BDNF/TrkB信号通路在一氧化碳中毒迟发性脑病中的研究进展
Research Progress of BDNF/TrkB Signaling Pathway in Delayed Encephalopathy after Acute Carbon Monoxide Poisoning
摘要: 一氧化碳中毒迟发脑病(DEACMP)的主要症状是认知功能障碍,这导致患者的日常生活能力出现下降,给患者、家庭乃至整个社会带来沉重的负担。目前DEACMP的发病机制不明,尚无特效的治疗方法,因此,明确DEACMP的发病原因并寻找有效的治疗策略已经成为临床研究的焦点。研究表明,DEACMP的发生与BDNF/TrkB信号通路有着紧密的联系。因此本文就近年来BDNF/TrkB信号通路在DEACMP中的研究进行综述。
Abstract: The main symptom of delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) is cognitive dysfunction, which leads to the decline of patients’ ability of daily living and brings a heavy burden to patients, families and even the whole society. At present, the pathogenesis of DEACMP is unknown, and there is no specific treatment. Therefore, it has become the focus of clinical research to clarify the pathogenesis of DEACMP and find effective treatment strategies. The research shows that the occurrence of DEACMP is closely related to BDNF/TrkB signal pathway. Therefore, this paper summarizes the research on BDNF/TrkB signal path in DEACMP in recent years.
文章引用:金渊媛, 张军. BDNF/TrkB信号通路在一氧化碳中毒迟发性脑病中的研究进展[J]. 临床医学进展, 2024, 14(5): 1005-1011. https://doi.org/10.12677/acm.2024.1451518

1. 引言

一氧化碳中毒迟发性脑病(Delayed Encephalopathy after Acute Carbon Monoxide Poisoning, DEACMP)的临床重要性不仅在于其高发病率和致残率,更在于其复杂的病理机制和有效治疗方法的缺乏。研究发现在DEACMP患者血液中BDNF及TrkB的含量会出现不同程度的下降,会引起BDNF/TrkB信号通路的异常表达,这可能与DEACMP引起的细胞凋亡有关 [1] 。因此,探讨BDNF/TrkB信号通路在DEACMP中的作用机制,有望为该病的治疗提供新的思路和方法。

2. BDNF/TrkB信号通路的概述

BDNF/TrkB信号通路的生理功能

Barde等人 [2] 在1982年首次从猪脑组织发现BDNF并成功中分离出来,它是中枢神经系统(central nervous system,CNS)中广泛分布且表达的一种生长因子,并且是神经营养因子家族的核心成员,涵盖了神经生长因子、神经营养因子-3以及神经营养因子4/5。近期研究表明BDNF是存在于人体之中是神经营养因子中含量最为丰富的一种,特别是在大脑皮质和海马神经细胞中的含量尤为突出 [3] ,在维持神经系统功能发育、各种神经的生长、发育和再生,都发挥了重要的作用,并且在维护大脑内部稳态方面起到了至关重要的角色。BDNF有助于增强突触可塑性,这可能与个体学习能力和记忆形成及存储有关。Li Y [4] 等人研究也证实了上述观点,他们发现背侧前额叶皮层的认知能力下降与BDNF mRNA水平呈负相关,BDNF的减少与认知障碍有关 [5] 。TrkB是一种由细胞外糖基化多肽、跨膜区以及胞质内酪氨酸激酶区构成的跨膜蛋白质,并在CNS中广泛分布。当BDNF与TrkB结合时,TrkB会使得细胞内酪氨酸激酶结构域激活,触发下游信号路径包括Ras,PI3K,PLCY,NFκB等从而发挥一系列生理功能 [6] 。

