ETFDH基因在结直肠癌中作用及机制的初步探索与论述
Initial Investigation and Dialogue on the Function and Mechanism of ETFDH Gene in CRC
DOI: 10.12677/acm.2024.1451477, PDF, HTML, XML, 下载: 30  浏览: 44 
作者: 冯瑶瑶:山东大学齐鲁医院检验科,山东 济南
关键词: ETFDH结直肠癌细胞代谢肿瘤免疫ETFDH Colorectal Cancer Cell Metabolism Tumor Immunity
摘要: 电子转移黄素蛋白脱氢酶(Electron Transferring Flavoprotein Dehydrogenase, ETFDH)编码的ETF-QO蛋白是一种定位于线粒体内膜的蛋白质。它介导了从黄素蛋白脱氢酶到泛醌池的电子传输,在氧化呼吸链电子转移系统中起着重要作用。ETFDH基因突变可导致常染色体隐性遗传病——多酰基辅酶A脱氢酶缺乏症(MADD)。近年来,有研究表明ETFDH基因在多种肿瘤中也发挥重要作用,在肝癌中可作为生存期评估的独立预测因子。本综述概述了ETFDH基因在肿瘤组织中的表达特点、在肿瘤细胞代谢中的特点、在结直肠癌中的作用特点、与肿瘤免疫的相关性以及其在肿瘤预后及生存期评估中的作用。在既往研究的基础上进一步探寻ETFDH基因在结直肠癌中的生物学作用及在肿瘤免疫微环境中的作用特点,从而探寻结直肠癌治疗及预后评估的新方向。
Abstract: The electron transfer flavoprotein-quinone oxidoreductase (ETF-QO), encoded by the Electron Transfer Flavoprotein Dehydrogenase (ETFDH), is a protein found in the inner mitochondrial membrane. It mediates electron transport from flavin protein dehydrogenase to ubiquinone pool and plays an important role in the electron transfer system of the oxidative respiratory chain. The mutation of the ETFDH can result in MADD, an autosomal recessive genetic disorder. Recent studies have revealed that the ETFDH gene also plays a significant role in various tumors, and can serve as an independent prognostic factor for survival in liver cancer assessments. This review provides an overview of the expression patterns of the ETFDH gene in tumor tissues, its involvement in tumor cell metabolism, its impact on colorectal cancer, its association with tumor immunity, and its contribution to tumor prognosis and survival assessment. Building upon existing research, the study delves into the ETFDH gene’s role in colorectal cancer and its influence on the tumor immune microenvironment, offering novel insights for disease management and prognosis prediction in colorectal cancer.
文章引用:冯瑶瑶. ETFDH基因在结直肠癌中作用及机制的初步探索与论述[J]. 临床医学进展, 2024, 14(5): 681-688. https://doi.org/10.12677/acm.2024.1451477

1. 引言

结直肠癌(Colorectal cancer, CRC)是全球范围内最常见的消化系统恶性肿瘤之一,也是癌症相关死亡的主要原因。根据2020年全球肿瘤数据统计分析,结直肠癌仍保持着较高的发病率和病死率,分别排在第3位和第2位 [1] 。结直肠癌的主要病理类型为腺癌,按发病特点可分为家族聚集性和散发性结直肠癌,其中约95%的结直肠癌为散发性结直肠癌 [2] 。结直肠癌的发生是多种因素相互作用的复杂过程,既有家族性聚集性肠道癌前病变诱发及癌症易感性等遗传因素,也有肠道内寄生虫感染、持久的精神紧张、饮食结构不合理等获得性因素 [3] 。结直肠癌的治疗在过去几年中取得了新的进展,分子靶向研究的成果在其中得到了应用 [4] 。然而,肿瘤细胞对药物的耐受性急需新靶点的出现。ETFDH基因编码ETF-QO,在线粒体代谢及脂肪酸代谢上发挥重要作用。既往研究显示ETFDH基因在癌症预后及生存期评估上具有提示意义。因此,深入研究ETFDH基因的特点及其在结直肠癌中的作用,有望为结直肠癌的预后评估及临床诊断治疗提供新的依据,并用于临床诊断和治疗。

