机器人辅助全膝关节置换改善胫骨假体旋转对线的临床研究
Clinical Research on Robotic Arm-Assisted Total Knee Arthroplasty to Improve Rotation Alignment of Tibial Prosthesis
摘要: 目的:本文旨在通过对比机器人辅助膝关节置换手术(Robotic Arm-Assisted Total Knee Arthroplasty, RATKA)患者与全膝关节置换术(Total Knee Arthroplasty, TKA)患者术后胫骨假体旋转对线及临床疗效,得出机器人辅助全膝关节置换可以改善假体旋转对线及早期疗效。方法:2022年6月至2023年3月,在青岛大学附属医院接受全膝关节置换术的骨关节炎患者,共113人,比较2组患者年龄、BMI、性别、术前、术后3个月及术后1年的KSS评分、WOMAC评分、膝关节活动度、VAS评分等,并测量胫骨假体轴线分别相对于胫骨假体平台几何中心点至胫骨结节内侧缘点的连线、胫骨假体平台几何中心点至胫骨结节中内1/3点的连线、股骨假体轴线的夹角。结果:相对于股骨假体轴线,RATKA组患者的胫骨假体轴线平均内旋1.77˚ ± 0.69˚,TKA组的胫骨假体轴线平均内旋2.40˚ ± 1.75˚,差异有统计学意义(P < 0.05)。相对于胫骨结节内侧线,RATKA组患者的胫骨假体轴线平均内旋0.55˚ ± 3.99˚,TKA组的胫骨假体轴线平均外旋0.77˚ ± 4.04˚,但差异无统计学意义(P > 0.05)。相对于胫骨结节中内侧线,RATKA组患者的胫骨假体轴线平均内旋4.64˚ ± 2.18˚,TKA组的胫骨假体轴线平均内旋5.91˚ ± 2.01˚,差异有统计学意义(P < 0.05)。RATKA组患者术后3个月的VAS评分较TKA组VAS评分更低,KSS评分较TKA组更高,差异具有统计学意义(P < 0.05)。结论:与传统TKA相比,RATKA有助于精确胫骨假体旋转对线,机器人辅助TKA也明显提升了患者术后舒适度,机器人辅助TKA不仅仅为精准关节外科手术保驾护航,更是手术创伤的挽救者,对提升患者满意度、改善术后疗效等方面存在极大意义。
Abstract: Objective: This article aims to compare the rotation alignment of prostheses and clinical efficacy of tibial prosthesis rotation between robotic-arm assisted total knee arthroplasty (RATKA) patients and total knee arthroplasty (TKA) patients, and to conclude that robotic-arm assisted total knee arthroplasty can improve prosthesis rotation alignment and early efficacy. Method: A total of 113 patients with osteoarthritis who underwent total knee arthroplasty in the Affiliated Hospital of Qingdao University from June 2022 to March 2023 were analyzed. The age, BMI, gender, KSS score, WOMAC score, knee range of motion, VAS score, etc. were compared between the two groups of pa-tients at 3 months and 1 year after surgery. The tibial prosthesis axis was measured relative to the geometric center point of the tibial prosthesis platform to the medial edge point of the tibial nodule, the geometric center point of the tibial prosthesis platform to the medial 1/3 point of the tibial nodule, and the angle between the femoral prosthesis axis. Result: Compared with the femoral prosthesis axis, the average internal rotation of the tibial prosthesis axis in the RATKA group was 1.77˚ ± 0.69˚, and the average internal rotation of the tibial prosthesis axis in the TKA group was 2.40˚ ± 1.75˚, the difference was statistically significant (P < 0.05). Compared with the medial line of the tibial tubercle, the average internal rotation of the tibial prosthesis axis in the RATKA group was 0.55˚ ± 3.99˚, and the average external rotation of the tibial prosthesis axis in the TKA group was 0.77˚ ± 4.04˚, but the difference was not statistically significant (P > 0.05). Compared with the medial line of the tibial tubercle, the average internal rotation of the tibial prosthesis axis in the RATKA group was 4.64˚ ± 2.18˚, and the average internal rotation of the tibial prosthesis axis in the TKA group was 5.91˚ ± 2.01˚, the difference was statistically significant (P < 0.05). The VAS score of patients in the RATKA group was lower than that in the TKA group at 3 months after surgery, and the KSS score was higher than that in the TKA group, with statistical significance (P < 0.05). Conclu-sion: Compared with traditional TKA, RATKA helps with precise alignment of tibial prosthesis rota-tion, and RATKA significantly improves patient postoperative comfort. RATKA not only provides protection for precision joint surgery, but also saves surgical trauma. It has great significance in improving patient satisfaction and postoperative efficacy.
文章引用:邵振帅, 方源, 朱昊翔, 吕成昱. 机器人辅助全膝关节置换改善胫骨假体旋转对线的临床研究[J]. 临床医学进展, 2024, 14(5): 1039-1045. https://doi.org/10.12677/acm.2024.1451523