3. BDNF/TrkB信号通路在神经系统中的作用

3.1. 神经发育中的作用

BDNF/TrkB信号通路通过调控神经元的存活、分化、迁移和突触可塑性等过程,对CNS的正常发育起着不可或缺的作用 [7] 。研究表明,BDNF/TrkB信号通路在胚胎期和出生后早期的大脑发育中表达量较高,提示其调节可能会影响神经发生的启动和维持,同样影响着早期发育和突触的传递 [8] 。BDNF通过激活TrkB受体,触发一系列下游信号转导级联反应,包括MAPK、PI3K/Akt等通路的激活,进而调控神经元的生长、分化和突触形成。这些过程对于建立神经网络连接和形成复杂的神经回路至关重要。研究 [9] 发现在具有超高精神病风险的患者补充TrkB激动剂可能会减少其后代精神病以及认知障碍的发生,其可能与BDNF/TrkB信号通路调控神经的生长发育有关。此外,BDNF/TrkB信号通路还参与突触可塑性的调控,这对于学习、记忆等高级神经功能的实现具有重要意义。BDNF通过激活TrkB受体,可以促进突触前和突触后结构的改变,从而增强突触传递效率和可塑性。这种调控作用在学习和记忆过程中尤为重要。一项 [10] 研究发现氟化物会损害小鼠的学习和记忆能力,降低突触密度,发现其与BDNF/TrkB通路受到抑制,导致突触受到损伤有关。

3.2. 神经存活和修复中的作用

BDNF作为一种重要的神经营养因子,通过激活TrkB受体,可以抑制神经元的凋亡,故BDNF/TrkB信号通路在促进神经元的存活起着关键作用。这一作用在众多神经系统疾病中得到了验证,如帕金森病、阿尔茨海默病、多发性硬化等,在这些疾病中,BDNF/TrkB信号通路受到影响后往往会加速神经元死亡和神经退行性病变的发生。研究 [11] 发现在PD患者中其BDNF/TrkB的表达水平会发生显著降低,这可能与多巴胺能神经元神经退行性变直接相关。Fontanesi C等人 [12] 发现通过物理治疗可增加帕金森患者体内BDNF及TrkB的表达从而减轻帕金森症状,可能是通过激活BDNF/TrkB信号通路对神经元起到了保护作用。研究发现BDNF在阿尔茨海默病患者脑组织中的含量显著降低.其会导致阿尔茨海默病患者突触的减少以及认知障碍的发生,其可能由于BDNF/TrkB信号通路被抑制随后阻断PI3K/Akt等下游通路的激活,增加Bax、caspase-3和caspase-9等促细胞凋亡分子的表达,同时抑制Bcl-2等抗凋亡分子的表达,导致脑神经元凋亡增加,会加剧患者学习记忆功能的受损 [13] 。在一项 [14] 对多发性硬化动物模型的研究中发现通过上调BDNF/TrkB信号通路会引起其下游PI3K/Akt通路的激活促进细胞存活并抑制细胞凋亡,使得轴突发生再生,由于轴突损伤是多发性硬化的病理特征,故该研究这可能是治疗多发性硬化的关键策略。

除了促进神经元存活外,BDNF/TrkB信号通路还参与了神经修复过程。在神经系统受到损伤时,神经修复作用可能主要依赖于BDNF/TrkB信号通路对神经元生长、分化和突触可塑性的调控作用。研究表明电针可能通过上调BDNF/TrkB信号通路,促进突触可塑性标志蛋白的表达,改善突触超微结构,增强突触可塑性,减轻脑缺血再灌注损伤大鼠的认知障碍 [15] 。当BDNF/TrkB信号通路激活下游PI3K/Akt表达可抑制细胞凋亡的发生,进而起到神经保护作用 [16] 。

4. DEACMP的概述

4.1. DEACMP的临床表现

临床上多数DEACMP患者多以认知功能出现障碍而就诊 [17] 。目前发病机制尚不明确,现阶段尚被大众认可的有:缺血缺氧机制、兴奋性氨基酸机制、细胞凋亡机制、信号通路的激活在内的多个机制 [18] 。

