(Bpy)(3) (2 )-Polymer-Amplified ECL Diagnosis Strategy Using a Drop of Blood. ACS Central Science, 4, 1403-1411.
https://doi.org/10.1021/acscentsci.8b00471
[11] Storrie, B. and Desjardins, M. (1996) The Biogenesis of Lysosomes: Is It a Kiss and Run, Continuous Fusion and Fission Process? BioEssays, 18, 895-903.
https://doi.org/10.1002/bies.950181108
[12] Palm, W., Park, Y., Wright, K., et al. (2015) The Utilization of Extracellular Proteins as Nutrients Is Suppressed by MTORC1. Cell, 162, 259-270.
https://doi.org/10.1016/j.cell.2015.06.017
[13] Mathew, R., Karantza-Wadsworth, V. and White, E. (2007) Role of Autophagy in Cancer. Nature Reviews Cancer, 7, 961-967.
https://doi.org/10.1038/nrc2254
[14] Kern, U., Wischnewski, V., Biniossek, M.L., et al. (2015) Lysosomal Protein Turnover Contributes to the Acquisition of TGFβ-1 Induced Invasive Properties of Mammary Cancer Cells. Molecular Cancer, 14, Article No. 39.
https://doi.org/10.1186/s12943-015-0313-5
[15] Fehrenbacher, N., Bastholm, L., Kirkegaard-Sørensen, T., et al. (2008) Sensitization to the Lysosomal Cell Death Pathway by Oncogene-Induced Down-Regulation of Lysosome-Associated Membrane Proteins 1 and 2. Cancer Research, 68, 6623-6633.
https://doi.org/10.1158/0008-5472.CAN-08-0463
[16] Kim, M.J., Woo, S.J., Yoon, C.H., et al. (2011) Involvement of Autophagy in Oncogenic K-Ras-Induced Malignant Cell Transformation. Journal of Biological Chemistry, 286, 12924-12932.
https://doi.org/10.1074/jbc.M110.138958
[17] Webb, B.A., Cook, J., Wittmann, T., et al. (2020) PHLARE: A Genetically Encoded Ratiometric Lysosome PH Biosensor.
https://doi.org/10.1101/2020.06.03.132720
[18] Fennelly, C. and Amaravadi, R.K. (2017) Lysosomal Biology in Cancer. Methods in Molecular Biology, 1594, 293-308.
https://doi.org/10.1007/978-1-4939-6934-0_19
[19] Martina, J.A., Diab, H.I., Lishu, L., et al. (2014) The Nutrient-Responsive Transcription Factor TFE3 Promotes Autophagy, Lysosomal Biogenesis, and Clearance of Cellular Debris. Science Signaling, 7, Ra9.
https://doi.org/10.1126/scisignal.2004754
[20] Bouché, V., Espinosa, A.P., Leone, L., et al. (2016) Drosophila Mitf Regulates the V-ATPase and the Lysosomal-Autophagic Pathway. Autophagy, 12, 484-98.
https://doi.org/10.1080/15548627.2015.1134081
[21] Hemesath, T.J., Steingrimsson, E., Mcgill, G., et al. (1994) Microphthalmia, a Critical Factor in Melanocyte Development, Defines a Discrete Transcription Factor Family. Genes & Development, 8, 2770-2780.
https://doi.org/10.1101/gad.8.22.2770
[22] Palmieri, M., Impey, S., Kang, H., et al. (2011) Characterization of the CLEAR Network Reveals an Integrated Control of Cellular Clearance Pathways. Human Molecular Genetics, 20, 3852-3866.
https://doi.org/10.1093/hmg/ddr306
[23] Jefferies, K.C. and Forgac, M. (2008) Subunit H of the Vacuolar (H ) ATPase Inhibits ATP Hydrolysis by the Free V1 Domain by Interaction with the Rotary Subunit F. Journal of Biological Chemistry, 283, 4512-4519.
https://doi.org/10.1074/jbc.M707144200
[24] Perera, R.M., Stoykova, S., Nicolay, B.N., et al. (2015) Transcriptional Control of Autophagy-Lysosome Function Drives Pancreatic Cancer Metabolism. Nature, 524, 361-365.
https://doi.org/10.1038/nature14587
[25] Giatromanolaki, A., Sivridis, E., Kalamida, D., et al. (2017) Transcription Factor EB Expression in Early Breast Cancer Relates to Lysosomal/Autophagosomal Markers and Prognosis. Clinical Breast Cancer, 17, E119-E125.
https://doi.org/10.1016/j.clbc.2016.11.006
[26] Liang, J., Jia, X., Wang, K., et al. (2018) High Expression of TFEB Is Associated with Aggressive Clinical Features in Colorectal Cancer. OncoTargets and Therapy, 11, 8089-8098.
https://doi.org/10.2147/OTT.S180112
[27] Kauffman, E.C., Ricketts, C.J., Rais-Bahrami, S., et al. (2014) Molecular Genetics and Cellular Features of TFE3 and TFEB Fusion Kidney Cancers. Nature Reviews Urology, 11, 465-475.