2. ETFDH基因结构及作用

ETFDH基因位于4q32.1,其编码的ETF-QO是一个64 KDa的单亚基蛋白,由FAD、4Fe-4S簇和辅酶Q10三个结构域在空间上紧密结合而成 [5] [6] [7] 。氨基酸、脂肪酸等代谢过程中氧化脱下的H与FAD结合并依次沿着三个结构域将电子传递到主呼吸链的泛醌库,该路径越过了电子传递链上的复合体I和复合体II,因此可视为一个快捷的短电子传递途径(见图1) [8] 。三羧酸循环、糖酵解及β-羟基丁酸代谢途径中产生的NADH是通过复合体I进入泛醌库,其所形成的浓度梯度对ETF-QO向泛醌库传递电子具有协同作用,这种电子传递间的相互作用可能参与脂酸代谢的调节 [9] [10] 。

3. 研究现状

3.1. ETFDH突变可导致MADD

多酰辅酶A脱氢酶缺乏症(MADD)是由ETFDH突变所致的一种常染色体隐性遗传性疾病,其主要的生化表现是脂肪酸和氨基酸的代谢障碍,典型的临床表现为低血糖、代谢性酸中毒、肌张力降低等 [11] 。

Figure 1. Electron transport pattern of oxidation respiratory chain

图1. 氧化呼吸链电子传递方式图

3.2. ETFDH在肝癌中呈低表达

为了研究ETFDH与肿瘤的关系,我们在TCGA数据库中查询ETFDH基因,结果发现ETFDH在不同的肿瘤组织中具有差异性表达,且在大多数癌组织中呈显著性低表达(见图2(a))。既往研究在肝癌组织进行免疫组化分析显示,与癌旁组织相比,肝癌组织中ETFDH的表达降低,且多变量分析表明ETFDH可作为总生存期的独立预测因素,ETFDH低表达提示预后较差 [12] 。因此,上述依据对研究ETFDH在其它肿瘤中的生物学特征开拓了新方向。

(a) (b)

Figure 2. Expression difference of ETFHD in different tumor tissues and its relationship with prognosis of colorectal cancer

图2. ETFHD在不同肿瘤组织中的表达差异及其与结直肠癌预后的关系

3.3. ETFDH在结直肠癌中的表达

在TCGA数据库分析的基因表达情况,ETFDH基因在结肠癌中呈低表达,生存预后分析可以看到,在结直肠癌患者中,ETFDH低表达组的预后和生存期比高表达组明显差(见图2(b))。

4. ETFDH与肿瘤细胞代谢

细胞增殖所需的能量来源为ATP,通常有糖酵解和氧化磷酸化两种途径可供细胞生成ATP [13] 。肿瘤细胞与正常细胞有所不同,肿瘤细胞具有克隆增殖的特点,需要持续且足够的能量供应。肿瘤细胞为满足其自身增殖需要,高效摄取葡萄糖,同时改变代谢方式以适应复杂变化的体液微环境 [14] 。

ETFDH参与线粒体呼吸链中电子的传递过程,影响氧化磷酸化产生ATP。与此相关的生物化学途径是糖酵解和三羧酸循环(TCA)代谢过程中FADH2及NADPH的产生。NADH和ATP是葡萄糖代谢的主要负调节因子。Warburg效应表明,肿瘤细胞常进行有氧糖酵解,在有氧的条件下将糖酵解途径产生的丙酮酸转化为乳酸,使糖酵解处于优势,既可以为肿瘤细胞的增殖提供必需的生物合成前体物质和还原当量,又解除TCA循环对ATP生成的反馈抑制作用,使肿瘤细胞得到持续的能量供应 [15] 。

肿瘤细胞的糖酵解代谢活跃,既能源源不断地供应ATP,又创造了细胞外的酸性环境。酸性微环境可以抑制免疫细胞的聚集,从而出现免疫许可微环境,使肿瘤细胞完成免疫逃逸 [16] [17] 。乳酸的增加可以刺激巨噬细胞,使其极化到M2状态发挥抗炎作用,有利于肿瘤细胞的增殖 [18] 。乳酸还能够促使血管生成因子分泌增多,有利于血管在肿瘤组织中快速生成 [19] [20] 。乳酸还通过增强细胞侵袭相关因子的活性从而促进肿瘤细胞的生长。例如,透明质酸分泌增多,破坏肿瘤组织周围的网状结构,促使营养物质流向肿瘤细胞,进而刺激细胞的增殖和迁移;基质金属蛋白酶(MMPs)降解肿瘤微环境中的各种蛋白成分,破坏肿瘤细胞侵袭的屏障,在肿瘤细胞侵袭浸润过程中发挥重要作用 [21] [22] [23] 。