4.2. DEACMP的发病机制

4.2.1. 缺血缺氧机制

CO与众多富含亚铁血红素的蛋白存在高度的亲和性结合。与氧相比,Hb对CO的亲和性更强其倍数为250 [19] ,因此当CO进入机人血液,它会迅速与血红蛋白(Hb)结合,形成碳氧血红蛋白(COHb)。如果Hb不能与氧结合,会导致细胞水平的氧气输送和利用受阻,最终导致组织缺氧。鉴于中枢系统对缺氧非常敏感,缺氧状况会提高微血管受损的风险,最终可能触发脑神经细胞的坏死,并可能导致患者出现认知下降 [20] 。

4.2.2. 兴奋氨基酸机制与细胞凋亡机制

谷氨酸被认为是哺乳动物CNS中的兴奋性氨基酸(EAA)神经递质。研究揭示了谷氨酸在诸如学习、认知和记忆等多个领域所扮演的关键角色 [21] 。在CO中毒之后,人体内的能量代谢出现异常,由于脑组织对缺氧有着高度敏感性,一旦发生缺氧,大脑组织中的有氧代谢速度会下降,同时钠钾泵的转运也会受到影响,导致转运谷氨酸受到限制,使得大量谷氨酸在突触后膜堆积,引起细胞功能的紊乱,最终导致细胞发生凋亡,导致了DEACMP患者认知功能下降 [22] 。一项对DEACMP大鼠的研究发现随着大鼠体内谷氨酸含量的增加,其学习和记忆能力也在逐步下降,其机制可能为:谷氨酸会导致细胞内的钙离子过度积累,激活体内细胞程序性死亡有关 [23] 。细胞程序性死亡也被称为细胞凋亡,是一种在特定环境因素作用下,由基因调控的细胞有序自主地死亡机制,其维持了内环境的稳定。但在CO中毒后会触发神经细胞中凋亡相关基因的活化,从而引发迟发性神经元凋亡,这也可能构成DEACMP的关键病理生理机制之一。另有研究指出DEACMP体内谷氨酸含量升高后导致钙离子累积超载后引起体内细胞凋亡因子如caspase-8、一氧化氮合和钙蛋白酶等的激活。诱导细胞发生凋亡,最终出现以认知下降为特征的DEACMP症状 [24] 。

4.2.3. 信号通路的激活

近几年,众多的研究证明了多种信号通路的激活在DEACMP的发病过程中发挥了至关重要的作用。其中核转录因子κB/基质金属蛋白酶-9 (nuclear transcription factor κB, NFκB/matrix metalloproteinase 9, MMP-9)通路、NFκB/神经元性一氧化氮合酶(Neurogenic nitric oxide synthase, nNOS)通路以及丝裂原活化蛋白激酶/细胞外信号调节激酶(mitogen-activated protein kinase, MAPK/extacellular siganl-regulated kinase, ERK)通路等信号通路目前研究较多 [25] 。当细胞受到缺氧、炎症等刺激时NFκB会被激活,然后活化其下游主要的炎症因子MMP-9通过改变突触可塑性及引起细胞凋亡从而影响学习记忆能力 [26] 。Wang R [27] 等人研究发现CO中毒后NFκB及其下游因子iNOS和MMP-9的表达显著升高,会导致DEACMP的发生。一项研究发现DEACMP可能与NFκB/nNOS信号通路有关,当nNOS过度表达时,会诱导神经细胞发生凋亡,出现认知障碍 [28] 。曹娟等人 [29] 发现激活MAPK/ERK信号通路对CO中毒大鼠会产生脑保护作用,减少细胞凋亡,从而改善认知。DEACMP的过程中可能存在上述各种信号通路相互影响,且上述信号通路均受到上游BDNF/TrkB信号通路的调控 [30] [31] 。