1. 引言

对于晚期膝关节炎患者及保守治疗无效者,全膝关节置换术(Total Knee Arthroplasty, TKA)是一种非常重要的治疗手段。随着科技的进步与发展,目前机器人辅助膝关节置换手术(Robotic Arm-Assisted Total Knee Arthroplasty, RATKA)也在治疗终末期膝关节炎中发挥重要作用。临床研究发现,虽然 TKA手术疗效显著,但仍不能完全恢复正常的膝关节功能,部分患者还会残留疼痛和功能障碍。除外感染之外,假体位置不良是导致术后早期翻修的主要因素 ‎[1] 。人工膝关节假体力线不良和旋转对线不良将对TKA术后的临床疗效尤其是膝关节运动学造成影响。Kim等 ‎[2] 通过回顾性分析了1696例患者,其中随访时间内因为假体对线问题翻修的有30例。Kuriyama等 ‎[3] 人通过建立计算机肌肉骨骼模型,发现胫骨过度内旋时会增加内侧副韧带张力和胫骨股骨和髌骨股骨接触应力。这可能会加速聚乙烯衬垫磨损加速。Osano等 ‎[4] 同样也发现了胫骨假体旋转不良会使胫骨高屈曲期间内嵌物引起的应力增加,达到正常位置的160%。在正确的位置植入假体对于减少假体异常磨损和失效的风险非常重要。在另一项研究中,Bedard等 ‎[5] 通过对54例因僵硬进行翻修患者进行CT扫描后发现,其中34例在矫正前均发生胫骨内旋,其中假体旋转对线不良可能导致髌骨轨迹运动不良、聚乙烯衬垫磨损加速、膝关节僵直、步态异常等并发症,并显著影响TKA术后疗效。有研究显示,在翻修时矫正了假体旋转对线后,患者的膝关节疼痛与僵硬将得到显著的改善 ‎[6] 。假体旋转对线又分为股骨旋转对线与胫骨旋转对线,手术机器人辅助下对角度和距离测量的准确性得至到极大的提高,可能有助于重建正常的膝关节运动学机制、降低假体旋转对线异常,并进一步提高临床疗效,改善TKA术后膝关节不稳、僵硬、髌股关节和胫股关节运动学机制不良以及难以解释的膝关节疼痛等问题。

胫骨假体内旋,对膝关节运动学的影响主要表现在假体在矢状位的前后位置上,胫骨假体外旋对膝关节的运动学影响较小 ‎[7] 。胫骨假体旋转对线异常对胫股关节影响较大,胫骨假体内旋,会导致内侧关节间室张紧,内侧副韧带张力加大,外侧副韧带松弛,从而引起屈膝过程中股骨内侧髁位置偏前,而股骨外侧髁位置偏后,且出现外侧抬升的异常运动。直接的后果就是衬垫磨损撞击,髂胫束紧张疼痛等并发症发生,因此胫骨假体的内旋是导致术后功能障碍和膝关节疼痛的重要因素 ‎[8] 。本研究通过比较胫骨假体轴线分别相对于胫骨假体平台几何中心点至胫骨结节内侧缘点的连线、胫骨假体平台几何中心点至胫骨结节中内1/3点的连线、股骨假体轴线的夹角比较RATKA与TKA的胫骨假体旋转对线与临床疗效。

