前交叉韧带重建围手术期血流限制概念的最新进展
Update on Current Concepts of Blood Flow Restriction in the Perioperative Period of Anterior Cruciate Ligament Reconstruction
DOI: 10.12677/acm.2024.1451506, PDF, HTML, XML, 下载: 55  浏览: 86 
作者: 王瑞杰, 孙炳慧:内蒙古民族大学第二临床医学院,内蒙古 呼伦贝尔
关键词: 前交叉韧带重建围手术期血流限制Anterior Cruciate Ligament Reconstruction Perioperative Period Blood Flow Restriction
摘要: 前交叉韧带撕裂或断裂是常见的骨科损伤。前交叉韧带重建(ACLR)是一种骨科手术,允许早期恢复运动,改善维持生活方式的需求,并恢复膝关节的稳定性和运动学。最近引起人们兴趣的围手术期康复辅助手段是血流限制(BFR),这是一种暂时限制血液流向选定肢体的方法,可以在术后几天内使用。有越来越多的调查和最近的文献关于BFR。本文综述了目前在ACLR围手术期使用BFR的概念。
Abstract: Anterior cruciate ligament tears or ruptures are common orthopedic injuries. Anterior cruciate ligament reconstruction (ACLR) is an orthopedic procedure allowing for earlier return to sports, improved maintenance of lifestyle demands, and restoring knee stability and kinematics. A perioperative rehabilitative adjunct recently gaining interest is blood flow restriction (BFR), a method in which temporary restriction of blood flow to a chosen extremity is introduced and can be used as early as a few days postoperative. There has been increasing investigation and recent literature regarding BFR. This review synthesizes current concepts of BFR use in the ACLR perioperative period.
文章引用:王瑞杰, 孙炳慧. 前交叉韧带重建围手术期血流限制概念的最新进展[J]. 临床医学进展, 2024, 14(5): 911-920. https://doi.org/10.12677/acm.2024.1451506

1. 引言

前交叉韧带(ACL)撕裂的发生率很高,估计每年有6万至20万前交叉韧带撕裂或破裂 [1] [2] [3] [4] [5] 。在美国,骨科医生每年进行的前交叉韧带重建(ACLR)手术超过10万例 [6] 。ACLR与早期运动恢复、改善生活方式需求的维持以及恢复膝关节稳定性和运动学有关 [7] [8] [9] [10] 。ACLR前后的康复也被证明可以改善患者的运动恢复和术后功能 [11] [12] [13] [14] 。增加肌肉力量最常见和有效的方法之一是通过大负荷阻力训练,但ACLR术后患者通常不能在术后急性期进行。在康复过程中,一种辅助治疗方法是血流限制(BFR) [15] [16] 。该技术的支持者指出,在限制负重的情况下,该技术在改善术后疼痛、减轻肌肉无力、增强肌肉力量和减少肌肉萎缩方面具有优势,并且具有良好的安全性 [17] 。BFR的潜在用途最近引起了人们的注意,因此,研究工作不断增加。鉴于此,本综述综合了目前有关BFR的数据和文献,并提供了ACLR围手术期BFR的最新概念。

2. BFR生物生理机制

当肢体暴露于BFR时,微细胞和大细胞水平都会发生变化。这些细胞的变化已经被研究过,可能会导致肌肉质量的增加以及低负荷训练方案下肌肉力量的增加。因此,围手术期BFR训练的目标是诱导通常与高阻力训练相关的生理变化,同时使用低阻力训练,这可能更有利于术后。最近的文献研究了诱导这些变化的生物生理机制 [18] [19] 。

运动的全身反应包括增加β-肾上腺素能信号和心输出量,以及增加静脉回流,所有这些都在代谢需求增加的情况下优化有氧呼吸。然而,在高阻力或高强度运动中,运动肌肉的耗氧量可能超过动脉血的输送能力,需要通过无氧呼吸继续进行肌肉代谢。这一代谢途径产生分解代谢副产物,如乳酸、氢离子和磷酸肌酸,它们在局部和全身积累 [20] 。这些代谢物的积累反过来刺激生长激素和胰岛素样生长因子-1的分泌,从而诱导胶原蛋白的产生,用于组织修复、卫星细胞增殖和肌肉质量的整体增加 [21] [22] 。在一定程度上,BFR通过限制动脉和静脉血流,创造这种缺氧环境,通常通过在ACLR患者股骨近端应用止血带来实现。理论上,这种方法复制了在高阻力训练中看到的细胞和代谢途径,但是在低阻力刺激下完成的。同样,最近的文献表明,BFR可能通过肌内合成代谢和抗分解代谢信号诱导细胞肿胀、增加肌纤维募集和增加肌肉蛋白质合成,从而影响肌肉肥大,此外,即使在移除限制装置后,BFR也可能诱导皮质运动改变、肌肉卫星细胞的基因调控和激素增加,以改善肌肉力量和生长 [23] [24] 。随后的合成代谢变化是由于细胞内信号和蛋白质合成转变为局部细胞环境中激素和皮质运动的变化。这些代谢途径是在低负荷或低阻力训练中导致生理变化的原因,而这些变化曾经被认为只有在高负荷或高阻力训练中才能实现 [24] 。尽管最近的文献越来越多地研究了BFR过程中微细胞和大细胞水平发生的基础科学,但需要进一步的数据来充分阐明BFR应用方式的生理反应机制。

3. BFR对肌肉的影响

如前所述,BFR训练试图通过增加糖酵解需求来利用低氧张力环境来锻炼骨骼肌,从而使代谢产物转向有利于合成代谢途径一些研究支持这种向合成代谢途径的转变,在使用BFR进行低阻力训练后增加肌肉质量和力量 [25] [26] [27] [28] [29] 。总之,这导致II型骨骼肌纤维的使用增加,代谢应激增加,肌肉水平的一氧化氮产生增加。这些都与增强肌肉力量的能力有关 [30] 。