5. BDNF/TrkB信号通路在DEACMP中的作用

研究发现CO中毒后会增加大鼠海马组织中NF-κB通路的活性,并通过该通路引起神经元损伤和细胞凋亡。且随着NFκB的过度激活,会引起DEACMP的认知障碍发生 [27] 。在BDNF/TrkB信号通路激活Ras之后,可以通过改变基因表达和参与突触重塑来促进神经元存活 [32] 。当DEACMP发生后海马区域会产生BDNF的细胞延迟坏死或凋亡性死亡,使得BDNF和TrkB的含量下降,这会进一步导致了BDNF/TrkB信号通路介导的ERK的活性降低使信号传递受到了限制,从而引发了大量的脱髓鞘现象 [33] ,出现学习与记忆能力的下降。在一项 [34] 通对18名DEACMP患者血浆中BDNF水平的观察,研究者发现中毒后,患者体内BDNF表达含量有所减少,同时伴随着认知功能的减退,这提示其可能为表示认知功能出现紊乱的指标之一。Liu WC等人 [35] 研究发现通过增加海马BDNF含量来保留成人神经发生是高压氧治疗可能的机制,但向脑室内输注重组人TrkB-Fc嵌合体时,它会中断海马BDNF信号传递,导致海马神经的保护功能被抑制。以上研究均说明DEACMP的出现可能与BDNF/TrkB信号通道传导有关。

6. BDNF/TrkB信号通路与DEACMP治疗之间的关系

随着神经生物学领域的不断进步,BDNF/TrkB信号通路与认知障碍之间的关联研究也取得了显著的进展,研究指出在相应的脑区,出现以BDNF为标志的神经营养因子减少、以及相应的信号通路受到影响 [36] 。目前针对DEACMP常见治疗方法手段涵盖了药物治疗,高压氧疗,针刺治疗以及康复训练等多种方法。研究表明,在接受甲基强的松龙治疗之后,DEACMP患者的BDNF水平显著提高,这可能与BDNF修复了中枢神经系统损伤,从而防止神经细胞凋亡,改善患者记忆和认知功能,提高日常生活活动能力有关 [37] 。一项关于正丁基苯酞(NBP)治疗DEACMP的研究表明,NBP通过调节MAPK信号通路、PI3K/AKT信号通路等途径对DEACMP患者起到神经保护作用 [38] ,同时MAPK信号通路及PI3K/AKT信号通路则又受到BDNF/TrkB信号通路的影响和调节。Zhang L [36] 等人通过高压氧治疗DEACMP发现其是通过调整BDNF的表达来增强DEACMP患者的认知能力。一研究 [39] 通过NBP和地塞米松联合HBO对DEACMP患者进行治疗,发现患者的认知功能得到了改善,其可能和上调Trk通路有关。上述治疗方式均调整了患者血中BDNF和TrkB的浓度,这可能与激活BDNF/TrkB信号通路来调节下游信号,减轻脱髓鞘,抑制细胞凋亡,从而改善了认知功能有关。

7. 小结与展望

本文探讨了BDNF/TrkB信号通路在DEACMP中的作用,为DEACMP的病因探究以及临床治疗方案提供了理论依据。随着对临床应用方法的深入研究,BDNF/TrkB信号通路有望成为未来治疗DEACMP的有效切入点,我们相信这将为临床医生和研究人员提供丰富的背景知识和研究方向。这将有助于进一步提高患者的生活质量和生活水平,并为未来的研究提供宝贵的参考和启示。