2. 研究对象与方法

2.1. 研究对象

2022年6月至2023年3月,在青岛大学附属医院接受全膝关节置换术的骨关节炎患者,共113人。符合以下纳入标准:① 2022年6月至2023年3月于我院行RATKA的终末期膝骨关节炎患者,② 膝关节内翻畸形 < 15˚,③ 屈曲挛缩畸形 < 10˚,④ 无关节外畸形,⑤ 股骨及胫骨侧骨缺损厚度 < 10 mm,⑥ 无膝关节手术史。

2.2. 研究方法

收集并比较两组患者的年龄、性别、体重、BMI、术后膝关节CT平扫图像、术前及术后3个月VAS疼痛评分,KSS临床评分、KSS功能评分、WOMAC评分、膝关节活动度。

2.3. 图像处理

使用Mimics 21.0,将需要处理的膝关节术后CT数据导入软件中,分别重建出膝关节、股骨假体、胫骨假体的3D图像,粘贴至3-matic中。在膝关节图像上标记出胫骨结节内侧缘、胫骨结节中内1/3点。在股骨假体图像上标记出内侧后髁最低点和外侧后髁最低点。在胫骨假体图像上标记内外侧平台最后缘点和几何中心点。股骨假体轴线(FPL)是股骨内侧后髁最低点和外侧后髁最低点的连线;胫骨假体轴线(TL)是连接胫骨假体内外侧平台最后缘点的连线;胫骨结节内侧线(MLTT)是连接胫骨假体平台几何中心点和胫骨结节内侧缘点的连线;胫骨结节中内侧线(ILTT)是连接胫骨假体平台几何中心点和胫骨结节中内1/3点的连线。在胫骨假体平台面上创建平面,将上述各线投影至该平面上。分别测量胫骨假体轴线和股骨假体轴线的夹角、胫骨假体轴线和胫骨结节内侧线的夹角、胫骨假体轴线和胫骨结节中内侧线的夹角。

2.4. 统计学分析

计量资料描述为均数(SD) ± 标准差,组间比较采用独立样本t检验;计数资料描述为例数,组间比较采用卡方检验,P < 0.05 具有统计学意义。应用SPSS 27.0分析数据。

3. 结果

3.1. 一般资料

2022年6月至2023年3月,采集在青岛大学附属医院接受全膝关节置换术治疗的患者,满足纳排标准的前提下,共纳入113人,其中TKA组58人,男24人,女34人,平均年龄67.41 ± 5.27岁,平均BMI 26.31 ± 2.66 kg/m2,RATKA组55人,男25人,女30人,平均年龄68.25 ± 6.46岁,平均BMI 26.95 ± 2.76 kg/m2,两组患者在年龄、性别、BMI方面均没有统计学意义(P > 0.05) (表1)。

Table 1. General information of the patients

表1. 患者一般资料

3.2. 胫骨假体旋转测量结果

与股骨假体轴线相比较,RATKA组患者的胫骨假体轴线平均内旋1.77˚ ± 0.69˚,TKA组患者的胫骨假体轴线平均内旋2.40˚ ± 1.75˚,差异有统计学意义(P < 0.05)。与胫骨结节内侧线相比较,RATKA组患者的胫骨假体轴线平均内旋0.55˚ ± 3.99˚,而TKA组患者的胫骨假体轴线平均外旋0.77˚ ± 4.04˚,但差异无统计学意义(P > 0.05)。与胫骨结节中内侧线比较,RATKA组患者的胫骨假体轴线平均内旋4.64˚ ± 2.18˚,TKA组患者的胫骨假体轴线平均内旋5.91˚ ± 2.01˚,差异有统计学意义(P < 0.05) (表2)。

Table 2. Comparison of the angle between the tibial prosthesis axis and each axis in two groups of patients