一些研究已经确定了BFR对肌肉的好处。Yamanaka等人 [31] [32] [33] [34] 发现,与未使用BFR的大学生橄榄球运动员相比,使用BFR的大学生橄榄球运动员的1次重复卧推最大值和胸围显著增加。这可能是由于在不影响耐力表现的情况下,BFR训练增加了紧张状态下的时间。Madarame等人 [35] 比较了在低强度、慢速的BFR阻力运动后上肢和下肢的血液样本。乳酸、去甲肾上腺素、睾酮和胰岛素样生长因子-1浓度也有类似的增加;然而,下肢训练导致生长激素浓度显著增加,这对训练中的肌肉肥大是有利的。此外,在提升阶段,BFR在厌氧强化方面的好处是机械优势。Wilk等人 [36] 比较了无BFR、窄BFR (4厘米袖带)和宽BFR (10厘米袖带)在7周内对高阻力负荷(最多1次重复的70%)反应的卧推结果。作者发现,与窄BFR组和无BFR组相比,宽BFR组的峰值功率输出、平均功率输出、峰值杆速度和平均杆速度均显著高于窄BFR组。然而,作者没有发现窄BFR组和无BFR组在峰值功率输出、平均功率输出、峰值杆速度和平均杆速度方面存在差异。作者得出结论,与窄BFR相比,宽BFR在偏心提升阶段产生更大的机械弹性能,尽管袖带不影响关节空间,但在压紧阶段,窄BFR可以随后坐力。回顾文章2023年11月/12月,Koc等人最近进行了一项系统综述,指出了肌肉力量和质量的益处,确定了股四头肌力量和质量的益处,而不会对ACL移植物松弛产生不利影响,再次强调了BFR方法潜在的合成代谢作用。最近,Smith等人 [34] 和Perera等人 [33] 在他们的系统综述中强调,BFR通过适应性地增加最大耗氧量和血乳酸积累的开始,在耐力运动员的有氧调节中也证明了益处。Chen等人 [37] 研究了在8周的训练计划中,有和没有BFR的间歇跑步训练对最大跑步表现、肌肉耐力和等速肌肉力量的影响。在8周的训练后,使用BFR的运动员在最大跑步表现、等速膝关节伸肌和屈肌力量以及膝关节伸肌耐力方面都有了显著的提高。重要的是,对BFR的反应可能会受到对厌氧状态生理敏感性变化的挑战。Takada等人 [38] 通过比较有和没有BFR的高阻力和低阻力跖屈运动,发现耐力跑者在阻力运动中对由BFR引起的肌肉压力的反应可能比短跑运动员更灵敏。作者发现,与短跑运动员相比,耐力跑者表现出更大的肌肉代谢压力,通过增加肌肉内磷酸肌酸和降低肌肉内pH值来测量。此外,在耐力跑者中,有BFR的低强度运动显示肌肉压力等于或优于没有BFR的高强度运动,但在短跑运动员中则不然。Jessee等人 [39] 也证明了这一点,他们发现,低负荷阻力与80%肢体闭塞压力下的BFR相结合,随着时间的推移,耐力表现有所提高。他们对这一现象的假设是,血液流动的减少可能对耐力运动员的肌肉锻炼有更大的影响,因为它改善了向组织的氧气输送,I型骨骼肌纤维密度更高,无氧条件下糖酵解代谢能力下降。

最近的文献表明,BFR可能通过诱导合成代谢肌肉反应而有益于肌肉肥大和力量,并且可能在无氧和有氧运动模式中都有效。需要进一步的工作来确定BFR对肌肉系统的影响,先前的研究和目前关于肌肉影响的研究在推理和结果上都是支持的。

4. 术前康复对术后ACLR预后的影响

使用术前康复来改善术后ACLR的预后已有文献报道 [40] [41] [42] [43] [44] 。康复方案已经到位,以减少住院时间,从而降低患者的成本,包括围手术期疼痛管理和术后早期活动。术后恢复常伴有持续的肌肉萎缩,导致术后大约3年的功能缺陷,建议BFR来改善肌肉肥大、力量和步态力学;因此,其在术前康复中的作用已引起人们的兴趣,最近的两项研究检查了BFR在术前的作用 [45] 。Glattke [46] 的一项研究检查了术前2周两次治疗的效果,测量了术后肌肉和步态的变化。分为两组:实验组和假手术组,分别为下肢闭塞压力的60%和20%。在低强度BFR训练中,60%的闭塞阈值已被证明是一个安全的闭塞水平,20%的闭塞已被证明可以在不闭塞动脉的情况下保持适当的袖带放置结果显示,两组在术前和术后时间点通过手测力仪测量的股四头肌力量、腿压力量、股四头肌肥大和步态速度方面都有统计学上显著的改善。值得注意的是,与对照组相比,实验组术后股四头肌力量的立即下降幅度更大,但在术后4周时,股四头肌横截面积的恢复速度也更快;然而,在8周时,两组之间的力量和其他功能测量没有差异,作者的结论是,他们术前2周的低强度BFR方案在力量或肌肉肥大方面没有统计学上显著的改变。Tramer等人 [47] 也检查了术前BFR,让患者在手术前2周内每周完成5次家庭运动。他们使用手持式测功机测量首次门诊就诊和手术当天坐式腿伸展时的峰值力、平均力和达到峰值力的时间,并采用患者报告结果测量系统–身体功能评分来评估功能测量。与Glattke相似的是,作者发现各组之间没有显著差异。

此外,Wengle等人的一项系统综述和荟萃分析包括两项检查术前BFR使用的研究。两项研究均采用止血带,闭塞压为150 mmHg。结果包括股四头肌力量、耐力、横截面积以及功能评分 [43] [44] 。系统评价和荟萃分析强调了手术后可能对肌肉耐力、激活和灌注的短期影响,但对肌肉力量的影响有限,并质疑了获得最大治疗效果所需的最小治疗次数 [43] [44] 。尽管作者承认,目前支持预估的证据有限。他们认为,全膝关节置换术后增加股四头肌力量的已知益处表明,BFR潜在地增强肌肉力量的能力可能对其他膝关节手术有益。