肿瘤细胞代谢重编程是由癌基因驱动的,以便能够维持肿瘤细胞的恶性增殖,应对缺氧和营养匮乏相关的代谢挑战,通过调控基因来维持其恶性增殖及扩散所需要的微环境。研究者在ETFDH突变的成纤维细胞内发现ETF-QO蛋白含量不足,观察到细胞酸化率增加,糖酵解基因表达谱被显著诱导,这说明ETFDH突变影响了线粒体能量代谢,使细胞糖酵解代谢处于优势 [24] 。

5. 线粒体氧化呼吸及ROS的产生

细胞能量代谢(Cell energy communication)主要是以碳水化合物、脂肪和蛋白质为主要原料进行能量合成。糖酵解、氧化磷酸化、脂肪酸β-氧化和氨基酸的分解代谢过程中产生的代谢物进入TCA循环,最终经氧化磷酸化作用生成ATP。

活性氧(Reactive oxygen species, ROS)是指从氧分子中衍生出来的各种分子和自由基,例如超氧阴离子( O 2 )、过氧化氢(H2O2)、羟自由基(OH)和臭氧(O3)等 [25] 。在正常的电子传递过程中,并不是所有的电子都能按照既定的路径进行传递,少量的电子会从ETC传递链中泄露出来,这些电子会与氧相互作用产生活性氧,既往研究已在哺乳动物线粒体中发现了与此相关的超氧化物( O 2 )和过氧化氢(H2O2)的位点 [26] 。一直以来,都有学者认为ROS的存在会损伤细胞,而近年来的研究表明,ROS可能是一种非常重要的第二信使,通过调节不同的信号通路影响肿瘤细胞的自噬和凋亡 [27] [28] 。因此,作为一种细胞信号分子,ROS在细胞增殖、缺氧适应及决定细胞命运等方面发挥着举足轻重的作用。但是,过量的ROS仍可能会造成不可逆的细胞损伤,甚至导致细胞死亡。

综上所述,ROS在肿瘤细胞中发挥着双重作用,而ETF-QO蛋白作为线粒体呼吸链上的成员,在电子传递过程中可能发生电子的泄露,被认为是ROS的来源,也在肿瘤细胞的增殖中起到调控作用。

6. ETFDH与肿瘤免疫

目前结直肠癌的治疗仍然以手术切除为主辅以放化疗,随着分子靶点的深入研究及应用,靶向治疗也成为结直肠癌治疗的新策略。但是,由于细胞耐药性的出现和患者自身反应性的差异,使得中晚期患者中仍有近一半会死于肿瘤转移 [29] 。肿瘤细胞形成有利于其恶性增殖的免疫逃逸微环境,通过代谢重编程的来改变微环境条件。肿瘤组织中免疫细胞的趋化和聚集可能会对肿瘤细胞的治疗和预后产生作用,因此,研究肿瘤细胞免疫反应特征以及免疫系统如何对抗肿瘤的生长和扩散,可为结直肠癌的免疫相关新型治疗策略提供详实的理论依据并开拓靶向治疗新思路。

肿瘤细胞代谢重编程使糖酵解处于优势,使细胞外环境酸化增强,诱导形成了免疫许可微环境。T淋巴细胞和B淋巴细胞是发挥抗肿瘤作用的主要免疫细胞。T细胞具有直接摧毁肿瘤细胞的能力,B细胞被激活后转化为浆细胞并产生大量的细胞因子和抗体,驱动ADCC作用和吞噬作用,此外B细胞还具有抗原提呈作用,能激活T细胞、巨噬细胞、树突状细胞等免疫活性细胞,T细胞和B细胞共存于肿瘤组织中,协同发挥抗肿瘤作用 [30] [31] 。在对抗肿瘤免疫能力进行评估时,可通过对T淋巴细胞的渗透和B淋巴细胞在肿瘤组织中的活化进行检测 [32] 。肿瘤相关巨噬细胞(TAM)是指巨噬细胞在肿瘤发生过程中出现在肿瘤微环境中,巨噬细胞是浸润在结直肠癌组织中最显著的免疫细胞,由此可以推断,肿瘤相关的巨噬细胞在抗肿瘤方面扮演着重要的角色 [33] [34] [35] 。临床上常通过淋巴细胞亚群检测来分析肿瘤治疗效果和预后,CD20+B淋巴细胞增加提示良好的预后,CD4+T细胞增多、CD8+T细胞减少提示临床预后不良 [36] [37] [38] 。中性粒细胞作为炎性反应中的主要细胞,发挥抗炎作用,维持肿瘤细胞的恶性增殖,故也在结直肠癌患者的预后评估中,用中性粒细胞与淋巴细胞的比值作为明确指标 [39] 。