表2. 两组患者胫骨假体轴线与各轴线夹角的比较

3.3. 功能结果比较

比较两组患者术前VAS评分、WOMAC评分、KSS评分、膝关节活动度差异没有统计学意义,且两组患者术后的VAS评分、WOMAC评分均较前降低,KSS评分及膝关节活动度均较前升高,提示两组患者在术后膝关节功能改善。RATKA组患者术后3个月的VAS评分较TKA组VAS评分更低,KSS评分较TKA组更高,差异具有统计学意义(P < 0.05)。1年后患者各功能结果差异均无统计学意义,提示长期疗效二者差异较小(表3)。

Table 3. Comparison of functional scores and knee joint range of motion in different periods

表3. 各时期功能学评分及膝关节活动度的比较

4. 讨论

关于胫骨假体旋转对线的测量方法,目前尚未达成共识,术中胫骨假体对线方法目前主要有髓内定位、髓外定位、自我形合技术(ROM)、计算机辅助导航技术和个性化截骨技术,髓外定位主要又包括胫骨结节、胫骨前后轴、胫骨前皮质、胫骨平台截骨面等定位标志 ‎[9] ‎[10] ‎[11] ‎[12] 。本研究的定位方法主要采用Akagi线,值得注意的是,我们在截骨前提前标记Akagi线是非常重要的。有学者指出,后交叉韧带起于胫骨近端外侧止于股骨远端内侧,如果在胫骨截骨面选择PCL中点,可能导致假体旋转不良 ‎[13] 。Kawaguchi等 ‎[14] 利用导航系统验证胫骨截骨前后Akagi线的重复性,结果表明截骨后Akagi线平均内旋2˚,其中37%的病例内旋大于3˚,17%外旋大于3˚,特别是左膝。

我们的研究表明,相对于股骨假体轴线和胫骨结节中内侧线,RATKA组患者的胫骨假体轴线与之夹角较小,平均内旋及外旋均减少。而TKA术后人工膝关节假体力线不良和旋转对线不良将对临床疗效产生负面的影响,同时也会造成膝关节运动学出现异常。在Newman ‎[15] 等人的研究中,作者分析了190张计算机断层扫描(CT)图像,结果表明,天然股骨在65%的健康膝关节中内旋3˚,在另一项研究中,Slevin ‎[16] 等人通过对62例患者进行膝关节3D重建,测量髌骨压力后发现内旋可能导致髌骨压力增加,从而导致髌骨不稳定和膝前疼痛。Barrack等 ‎[17] 的研究认为术后膝关节疼痛的主要原因是胫骨假体内旋放置。Nicoll等 ‎[18] 分别测量TKA术后膝关节疼痛患者和无疼痛患者的假体间旋转角度,发现疼痛组胫骨假体平均旋转内旋4.3˚,而无疼痛组胫骨假体平均外旋2.2˚,进一步证实了胫骨假体内旋放置会导致TKA术后疼痛,并确定了内旋9˚是胫骨假体放置的极限。在翻修时矫正了假体旋转对线后,患者的膝关节疼痛与僵硬将得到显著的改善。

我们的研究表明,两组患者术后VAS评分、WOMAC评分均较前降低,KSS评分及膝关节活动度均较前升高,提示两组患者在术后膝关节功能改善,而RATKA组患者术后3个月VAS评分小于TKA组患者,KSS评分高于TKA组,功能改善明显。差异具有统计学意义(P < 0.05)。在术后3个月的功能结果比较中,除WOMAC评分外,RATKA组VAS评分、KSS评分、膝关节活动度均优于TKA组,虽然差异均没有统计学意义,但是这可能需要后续加大样本研究数量来证明。术后1年两组患者各项评分未见明显统计学差异,可能两组患者在长期疗效方面没有明显差异,这需要进一步随访研究。