关于ACLR术前使用BFR的文献是有限的,目前的许多文献是最近才发表的。目前,术前使用BFR的可重复和可复制的益处尚未显示,目前的证据表明术前BFR组和非BFR组之间没有差异。

5. BFR对ACLR术后康复的作用

有更多的文献研究BFR在ACLR术后康复中的作用。最近,Jack等人 [48] 检查了32例接受骨–髌骨–骨自体移植ACLR的患者。将患者分为两组:无BFR的对照组和接受80%肢体闭塞压力的BFR治疗组。采用双能x线吸收扫描测量骨密度、瘦肌肉量和骨量,并在术后8周和12周测量两组之间的额外功能评分。恢复运动被定义为在物理治疗期间通过功能测试。作者发现,只有非BFR对照组在术后6周和12周的瘦肌肉量和骨量有统计学意义上的下降,骨密度有统计学意义上的下降。两组之间的功能评分相似,尽管BFR组恢复运动的时间更早。最近的几项系统综述也评估了BFR在ACLR术后康复中的现有证据。Charles等人 [49] 检查了四个中等质量的研究,用GRADE量表定义。其中三项研究显示,在低强度的BFR阻力训练后,股骨横截面积增加。Dutaillis等人 [50] 在他们的系统回顾中,由最佳证据综合决定的六个中等等级的研究。他们的结论是,有适度的证据表明,以偏心为基础的锻炼会增加股四头肌的大小。然而,传统和BFR方案显示出相互矛盾的结果,可能是由于用于确定肌肉肥大或萎缩的不同成像方式之间的异质性。在另一项系统回顾和荟萃分析中,Nitzsche等人 [51] 检查了10项随机对照试验,包括386名患者,并发现与传统的高负荷和低负荷阻力训练相比,低负荷BFR阻力训练在力量方面没有显著的优势,无论是开放的还是封闭的动力链。他们还发现,低负荷抗阻训练BFR组与高负荷和低负荷常规抗阻训练组在肌肉体积和疼痛方面没有差异。相比之下,在他们的系统回顾和荟萃分析中,Wengle等人确定了肌肉量和力量的益处。然而,他们指出,目前在重建移植物选择、患者选择和方案方面存在大量差异,限制了当前文献的普遍性,并可能引入混淆变量。

值得注意的是,在目前研究BFR在ACLR中使用的文献中,移植物选择是高度可变的。一些人认为骨–髌骨–骨和股四头肌肌腱移植可能比其他移植造成更大的股四头肌萎缩;然而,研究表明,通过适当的康复,使用这些移植物可以预防股四头肌无力 [9] [52] 。目前尚不清楚移植物选择如何影响术后BFR的疗效,尽管移植物的完整性似乎没有受到影响,这表明需要进一步研究 [29] [53] 。

与术前使用一样,关于ACLR术后使用BFR的文献也存在矛盾。尽管最近许多关于术后BFR的文献表明,与ACLR后的非BFR康复相比,BFR的真正益处或优势还需要更多的高质量研究来确定。

6. BFR标准化的方案

在ACLR康复中使用BFR没有标准化的方案。在文献中存在应用、练习和频率的变化。在整个文献中都注意到,使用基于70%到80% 1次最大重复的比例负荷,这与美国运动医学学院发布的最佳阻力训练实践指南一致,以实现力量和耐力的目标。Hylden等 [54] 对术后至少3个月仍存在股四头肌和/或腘绳肌无力的7例患者进行了6次治疗(每周3天,持续2周) BFR治疗。无BFR时最大重复次数为1次。他们做了三组练习(膝关节伸展,腿部按压,反向腿部按压),最多重复20%,做了四组失败,中间休息30秒。当将BFR应用于力量训练方案时,可以理解这种方式可以在20%的肢体咬合压力下提高肌肉力量和耐力,而这种变化通常只有当一个人在不戴袖带的情况下以80%的强度进行训练时才会出现。对于袖带的位置和大小,两个研究小组分别使用了轮廓型气动止血带袖带和压缩袖带,宽度分别为14厘米和11.5厘米 [43] [55] 。通常将袖带放置在大腿最近端,以减少动脉血流,而不应将袖带放置在远端 [47] [56] 。尽管先前的研究报道了绝对压力阈值(毫米汞柱)可以达到足够的生理反应,但目前的大部分文献建议50%的最小或80%的最大肢体闭塞压力,以避免四肢完全闭塞的风险 [23] [57] [58] 。最近,Jack等 [48] 在ACLR术后患者的动脉闭塞压降低80%的情况下实现了受限血流,Tramer等 [47] 和Khalil等 [59] 在ACLR术后检查股四头肌功能的研究中也做到了这一点。然而,这在文献中是高度异质性的,一组研究人员使用低至50%的肢体闭塞 [60] 。康复的地点在不同的研究之间也有所不同,一些研究结合了正式的物理治疗课程与患者教育和独立的家庭康复课程,频率从每天一次到两次到每周最多六次,在手术后1天到16周之间 [18] [19] [43] [44] [48] [61] 。Lu等人在最近的系统综述中进一步强调了这一点,他们引用了纳入研究的各种方案中使用的130至238毫米汞柱绝对压力范围 [43] [44] [55] [62] [63] [64] 。然而,必须注意病人的特征,如解剖结构、血压和疼痛耐受性可能会混淆结果。