NOTES

*通讯作者。

参考文献

[1] Juric, D.M. Suput, D. and Brvar, M. (2016) Hyperbaric Oxygen Preserves Neurotrophic Activity of Carbon Monoxide-Exposed Astrocytes. Toxicology Letters, 253, 1-6.
https://doi.org/10.1016/j.toxlet.2016.04.019
[2] Barde, Y.A., Edgar, D. and Thoenen, H. (1982) Purification of a New Neurotrophic Factor from Mammalian Brain. The EMBO Journal, 5, 549-553.
https://doi.org/10.1002/j.1460-2075.1982.tb01207.x
[3] Miranda, M., Morici, J.F., Zanoni, M.B., et al. (2019) Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Frontiers in Cellular Neuroscience, 13, Article 472800.
https://doi.org/10.3389/fncel.2019.00363
[4] Li, Y., Li, F., Qin, D., et al. (2022) The Role of Brain Derived Neurotrophic Factor in Central Nervous System. Frontiers in Aging Neuroscience, 14, Article 986443.
https://doi.org/10.3389/fnagi.2022.986443
[5] Lu, B., Nagappan, G. and Lu, Y. (2023) BDNF and Synaptic Plasticity, Cognitive Function, and Dysfunction. In: Lewin, G. and Carter, B., Eds., Neurotrophic Factors, Springer, Berlin, 223-250.
https://doi.org/10.1007/978-3-642-45106-5_9
[6] Leal, G., Comprido, D. and Duarte, C.B. (2014) BDNF-Induced Local Protein Synthesis and Synaptic Plasticity. Neuropharmacology, 76, 639-656.
https://doi.org/10.1016/j.neuropharm.2013.04.005
[7] Castrén, E. and Monteggia, L.M. (2021) Brain-Derived Neurotrophic Factor Signaling in Depression and Antidepressant Action. Biological Psychiatry, 90, 128-136.
https://doi.org/10.1016/j.biopsych.2021.05.008
[8] Wei, Z., Liao, J., Qi, F., et al. (2015) Evidence for the Contribution of BDNF-TrkB Signal Strength in Neurogenesis: An Organotypic Study. Neuroscience Letters, 606, 48-52.
https://doi.org/10.1016/j.neulet.2015.08.032
[9] Han, M., Zhang, J.C., Huang, X.F. and Hashimoto, K. (2017) Intake of 7, 8-Dihydroxyflavone from Pregnancy to Weaning Prevents Cognitive Deficits in Adult Offspring after Maternal Immune Activation. European Archives of Psychiatry and Clinical Neuroscience, 267, 479-483.
https://doi.org/10.1007/s00406-017-0802-1
[10] Li, W., Lu, L., Zhu, D., et al. (2022) Gestational Exposure to Fluoride Impairs Cognition in C57 BL/6J Male Offspring Mice via the P-Creb1-BDNF-TrkB Signaling Pathway. Ecotoxicology and Environmental Safety, 239, Article ID: 113682.
https://doi.org/10.1016/j.ecoenv.2022.113682
[11] Huang, Y., Huang, C. and Yun, W. (2019) Peripheral BDNF/TrkB Protein Expression Is Decreased in Parkinson’s Disease But Not in Essential Tremor. Journal of Clinical Neuroscience, 63, 176-181.
https://doi.org/10.1016/j.jocn.2019.01.017
[12] Fontanesi, C., Kvint, S., Frazzitta, G., et al. (2016) Intensive Rehabilitation Enhances Lymphocyte BDNF-TrkB Signaling in Patients with Parkinson’s Disease. Neurorehabilitation and Neural Repair, 30, 411-418.
https://doi.org/10.1177/1545968315600272
[13] Gu, Z., Lv, X., Guo, Y., et al. (1970) Total Flavonoids of Cynomorium Songaricum Attenuates Cognitive Defects in an Aβ 1-42-Induced Alzheimer’s Disease Rat Model by Activating BDNF/TrkB Signaling Transduction. NeuroReport, 17, 825-833.
https://doi.org/10.1097/WNR.0000000000001960