此外有研究表明,股骨假体旋转对线异常对膝关节运动学的影响表现在影响股四头肌肌力,导致侧副韧带张力失衡和膝关节内外翻程度加重 ‎[19] 。同时由于髌骨和股骨接触面积下降,髌骨假体磨损加重,严重可导致髌骨脱位、膝关节屈膝时外侧软组织张力松弛等并发症。Hanada等 ‎[20] 认为股骨假体过度外旋会引起屈膝时假体力线内翻,从而导致关节内侧承重增加。除假体旋转对线外,D’Lima等 ‎[21] 通过建立膝关节磨损模型,通过测试发现下肢力线不良会导致加快聚乙烯衬垫的磨损,缩短假体使用寿命。机器人辅助系统可根据术者需要,使用软组织技术或骨切除技术以0.5 mm的增量对间隙平衡进行微调,减少术后异常值并更好地重建下肢力线 ‎[22] 。并且Ryan G Molli ‎[23] 等人在比较计算机导航与传统对齐术后机械轴和单个部件定位的总体影响后发现计算机导航组的机械轴对准值范围缩小(在±3˚范围内),植入物放置在期望范围内的比例为99%,而在常规导航组中,这一比例82%。表明了RATKA对于重建下肢力线的准确性。

5. 结论

与传统TKA相比,RATKA有助于精确胫骨假体旋转对线,也明显提升了患者术后舒适度,不仅仅为精准关节外科手术保驾护航,更是手术创伤的挽救者,对提升患者满意度、改善术后疗效等方面存在极大意义。