同样,锻炼的动作和方式也各不相同。在Jack等人 [48] 最近的研究中,在他们为期12周的康复方案中,负重有所增加,从股四头肌收缩开始,发展到闭式膝关节伸展、腿卷曲、双侧和单腿按压、深蹲或弓步。负荷是通过测试对侧腿进行1次最大重复来确定的,负重练习以1次最大重复的20%进行。使用基于1次最大重复的比例负荷在文献中很常见,其他作者在低负荷练习中使用不到30%的负荷,但在他们的协议中的某些点将负荷增加到高达70%的1次最大重复 [19] [55] [65] 。一些患者在膝关节屈曲时比在膝关节伸直时更能改善其峰值扭矩,而膝关节伸直时的改善不太一致,但所有患者的平均功率输出和总功都有改善,这是用Biodex测功仪测量的。Lu等人在最近的一项系统综述中强调了所使用的其他运动,范围从无负荷运动(如股四头肌收缩)到各种负重膝盖伸展、膝盖弓步、半深蹲和腿部按压 [43] [44] [55] [62] [63] 。其他研究人员也使用了阻力训练、有氧训练、神经肌肉刺激和被动应用BFR [66] [67] 。Telfer等人 [68] 也强调了如何使用更多的增强式运动。他们在一个200毫米的箱子上进行踏步练习,然后以大约每4秒一次的速度踩到未受伤的腿上。这个过程包括30个加速运动,然后30秒休息,然后是三组15个加速运动,每组休息一次。这些实验是在体重下完成的,没有额外的负荷。

同样,康复的频率也有很大的差异。Patterson等人 [69] 实施的频率是,如果康复计划超过3周,每周2~3次;如果康复计划在1~3周之间,每天1~2次。Wengle等人指出,尽管频率变化很大,但目前大多数研究都使用了这些推荐频率。

缺乏建立和标准化的方案,包括运动处方、最佳肢体闭塞压力和频率被认为是广泛采用BFR的障碍。从本质上讲,目前的文献中BFR协议的所有方面都有所不同,这对于没有在自己的实践中使用BFR的提供者来说可能是令人生畏的。需要进一步的研究来确定这种模式的标准化执行。

7. BFR在ACLR围手术期的潜在副作用

BFR在ACLR康复期的潜在并发症包括血栓栓塞和血管事件,疼痛和感觉改变 [70] [71] [72] 。然而,最近的文献表明,这些副作用似乎很小,并且与传统的力量训练康复方法相比,可能没有增加风险 [73] [74] [75] 。在2018年的一篇综述中,Brandner等人 [70] 指出,在初始BFR和延长BFR实施后,凝血指标没有增加,但建议当患者有不稳定高血压、凝血功能障碍和各种其他疾病时要谨慎相比之下,其他研究报道BFR和轻负荷阻力运动后纤维蛋白溶解增加 [76] [77] [78] 。一些作者使用双工超声评估ACLR合并BFR后血栓形成情况,发现治疗组与非BFR对照组之间无差异 [79] 。Hylden等人 [54] 集中研究了7名患者,他们只经历了立即的肌肉酸痛,并在下一次治疗中得到解决。在Takarada等人16和Ohta等人的两项不同的研究中,63例在ACLR术后康复期间使用BFR未报告不良事件,这表明它可能具有最小的不良事件。2022年的一项试点研究评估了ACLR后BFR训练的安全性,并报告无皮下出血或深静脉血栓形成。作者只报告了轻微的副作用,如止血带部位瘙痒、短暂的下肢感觉异常(可自行消退)和短暂性头晕 [80] 。

总的来说,围手术期BFR的耐受性良好,副作用最小。大多数被引用的副作用都是独立解决的,对患者的不适最小。

8. 小结及展望

BFR是ACLR围手术期相对较新的辅助手段。支持者认为,在低负荷刺激下,它有可能增强有益的生理变化,如肌肉肥大和力量。目前的理解似乎表明BFR可能改变细胞和细胞的生化环境、组织水平,诱导细胞信号通路的改变,改变蛋白质合成,增强肌肉功能。最近的研究似乎表明,ACLR围手术期的BFR可能会增加肌肉肥厚和肌肉力量,并改善功能评分,尽管在试图确定BFR是否优于常规康复时,结果仍不一致。继续努力研究ACLR的最佳术前和术后康复方案,以建立更标准的持续时间、方式和使用频率。目前,BFR似乎是一种低风险的方式,副作用最小且短暂。

目前的文献表明,BFR作为一种模式具有令人兴奋的潜力,但需要进一步的研究来阐明更准确的生理过程,完整的安全性,以及改良或标准化的手术和康复方案。同样,如果希望广泛实施,还需要进一步的研究来证明其优于传统康复方案。考虑到前交叉韧带损伤和随后的ACLR的高发生率,BFR可能会继续作为ACLR的一种康复方式进行研究,促进对其效果的理解。