[14] Zheng, Q., Liu, L., Liu, H., et al. (2019) The Bu Shen Yi Sui Formula Promotes Axonal Regeneration via Regulating the Neurotrophic Factor BDNF/TrkB and the Downstream PI3K/Akt Signaling Pathway. Frontiers in Pharmacology, 10, Article 796.
https://doi.org/10.3389/fphar.2019.00796
[15] 袁洁, 高静, 苏凯奇, 等. 电针对脑缺血再灌注损伤诱导的学习记忆障碍大鼠BDNF/TRKB/CREB信号通路和海马突触可塑性的影响[J]. 针刺研究, 2023, 48(9): 843-851.
[16] Huang, S.S., Zhou, B., Zeng, G.X., et al. (2024) Neuroprotective Effect and Mechanism of Butylphthalide after Cerebral Ischemia-Reperfusion Injury in Rats. Folia Neuropathologic, 2, 131-142.
https://doi.org/10.5114/fn.2021.107667
[17] 朱红灿, 岳培建. CO中毒迟发性脑病诊断与治疗中国专家共识[J]. 中国神经免疫学和神经病学杂志, 2021, 28(3): 173-179.
[18] Hara, S., Mizukami, H., Kurosaki, K., et al. (2011) Existence of A Threshold for Hydroxyl Radical Generation Independent of Hypoxia in Rat Striatum during Carbon Monoxide Poisoning. Archives of Toxicology, 85, 1091-1099.
https://doi.org/10.1007/s00204-010-0637-2
[19] Childs, J., Fischbach, A., Smirnov, A., et al. (2023) Extracorporeal Membrane Oxygenators with Light-Diffusing Fibers for Treatment of Carbon Monoxide Poisoning: Experiments, Mathematical Modeling, and Performance Assessment with Unit Cells. Lasers in Surgery and Medicine, 6, 590-600.
https://doi.org/10.1002/lsm.23673
[20] Geocadin, R.G., Koenig, M.A., Jia, X., et al. (2008) Management of Brain Injury after Resuscitation from Cardiac Arrest. Neurologic Clinics, 2, 487-506.
https://doi.org/10.1016/j.ncl.2008.03.015
[21] Moloney, M.G. (2002) Excitatory Amino Acids. Natural Product Reports, 5, 597-616.
https://doi.org/10.1039/b103777n
[22] Rose, J.J., Wang, L., Xu, Q., et al. (2017) Carbon Monoxide Poisoning: Pathogenesis, Management, and Future Directions of Therapy. American Journal of Respiratory and Critical Care Medicine, 195, 596-606.
https://doi.org/10.1164/rccm.201606-1275CI
[23] Jia, Y., Chen, Y., Geng, K., et al. (2020) Glutamate Chemical Exchange Saturation Transfer (GluCEST) Magnetic Resonance Imaging in Pre-Clinical and Clinical Applications for Encephalitis. Frontiers in Neuroscience, 14, Article 750.
https://doi.org/10.3389/fnins.2020.00750
[24] Peng, M., Ling, X., Song, R., et al. (2019) Upregulation of GLT-1 via PI3K/Akt Pathway Contributes to Neuroprotection Induced by Dexmedetomidine. Frontiers in Neurology, 10, Article 1041.
https://doi.org/10.3389/fneur.2019.01041
[25] Peng, H. and Tian, W.S. (2019) Research on the Pathogenesis of Late-Onset Encephalopathy with Carbon Monoxide Poisoning. Inner Mongolia Journal of Medicine, 51, 1043-1046.
[26] Kudo, N., Yamamori, H., Ishima, T., et al. (2020) Plasma Levels of Matrix Metalloproteinase-9 (MMP-9) Are Associated with Cognitive Performance in Patients with Schizophrenia. Neuropsychopharmacology Reports, 2, 150-156.
https://doi.org/10.1002/npr2.12098
[27] Wang, R., Li, K., Wang, Z., et al. (2024) Changes of Nuclear Factor κ-B Pathway Activity in Hippocampus after Acute Carbon Monoxide Poisoning and Its Role in Nerve Cell Injury. Molecular Neurobiology.
https://doi.org/10.1007/s12035-023-03889-5