参考文献

NOTES

*通讯作者。

参考文献

[1] Pabinger, C., Berghold, A., Boehler, N., et al. (2013) Revision Rates after Knee Replacement. Results from Worldwide Clinical Studies versus Joint Registers. Osteoarthritis and Cartilage, 21, 263-268.
https://doi.org/10.1016/j.joca.2012.11.014
[2] Kim, Y.H., Park, J.W., Kim, J.S., et al. (2014) The Relationship between the Survival of Total Knee Arthroplasty and Postoperative Coronal, Sagittal and Rotational Alignment of Knee Prosthesis. International Orthopaedics, 38, 379-385.
https://doi.org/10.1007/s00264-013-2097-9
[3] Kuriyama, S., Ishikawa, M., Furu, M., et al. (2014) Malrotated Tibial Component Increases Medial Collateral Ligament Tension in Total Knee Arthroplasty. Journal of Orthopaedic Research, 32, 1658-1666.
https://doi.org/10.1002/jor.22711
[4] Bedard, M., Vince, K.G., Redfern, J., et al. (2011) Internal Rotation of the Tibial Component Is Frequent in Stiff Total Knee Arthroplasty. Clinical Orthopaedics and Related Research, 469, 2346-2355.
https://doi.org/10.1007/s11999-011-1889-8
[5] Osano, K., Nagamine, R., Todo, M., et al. (2014) The Effect of Malrotation of Tibial Component of Total Knee Arthroplasty on Tibial Insert during High Flexion Using a Finite Element Analysis. The Scientific World Journal, 2014, Article ID: 695028.
https://doi.org/10.1155/2014/695028
[6] Dalury, D.F., Pomeroy, D.L., Gorab, R.S., et al. (2013) Why Are Total Knee Arthroplasties Being Revised? The Journal of Arthroplasty, 28, 120-121.
https://doi.org/10.1016/j.arth.2013.04.051
[7] Vanbiervliet, J., Bellemans, J., Verlinden, C., et al. (2011) The Influence of Malrotation and Femoral Component Material on Patellofemoral Wear during Gait. The Journal of Bone and Joint Surgery, 93, 1348-1354.
https://doi.org/10.1302/0301-620X.93B10.26831
[8] Chen, Z., Wang, L., Liu, Y., et al. (2015) Effect of Component Mal-Rotation on Knee Loading in Total Knee Arthroplasty Using Multi-Body Dynamics Modeling under a Simulated Walking Gait. Journal of Orthopaedic Research, 33, 1287-1296.
https://doi.org/10.1002/jor.22908
[9] Lawrie, C.M., Noble, P.C., Ismaily, S.K., et al. (2011) The Flexion-Extension Axis of the Knee and Its Relationship to the Rotational Orientation of the Tibial Plateau. The Journal of Arthroplasty, 26, 53-58.E51.
https://doi.org/10.1016/j.arth.2011.04.026
[10] Lutzner, J., Krummenauer, F., Gunther, K.P., et al. (2010) Rotational Alignment of the Tibial Component in Total Knee Arthroplasty Is Better at the Medial Third of Tibial Tuberosity than at the Medial Border. BMC Musculoskeletal Disorders, 11, Article No. 57.
https://doi.org/10.1186/1471-2474-11-57
[11] Akagi, M., Oh, M., Nonaka, T., et al. (2004) An Anteroposterior Axis of the Tibia for Total Knee Arthroplasty. Clinical Orthopaedics and Related Research, 420, 213-219.
https://doi.org/10.1097/00003086-200403000-00030
[12] Ikeuchi, M., Yamanaka, N., Okanoue, Y., et al. (2007) Determining the Rotational Alignment of the Tibial Component at Total Knee Replacement: A Comparison of Two Techniques. The Journal of Bone and Joint Surgery, 89, 45-49.
https://doi.org/10.1302/0301-620X.89B1.17728
[13] Baldini, A., Indelli, P.F., De Luca, L., et al. (2013) Rotational Alignment of the Tibial Component in Total Knee Arthroplasty: The Anterior Tibial Cortex Is a Reliable Landmark. Joints, 1, 155-160.
https://doi.org/10.11138/jts/2013.1.4.1455
[14] Kawaguchi, K., Inui, H., Taketomi, S., et al. (2019) Intraoperative Tibial Anteroposterior Axis Could Not Be Replicated after Tibial Osteotomy in Total Knee Arthroplasty. The Journal of Arthroplasty, 34, 2371-2375.
https://doi.org/10.1016/j.arth.2019.05.058
[15] Newman, C.R., Walter, W.L. and Talbot, S. (2018) Femoral Rotational Asymmetry Is a Common Anatomical Variant. Clinical Anatomy, 31, 551-559.
https://doi.org/10.1002/ca.23053
[16] Slevin, O., Schmid, F.A., Schiapparelli, F.-F., et al. (2017) Coronal Femoral TKA Position Significantly Influences in vivo Patellar Loading in Unresurfaced Patellae after Primary Total Knee Arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy, 25, 3605-3610.
https://doi.org/10.1007/s00167-017-4627-2
[17] Barrack, R.L., Schrader, T., Bertot, A.J., et al. (2001) Component Rotation and Anterior Knee Pain after Total Knee Arthroplasty. Clinical Orthopaedics and Related Research, 392, 46-55.
https://doi.org/10.1097/00003086-200111000-00006
[18] Nicoll, D. and Rowley, D.I. (2010) Internal Rotational Error of the Tibial Component Is a Major Cause of Pain after Total Knee Replacement. The Journal of Bone and Joint Surgery, 92, 1238-1244.
https://doi.org/10.1302/0301-620X.92B9.23516
[19] Labek, G., Thaler, M., Janda, W., et al. (2011) Revision Rates after Total Joint Replacement: Cumulative Results from Worldwide Joint Register Datasets. The Journal of Bone and Joint Surgery, 93-B, 293-297.
https://doi.org/10.1302/0301-620X.93B3.25467
[20] Hanada, H., Whiteside, L.A., Steiger, J., et al. (2007) Bone Landmarks Are More Reliable than Tensioned Gaps in TKA Component Alignment. Clinical Orthopaedics and Related Research, 462, 137-142.
https://doi.org/10.1097/BLO.0b013e3180dc92e7
[21] D’Lima, D.D., Hermida, J.C., Chen, P.C., et al. (2001) Polyethylene Wear and Variations in Knee Kinematics. Clinical Orthopaedics and Related Research, 392, 124-130.
https://doi.org/10.1097/00003086-200111000-00015
[22] Park, S.E. and Lee, C.T. (2007) Comparison of Robotic-Assisted and Conventional Manual Implantation of a Primary Total Knee Arthroplasty. The Journal of Arthroplasty, 22, 1054-1059.
https://doi.org/10.1016/j.arth.2007.05.036
[23] Molli, R.G., Anderson, K.C., Buehler, K.C., et al. (2011) Computer-Assisted Navigation Software Advancements Improve the Accuracy of Total Knee Arthroplasty. The Journal of Arthroplasty, 26, 432-438.
https://doi.org/10.1016/j.arth.2010.01.002