参考文献

[1] Gornitzky, L.L., et al. (2016) Sport-Specific Yearly Risk and Incidence of Anterior Cruciate Ligament Tears in High School Athletes. American Journal of Sports Medicine, 44, 2716-2723.
https://doi.org/10.1177/0363546515617742
[2] Lyman, S., Koulouvaris, P., Sherman, S., et al. (2009) Epidemiology of Anterior Cruciate Ligament Reconstruction: Trends, Readmissions, and Subsequent Knee Surgery. Journal of Bone & Joint Surgery American Volume, 91, 2321-2328.
https://doi.org/10.2106/JBJS.H.00539
[3] Kim, S., Bosque, J., Meehan, J.P., et al. (2011) Increase in Outpatient Knee Arthroscopy in the United States: A Comparison of National Surveys of Ambulatory Surgery, 1996 and 2006. Journal of Bone & Joint Surgery American Volume, 93, 994-1000.
https://doi.org/10.2106/JBJS.I.01618
[4] Leathers, M.P., Merz, A., et al. (2015) Trends and Demographics in Anterior Cruciate Ligament Reconstruction in the United States. The Journal of Knee Surgery, 28, 390-394.
https://doi.org/10.1055/s-0035-1544193
[5] Mall, N.A., et al. (2014) Incidence and Trends of Anterior Cruciate Ligament Reconstruction in the United States. American Journal of Sports Medicine, 42, 2363-2370.
https://doi.org/10.1177/0363546514542796
[6] Musahl, V. and Karlsson, J. (2019) Anterior Cruciate Ligament Tear. The New England Journal of Medicine, 380, 2341-2348.
https://doi.org/10.1056/NEJMcp1805931
[7] Toale, J.P., Hurley, E.T, Hughes, A.J., et al. (2021) The Majority of Athletes Fail to Return to Play Following Anterior Cruciate Ligament Reconstruction Due to Reasons Other than the Operated Knee. Knee Surgery, Sports Traumatology, Arthroscopy, 29, 3877-3882.
https://doi.org/10.1007/s00167-020-06407-5
[8] Paschos, N.K. (2017) Anterior Cruciate Ligament Reconstruction and Knee Osteoarthritis. World Journal of Orthopedics, 8, 212-217.
https://doi.org/10.5312/wjo.v8.i3.212
[9] Wengle, L., Migliorini, F., Leroux, T., et al. (2021) The Effects of Blood Flow Restriction in Patients Undergoing Knee Surgery: A Systematic Review and Meta-Analysis. The American Journal of Sports Medicine, 50, 2824-2833.
https://doi.org/10.1177/03635465211027296
[10] Rudolph, K.S., Axe, M.J., Buchanan, T.S., et al. (2001) Dynamic Stability in the Anterior Cruciate Ligament Deficient Knee. Knee Surgery, Sports Traumatology, Arthroscopy, 9, 62-71.
https://doi.org/10.1007/s001670000166
[11] Wilk, K.E. and Arrigo, C.A. (2016) Preoperative Phase in the Rehabilitation of the Patient Undergoing Anterior Cruciate Ligament Reconstruction. Operative Techniques in Sports Medicine, 24, 12-20.
https://doi.org/10.1053/j.otsm.2015.10.003
[12] Grindem, H., Granan, L.P., Risberg, M.A., et al. (2015) How Does a Combined Preoperative and Postoperative Rehabilitation Programme Influence the Outcome of ACL Reconstruction 2 Years after Surgery? A Comparison between Patients in the Delaware-Oslo ACL Cohort and the Norwegian National Knee Ligament Registry. British Journal of Sports Medicine, 49, 385-389.
https://doi.org/10.1136/bjsports-2014-093891
[13] Cavanaugh, J.T. and Powers, M. (2017) ACL Rehabilitation Progression: Where Are We Now? Current Reviews in Musculoskeletal Medicine, 10, 289-296.
https://doi.org/10.1007/s12178-017-9426-3
[14] Ebert, J.R., Edwards, P., Yi, L., et al. (2017) Strength and Functional Symmetry Is Associated with Post-Operative Rehabilitation in Patients Following Anterior Cruciate Ligament Reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 26, 2353-2361.
https://doi.org/10.1007/s00167-017-4712-6
[15] Miller, B.C., Tirko, A.W., Shipe, J.M., et al. (2021) The Systemic Effects of Blood Flow Restriction Training: A Systematic Review. International Journal of Sports Physical Therapy, 16, 978-990.
https://doi.org/10.26603/001c.25791
[16] Takarada, Y., Sato, Y. and Ishii, N. (2002) Effects of Resistance Exercise Combined with Vascular Occlusion on Muscle Function in Athletes. European Journal of Applied Physiology, 86, 308-314.
https://doi.org/10.1007/s00421-001-0561-5
[17] DePhillipo, N.N., Kennedy, M.I., Aman, Z.S., et al. (2018) The Role of Blood Flow Restriction Therapy Following Knee Surgery: Expert Opinion. Arthroscopy: The Journal of Arthroscopic and Related Surgery, 34, 2506-2510.
https://doi.org/10.1016/j.arthro.2018.05.038
[18] Luke, H., Paton, B., et al. (2017) Blood Flow Restriction Training in Clinical Musculoskeletal Rehabilitation: A Systematic Review and Meta-Analysis. British Journal of Sports Medicine, 51, 1003-1011.
https://doi.org/10.1136/bjsports-2016-097071
[19] Hughes, L., Rosenblatt, B., Paton, B., et al. (2018) Blood Flow Restriction Training in Rehabilitation Following Anterior Cruciate Ligament Reconstructive Surgery: A Review. Techniques in Orthopaedics, 33, 106-113.
https://doi.org/10.1097/BTO.0000000000000265
[20] Hargreaves, M. and Spriet, L.L. (2020) Skeletal Muscle Energy Metabolism during Exercise. Nature Metabolism, 2, 817-828.
https://doi.org/10.1038/s42255-020-0251-4
[21] Vanwye, W.R., Weatherholt, A.M. and Mikesky, A.E. (2017) Blood Flow Restriction Training: Implementation into Clinical Practice. International Journal of Exercise Science, 10, 649-654.
[22] Godfrey, R.J., Madgwick, Z. and Whyte, G.P. (2003) The Exercise-Induced Growth Hormone Response in Athletes. Sports Medicine, 33, 599-613.