https://doi.org/10.1038/nrurol.2014.162
[28] Zhao, M., Rao, Q., Wu, C., et al. (2015) Alveolar Soft Part Sarcoma of Lung: Report of a Unique Case with Emphasis on Diagnostic Utility of Molecular Genetic Analysis for TFE3 Gene Rearrangement and Immunohistochemistry for TFE3 Antigen Expression. Diagnostic Pathology, 10, Article No. 160.
https://doi.org/10.1186/s13000-015-0399-5
[29] Garraway, L.A., Widlund, H.R., Rubin, M.A., et al. (2005) Integrative Genomic Analyses Identify MITF as a Lineage Survival Oncogene Amplified in Malignant Melanoma. Nature, 436, 117-122.
https://doi.org/10.1038/nature03664
[30] Möller, K., Sigurbjornsdottir, S., Arnthorsson, A.O., et al. (2019) MITF Has a Central Role in Regulating Starvation-Induced Autophagy in Melanoma. Scientific Reports, 9, Article No. 1055.
https://doi.org/10.1038/s41598-018-37522-6
[31] Ohta, T., Arakawa, H., Futagami, F., et al. (1998) Bafilomycin A1 Induces Apoptosis in the Human Pancreatic Cancer Cell Line Capan-1. The Journal of Pathology, 185, 324-330.
https://doi.org/10.1002/(SICI)1096-9896(199807)185:3<324::AID-PATH72>3.0.CO;2-9
[32] Nakashima, S., Hiraku, Y., Tada-Oikawa, S., et al. (2003) Vacuolar H -ATPase Inhibitor Induces Apoptosis via Lysosomal Dysfunction in the Human Gastric Cancer Cell Line MKN-1. The Journal of Biochemistry, 134, 359-364.
https://doi.org/10.1093/jb/mvg153
[33] Liu, P., Chen, H., Han, L., et al. (2015) Expression and Role of V1A Subunit of V-ATPases in Gastric Cancer Cells. International Journal of Clinical Oncology, 20, 725-735.
https://doi.org/10.1007/s10147-015-0782-y
[34] Collins, M.P. and Forgac, M. (2018) Regulation of V-ATPase Assembly in Nutrient Sensing and Function of V-ATPases in Breast Cancer Metastasis. Frontiers in Physiology, 9, Article No. 902.
https://doi.org/10.3389/fphys.2018.00902
[35] Hayek, S.R., Rane, H.S. and Parra, K.J. (2019) Reciprocal Regulation of V-ATPase and Glycolytic Pathway Elements in Health and Disease. Frontiers in Physiology, 10, Article No. 127.
https://doi.org/10.3389/fphys.2019.00127
[36] Tabke, K., Albertmelcher, A., Vitavska, O., et al. (2014) Reversible Disassembly of the Yeast V-ATPase Revisited Under in Vivo Conditions. Biochemical Journal, 462, 185-197.
https://doi.org/10.1042/BJ20131293
[37] Dechant, R., Binda, M., Lee, S.S., et al. (2010) Cytosolic PH Is a Second Messenger for Glucose and Regulates the PKA Pathway through V-ATPase. The EMBO Journal, 29, 2515-2526.
https://doi.org/10.1038/emboj.2010.138
[38] Pérez-Sayáns, M., García-García, A., Reboiras-López, M.D., et al. (2009) Role of V-ATPases in Solid Tumors: Importance of the Subunit C (Review). International Journal of Oncology, 34, 1513-1520.
https://doi.org/10.3892/ijo_00000280
[39] Liu, B., Palmfeldt, J., Lin, L., et al. (2018) STAT3 Associates with Vacuolar H( )-ATPase and Regulates Cytosolic and Lysosomal PH. Cell Research, 28, 996-1012.
https://doi.org/10.1038/s41422-018-0080-0
[40] Yu, H., Lee, H., Herrmann, A., et al. (2014) Revisiting STAT3 Signalling in Cancer: New and Unexpected Biological Functions. Nature Reviews Cancer, 14, 736-746.
https://doi.org/10.1038/nrc3818
[41] Merkulova, M., Păunescu, T.G., Azroyan, A., et al. (2015) Mapping the H( ) (V)-ATPase Interactome: Identification of Proteins Involved in Trafficking, Folding, Assembly and Phosphorylation. Scientific Reports, 5, Article No. 14827.
https://doi.org/10.1038/srep14827
[42] Su, Y., Zhou, A., Al-Lamki, R.S., et al. (2003) The A-Subunit of the V-Type H -ATPase Interacts with Phosphofructokinase-1 in Humans. Journal of Biological Chemistry, 278, 20013-20018.
https://doi.org/10.1074/jbc.M210077200
[43] Su, Y., Blake-Palmer, K.G., Sorrell, S., et al. (2008) Human H ATPase A4 Subunit Mutations Causing Renal Tubular Acidosis Reveal a Role for Interaction with Phosphofructokinase-1. American Journal of Physiology-Renal Physiology, 295, F950-F958.
https://doi.org/10.1152/ajprenal.90258.2008