[28] Ignatowski, T.A., Spengler, R.N., Dhandapani, K.M., et al. (2014) Perispinal Etanercept for Post-Stroke Neurological and Cognitive Dysfunction: Scientific Rationale and Current Evidence. CNS Drugs, 8, 679-697.
https://doi.org/10.1007/s40263-014-0174-2
[29] Rubin, L., Stabler, C.T., Schumacher-Klinger, A., et al. (2021)Neurotrophic Factors and Their Receptors in Lung Development and Implications in Lung Diseases. Cytokine & Growth Factor Reviews, 59, 84-94.
https://doi.org/10.1016/j.cytogfr.2021.01.008
[30] Li, Z.K., Li, C.H., Yue, A.C., et al. (2022) Therapeutic Effect and Molecular Mechanism of Salvia Miltiorrhiza on Rats with Acute Brain Injury after Carbon Monoxide Poisoning Based on the Strategy of Internet Pharmacology. Environmental Toxicology, 3, 413-434.
https://doi.org/10.1002/tox.23408
[31] Gao, L.L., Wang, Z.H., Mu, Y.H., et al. (2024) Emodin Promotes Autophagy and Prevents Apoptosis in Sepsis-Associated Encephalopathy through Activating BDNF/TrkB Signaling. Pathobiology, 3, 135-145.
https://doi.org/10.1159/000520281
[32] Ciszowski, K., Gomółka, E., Gawlikowski, T., et al. (2016) Brain-Derived Neurotrophic Factor (BDNF) and Nerve Growth Factor (NGF) Blood Levels in Patients with Acute Carbon Monoxide Poisoning—A Preliminary Observations. Przeglad Lekarski, 8, 552-559.
[33] Andero, R., Choi, D.C. and Ressler, K.J. (2014) BDNF-TrkB Receptor Regulation of Distributed Adult Neural Plasticity, Memory Formation, and Psychiatric Disorders. Progress in Molecular Biology and Translational Science, 122, 169-192.
https://doi.org/10.1016/B978-0-12-420170-5.00006-4
[34] Yanagiha, K., Ishii, K. and Tamaoka, A. (2017) Acetylcholinesterase Inhibitor Treatment Alleviated Cognitive Impairment Caused by Delayed Encephalopathy Due to Carbon Monoxide Poisoning: Two Case Reports and a Review of the Literature. Medicine, 96, e6125.
https://doi.org/10.1097/MD.0000000000006125
[35] Liu, W.C., Yang, S.N., Wu, C.W., et al. (2016) Hyperbaric Oxygen Therapy Alleviates Carbon Monoxide Poisoning-Induced Delayed Memory Impairment by Preserving Brain-Derived Neurotrophic Factor-Dependent Hippocampal Neurogenesis. ical Care Medicine, 44, e25-e39.
https://doi.org/10.1097/CCM.0000000000001299
[36] Zhang, L., Sun, Q., Xin, Q., et al. (2021) Hyperbaric Oxygen Therapy Mobilized Circulating Stem Cells and Improved Delayed Encephalopathy after Acute Carbon Monoxide Poisoning with Up-Regulation of Brain-Derived Neurotrophic Factor. The American Journal of Emergency Medicine, 42, 95-100.
https://doi.org/10.1016/j.ajem.2021.01.021
[37] 冯新春, 高磊. 大剂量甲泼尼龙联合高压氧治疗急性一氧化碳中毒迟发性脑病患者的疗效分析[J]. 山西医药杂志, 2021, 50(7): 1154-1157.
[38] Song, H., Yue, A., Zhou, X., et al. (2024) Evidence of Clinical Efficacy and Pharmacological Mechanism of N-Butylphthalide in the Treatment of Delayed Encephalopathy after Acute Carbon Monoxide Poisoning. Frontiers in Neurology, 14, Article 1119871.
https://doi.org/10.3389/fneur.2023.1119871
[39] Zhang, J., Guo, Y., Li, W., et al. (2020) The Efficacy of N-Butylphthalide and Dexamethasone Combined with Hyperbaric Oxygen on Delayed Encephalopathy after Acute Carbon Monoxide Poisoning. Drug Design, Development and Therapy, 14, 1333-1339.
https://doi.org/10.2147/DDDT.S217010