https://doi.org/10.2165/00007256-200333080-00005
[23] Martin, P.M., Bart, R.M., Ashley, R.L., et al. (2022) An Overview of Blood Flow Restriction Physiology and Clinical Considerations. Current Sports Medicine Reports, 21, 123-128.
https://doi.org/10.1249/JSR.0000000000000948
[24] Hedt, C., Mcculloch, P.C., Harris, J.D., et al. (2022) Blood Flow Restriction Enhances Rehabilitation and Return to Sport: The Paradox of Proximal Performance. Arthroscopy, Sports Medicine, and Rehabilitation, 4, E51-E63.
https://doi.org/10.1016/j.asmr.2021.09.024
[25] Yasuda, T., Ogasawara, R., Sakamaki, M., Ozaki, H., Sato, Y. and Abe, T. (2011) Combined Effects of Low-Intensity Blood Flow Restriction Training and High-Intensity Resistance Training on Muscle Strength and Size. European Journal of Applied Physiology, 111, 2525-2533.
https://doi.org/10.1007/s00421-011-1873-8
[26] Trofa, D.P., Obana, K.K., Herndon, C.L., et al. (2020) The Evidence for Common Nonsurgical Modalities in Sports Medicine, Part 2: Cupping and Blood Flow Restriction. JAAOS: Global Research and Reviews, 4, e1900105.
https://doi.org/10.5435/JAAOSGlobal-D-19-00105
[27] Fujita, S., Abe, T., Drummond, M.J., et al. (2007) Blood Flow Restriction During Low-Intensity Resistance Exercise Increases S6K1 Phosphorylation and Muscle Protein Synthesis. Journal of Applied Physiology, 103, 903-910.
https://doi.org/10.1152/japplphysiol.00195.2007
[28] Wortman, R.J., Brown, S.M., Savage-Elliott, I., et al. (2021) Blood Flow Restriction Training for Athletes: A Systematic Review. The American Journal of Sports Medicine, 49, 1938-1944.
https://doi.org/10.1177/0363546520964454
[29] Koc, B.B., Truyens, A., Heymans, M.J.L.F., Jansen, E.J.P. and Schotanus, M.G.M. (2022) Effect of Low-Load Blood Flow Restriction Training after Anterior Cruciate Ligament Reconstruction: A Systematic Review. International Journal of Sports Physical Therapy, 17, 334-346.
https://doi.org/10.26603/001c.33151
[30] Scott, B.R., Loenneke, J.P., Slattery, K.M., et al. (2016) Blood Flow Restricted Exercise for Athletes: A Review of Available Evidence. Journal of Science & Medicine in Sport, 19, 360-367.
https://doi.org/10.1016/j.jsams.2015.04.014
[31] Yamanaka, T., Farley, R.S. and Caputo, J.L. (2012) Occlusion Training Increases Muscular Strength in Division IA Football Players. Journal of Strength and Conditioning Research, 26, 2523-2529.
https://doi.org/10.1519/JSC.0b013e31823f2b0e
[32] Gepfert, M., Jarosz, J., Wojdaa, G., et al. (2021) Acute Impact of Blood Flow Restriction on Strength-Endurance Performance during the Bench Press Exercise. Biology of Sport, 38, 653-658.
https://doi.org/10.5114/biolsport.2021.103726
[33] Perera, E., Zhu, X.M., Horner, N.S., et al. (2022) Effects of Blood Flow Restriction Therapy for Muscular Strength, Hypertrophy, and Endurance in Healthy and Special Populations: A Systematic Review and Meta-Analysis. Clinical Journal of Sport Medicine, 32, 531-545.
https://doi.org/10.1097/JSM.0000000000000991
[34] Smith, N.D.W., Scott, B.R., Girard, O., et al. (2021) Aerobic Training with Blood Flow Restriction for Endurance Athletes: Potential Benefits and Considerations of Implementation. The Journal of Strength & Conditioning Research, 36, 3541-3550.
https://doi.org/10.1519/JSC.0000000000004079
[35] Madarame, H., Sasaki, K. and Ishii, N. (2010) Endocrine Responses to Upper-and Lower-Limb Resistance Exercises with Blood Flow Restriction. Acta Physiologica Hungarica, 97, 192-200.
https://doi.org/10.1556/APhysiol.97.2010.2.5
[36] Wilk, M., Krzysztofik, M., Filip, A., et al. (2020) Short-Term Blood Flow Restriction Increases Power Output and Bar Velocity during the Bench Press. The Journal of Strength and Conditioning Research, 36, 2082-2088.
https://doi.org/10.1519/JSC.0000000000003649
[37] Chen, Y.-T., Hsieh, Y.-Y., Ho, J.-Y., et al. (2021) Running Training Combined with Blood Flow Restriction Increases Cardiopulmonary Function and Muscle Strength in Endurance Athletes. The Journal of Strength and Conditioning Research, 36, 1228-1237.
https://doi.org/10.1519/JSC.0000000000003938
[38] Takada, S., Okita, K., Suga, T., et al. (2012) Blood Flow Restriction Exercise in Sprinters and Endurance Runners. Medicine & Science in Sports & Exercise, 44, 413-419.
https://doi.org/10.1249/MSS.0b013e31822f39b3
[39] Jessee, M.B., Buckner, S.L., Mouser, J.G., et al. (2018) Muscle Adaptations to High-Load Training and Very Low-Load Training with and without Blood Flow Restriction. Frontiers in Physiology, 9, Article 1448.
https://doi.org/10.3389/fphys.2018.01448
[40] Shaarani, S.R., O’Hare, C., Quinn, A., Moyna, N., Moran, R. and O’Byrne, J.M. (2013) Effect of Prehabilitation on the Outcome of Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 41, 2117-2127.
https://doi.org/10.1177/0363546513493594
[41] Carter, H.M., Littlewood, C., Webster, K.E., et al. (2020) The Effectiveness of Preoperative Rehabilitation Programmes on Postoperative Outcomes Following Anterior Cruciate Ligament (ACL) Reconstruction: A Systematic Review. BMC Musculoskeletal Disorders, 21, Article No. 647.
https://doi.org/10.1186/s12891-020-03676-6
[42] Cunha, J. and Solomon, D.J. (2022) ACL Prehabilitation Improves Postoperative Strength and Motion and Return to Sport in Athletes. Arthroscopy, Sports Medicine, and Rehabilitation, 4, E65-E69.
https://doi.org/10.1016/j.asmr.2021.11.001
[43] Žargi, T., Drobnic, M., Stražar, K. and Kacin, A. (2018) Short-Term Preconditioning with Blood Flow Restricted Exercise Preserves Quadriceps Muscle Endurance in Patients after Anterior Cruciate Ligament Reconstruction. Frontiers in Physiology, 9, Article 1150.
https://doi.org/10.3389/fphys.2018.01150
[44] Grapar Zargi, T., Drobnic, M., Jkoder, J., Strazar, K. and Kacin, A. (2016) The Effects of Preconditioning with Ischemic Exercise on Quadriceps Femoris Muscle Atrophy Following Anterior Cruciate Ligament Reconstruction: A Quasi-Randomized Controlled Trial. European Journal of Physical and Rehabilitation Medicine, 52, 310-320.
[45] Reilly, K.A., Beard, D.J., Barker, K.L., et al. (2005) Efficacy of an Accelerated Recovery Protocol for Oxford Unicompartmental Knee Arthroplasty—A Randomised Controlled Trial. The Knee, 12, 351-357.
https://doi.org/10.1016/j.knee.2005.01.002
[46] Glattke, K. (2022) Low-Intensity Blood Flow Restriction Training as a Preoperative Rehabilitative Modality to Improve Postoperative Outcomes for Anterior Cruciate Ligament Reconstruction. Ph.D. Thesis, Arizona State University, Tempe.
https://www.proquest.com/dissertations-es/low-intensity-blood-flow-restriction-training-as/docview/2668866316/se-2?accountid=147035
[47] Tramer, J.S., Khalil, L.S., Jildeh, T.R., et al. (2023) Blood Flow Restriction Therapy for 2 Weeksprior to Anterior Cruciate Ligament Reconstruction Did Not Impact Quadriceps Strength Compared to Standard Therapy. Arthroscopy, 39, 373-381.
https://doi.org/10.1016/j.arthro.2022.06.027
[48] Jack, R.A., Lambert, B.S., Hedt, C.A., Delgado, D., Goble, H. and McCulloch, P.C. (2023) Blood Flow Restriction Therapy Preserves Lower Extremity Bone and Muscle Mass after ACL Reconstruction. Sports Health, 15, 361-371.
https://doi.org/10.1177/19417381221101006
[49] Charles, D., White, R., Reyes, C., et al. (2020) A Systematic Review of the Effects of Blood Flow Restriction Training on Quadriceps Muscle Atrophy and Circumference Post ACL Reconstruction. International Journal of Sports Physical Therapy, 15, 882-891.
https://doi.org/10.26603/ijspt20200882
[50] Dutaillis, B., Timmins, R.G. and Lathlean, T.J.H. (2021) Quadriceps Muscle Size Changes Following Exercise in Anterior Cruciate Ligament Reconstructed Limbs: A Systematic Review. Translational Sports Medicine, 4, 859-871.
https://doi.org/10.1002/tsm2.290
[51] Nitzsche, N., Stuber, A., Tiede, S., et al. (2021) Reply to Letter to the Editor Concerning the Article: The Effectiveness of Blood-Flow Restricted Resistance Training in the Musculoskeletal Rehabilitation of Patients with Lower Limb Disorders: A Systematic Review and Meta-Analysis. Clinical Rehabilitation, 35, 1644-1645.
https://doi.org/10.1177/02692155211014110
[52] Han, H.S., Seong, S.C., Lee, S., et al. (2008) Anterior Cruciate Ligament Reconstruction. Clinical Orthopaedics & Related Research, 466, 198-204.
https://doi.org/10.1007/s11999-007-0015-4
[53] Curran, M.T., Bedi, A., Mendias, C.L., et al. (2020) Blood Flow Restriction Training Applied with High-Intensity Exercise Does Not Improve Quadriceps Muscle Function after Anterior Cruciate Ligament Reconstruction: A Randomized Controlled Trial. The American Journal of Sports Medicine, 48, 825-837.
https://doi.org/10.1177/0363546520904008
[54] Hylden, C., Burns, T., Stinner, D.J., et al. (2015) Blood Flow Restriction Rehabilitation for Extremity Weakness: A Case Series. Journal of Special Operations Medicine, 15, 50-56.
https://doi.org/10.55460/DQOF-LTY6
[55] Hughes, L., Paton, B., Haddad, F., et al. (2018) Comparison of the Acute Perceptual and Blood Pressure Response to Heavy Load and Light Load Blood Flow Restriction Resistance Exercise in Anterior Cruciate Ligament Reconstruction Patients and Non-Injured Populations. Physical Therapy in Sport, 33, 54-61.
https://doi.org/10.1016/j.ptsp.2018.07.002
[56] Humes, C., Aguero, S., Chahla, J., et al. (2020) Blood Flow Restriction and Its Function in Post-Operative Anterior Cruciate Ligament Reconstruction Therapy: Expert Opinion. The Archives of Bone and Joint Surgery, 8, 570-574.
[57] Kawada, S. and Ishii, N. (2010) Changes in Skeletal Muscle Size, Fibre-Type Composition and Capillary Supply after Chronic Venous Occlusion in Rats. Acta Physiologica, 192, 541-549.
https://doi.org/10.1111/j.1748-1716.2007.01761.x
[58] Robergs, R.A., Ghiasvand, F. and Parker, D. (2004) Biochemistry of Exercise-Induced Metabolic Acidosis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 287, R502-R516.
https://doi.org/10.1152/ajpregu.00114.2004
[59] Khalil, L., Jildeh, T., Abbas, M., et al. (2022) Paper21: Blood Flow Restriction Therapy Improvesearly Patient Reported Outcomes Following ACL Reconstruction. Orthopaedic Journal of Sports Medicine, 10, Article 2325967121S00559.
https://doi.org/10.1177/2325967121S00559
[60] Kilgas, M.A., Lytle, L.L.M., Drum, S.N., et al. (2019) Exercise with Blood Flow Restriction to Improve Quadriceps Function Long after ACL Reconstruction. International Journal of Sports Medicine, 40, 650-656.
https://doi.org/10.1055/a-0961-1434
[61] Lu, Y., Patel, B.H., Kym, C., et al. (2020) Perioperative Blood Flow Restriction Rehabilitation in Patients Undergoing ACL Reconstruction: A Systematic Review. Orthopaedic Journal of Sports Medicine, 8, Article 2325967120906822.
https://doi.org/10.1177/2325967120906822
[62] Erik, I., Røstad, V. and Larmo, A. (2016) Intermittent Blood Flow Restriction Does Not Reduce Atrophy Following Anterior Cruciate Ligament Reconstruction. Journal of Sport and Health Science, 5, 115-118.
https://doi.org/10.1016/j.jshs.2014.12.005
[63] Ohta, H., Kurosawa, H., Ikeda, H., et al. (2003) Low-Load Resistance Muscular Training with Moderate Restriction of Blood Flow after Anterior Cruciate Ligament Reconstruction. Acta Orthopaedica Scandinavica, 74, 62-68.
https://doi.org/10.1080/00016470310013680
[64] Takarada, Y., Takazawa, H. and Ishii, N. (2000) Applications of Vascular Occlusion Diminish Disuse Atrophy of Knee Extensor Muscles. Medicine and Science in Sports and Exercise, 32, 2035-2039.
https://doi.org/10.1097/00005768-200012000-00011
[65] Kacin, A., Drobni, M., Mars, T., et al. (2021) Functional and Molecular Adaptations of Quadriceps and Hamstring Muscles to Blood Flow Restricted Training in Patients with ACL Rupture. Scandinavian Journal of Medicine & Science in Sports, 31, 1636-1646.
https://doi.org/10.1111/sms.13968
[66] Cognetti, D.J., Sheean, A.J. and Owens, J.G. (2022) Blood Flow Restriction Therapy and Its Use for Rehabilitation and Return to Sport: Physiology, Application, and Guidelines for Implementation. Arthroscopy, Sports Medicine, and Rehabilitation, 4, E71-E76.
https://doi.org/10.1016/j.asmr.2021.09.025
[67] Colapietro, M., Portnoff, B., Miller, S.J., Sebastianelli, W. and Vairo, G.L. (2023) Effects of Blood Flow Restriction Training on Clinical Outcomes for Patients with ACL Reconstruction: A Systematic Review. Sports Health, 15, 260-273.
https://doi.org/10.1177/19417381211070834
[68] Telfer, S., Calhoun, J., Bigham, J.J. Mand, S., Gellert, J.M., Hagen, M.S., Kweon, C.Y. and Gee, A.O. (2021) Biomechanical Effects of Blood Flow Restriction Training after ACL Reconstruction. Medicine and Science in Sports and Exercise, 53, 115-123.
https://doi.org/10.1249/MSS.0000000000002437
[69] Patterson, S.D., Hughes, L., Warmington, S., et al. (2019) Blood Flow Restriction Exercise Position Stand: Considerations of Methodology, Application, and Safety. Frontiers in Physiology, 10, Article 533.
https://doi.org/10.3389/fphys.2019.00533
[70] Brandner, C.R., May, A.K., Clarkson, M.J., et al. (2018) Reported Side-Effects and Safety Considerations for the Use of Blood Flow Restriction during Exercise in Practice and Research. Techniques in Orthopaedics, 33, 114-121.
https://doi.org/10.1097/BTO.0000000000000259
[71] Mason, M.J.S., Owens, J.G. and Brown, L.W.J. (2018) Blood Flow Restriction Training: Current and Future Applications for the Rehabilitation of Musculoskeletal Injuries. Techniques in Orthopaedics, 33, 71.
https://doi.org/10.1097/BTO.0000000000000301
[72] Watson, R., Sullivan, B., Stone, A., et al. (2022) Blood Flow Restriction Therapy: An Evidence-Based Approach to Postoperative Rehabilitation. JBJS Reviews, 10, e22.00062.
https://doi.org/10.2106/JBJS.RVW.22.00062
[73] Nakajima, T., Kurano, M., Iida, H., et al. (2006) Use and Safety of KAATSU Training: Results of a National Survey. International Journal of KAATSU Training Research, 2, 5-13.
https://doi.org/10.3806/ijktr.2.5
[74] Yasuda, T., Meguro, M., Sato, Y., et al. (2017) Use and Safety of KAATSU Training: Results of a National Survey in 2016. International Journal of KAATSU Training Research, 13, 1-9.
https://doi.org/10.3806/ijktr.13.1
[75] Loenneke, J.P., Wilson, J.M., Wilson, G.J., Pujol, T.J. and Bemben M.G. (2011) Potential Safety Issues with Blood Flow Restriction Training. Scandinavian Journal of Medicine & Science in Sports, 21, 510-518.
https://doi.org/10.1111/j.1600-0838.2010.01290.x
[76] Stegnar, M. and Pentek, M. (1993) Fibrinolytic Response to Venous Occlusion in Healthy Subjects: Relationship to Age, Gender, Body Weight, Blood Lipids and Insulin. Thrombosis Research, 69, 81-92.
https://doi.org/10.1016/0049-3848(93)90219-E
[77] Takano, H., Nakajima, T., Kurano, M., et al. (2007) Effects of KAATSU Training on Haemostasis in Healthy Subjects. International Journal of KAATSU Training Research, 3, 11-20.
https://doi.org/10.3806/ijktr.3.11
[78] Madarame, H., Kurano, M., et al. (2010) Effects of Low-Intensity Resistance Exercise with Blood Flow Restriction on Coagulation System in Healthy Subjects. Clinical Physiology and Functional Imaging, 30, 210-213.
https://doi.org/10.1111/j.1475-097X.2010.00927.x
[79] Tennen, D.J., Hylden, C.M., et al. (2017) Blood Flow Restriction Training after Knee Arthroscopy: A Randomized Controlled Pilot Study. Clinical Journal of Sport Medicine, 27, 245-252.
https://doi.org/10.1097/JSM.0000000000000377
[80] Prue, J., Roman, D.P., Giampetruzzi, N.G., et al. (2022) Side Effects and Patient Tolerance with the Use of Blood Flow Restriction Training after ACL Reconstruction in Adolescents: A Pilot Study. International Journal of Sports Physical Therapy, 17, 347-354.
https://doi.org/10.26603/001c.32479