在TIMER数据库中分析ETFDH基因,我们发现ETFDH与CD8+T细胞、中性粒细胞、巨噬细胞和树突状细胞存在着显著的关联,由此推测ETFDH基因与肿瘤免疫微环境密切相关(见图3)。肿瘤细胞侵入正常组织,分泌细胞因子等物质引起机体免疫反应,在结直肠癌中,ETFDH高表达可促进抗肿瘤免疫,因此也可以作为肿瘤治疗预后的检测评估指标 [40] 。我们研究ETFDH基因与肿瘤免疫的相互作用关系,可为结直肠癌的免疫治疗提供理论依据。

Figure 3. The relationship between ETFDH and tumor immune cells was analyzed

图3. 生信分析ETFDH与肿瘤免疫细胞的关系

7. ETFDH改变引起脂肪酸代谢障碍

黄素依赖性酰基辅酶A脱氢酶(ACADs)在脂肪酸β-氧化中起到重要作用,其中包含:短链(SCAD)、中链(MCAD)、长链(LCAD)、超长链(VLCAD)酰基辅酶A脱氢酶,以及同一家族的新成员ACAD10和ACAD11 [41] 。β-氧化过程中产生的部分电子通过ETF-QO经短电子传递路径进入主呼吸链的泛醌库 [42] 。ETFDH突变导致脂肪酸和氨基酸代谢紊乱,血浆中酰基肉碱增多,机体表现为代谢性酸中毒、低血糖、肌张力降低等 [43] 。在肿瘤组织中,肿瘤细胞代谢活跃,对于能量的需求也很大,ETFDH的突变或缺失可影响ATP和ROS的产生,进而可能影响肿瘤细胞代谢,这可以为针对肿瘤代谢的药物研究提供一个靶点。

8. 未来研究展望与总结

对于结直肠癌发生机制的研究报道丰富,可为研究ETFDH在结直肠癌中的作用提供线索。肿瘤细胞侵袭、转移是其恶性生物学特征的表现,基质金属蛋白酶-9 (MMP-9)可分解肿瘤组织周围的多数蛋白质,清扫肿瘤细胞迁移的屏障,在肿瘤侵袭、转移过程中扮演至关重要的角色。在未来研究中,可进一步明确ETFDH与MMP-9的关系,研究ETFDH是否在肿瘤细胞迁移中发挥作用。Wnt通路是与结直肠发生相关的信号通路,可作为研究ETFDH的目标通路之一。在肿瘤细胞能量代谢方面可以深入研究ETFDH的作用特点,探寻影响细胞代谢的信号通路机制。ETFDH基因在肿瘤中的作用机制研究很少,在复杂的肿瘤微环境中,ETFDH作为代谢通路的一份子,在各种不确定因素的应激刺激下,参与了糖酵解和氧化磷酸化的代谢重编程,还参与了脂肪酸氧化和ROS的生成,这些都与肿瘤细胞免疫密切相关。不过,这些具体机制还需要进一步研究。综上所述,ETFDH有望成为结直肠癌药物治疗的靶点,为结直肠患者生存预后评估做出预测,在临床应用中发挥作用。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] 熊玲玲, 曹艳辉. 结直肠癌病灶及癌旁组织定植菌群结构分析[J]. 医学检验与临床, 2023, 34(9): 63-65.
[3] 张雪花. CYP24A1基因多态性与结直肠息肉和结直肠癌的相关性研究[J]. 医学检验与临床, 2023, 34(2): 8-11.
[4] Mauri, G., Bonazzina, E., Amatu, A., et al. (2021) The Evolutionary Landscape of Treatment for BRAFV600E Mutant Metastatic Colorectal Cancer. Cancers, 13, Article 137.
https://doi.org/10.3390/cancers13010137
[5] Xue, Y., Zhou, Y., Zhang, K., et al. (2017) Compound Heterozygous Mutations in Electron Transfer Flavoprotein Dehydrogenase Identified in a Young Chinese Woman with Late-Onset Glutaric Aciduria Type I. Lipids in Health and Disease, 16, Article No. 185.
https://doi.org/10.1186/s12944-017-0576-5
[6] Zhang, J., Frerman, F.E. and Kim, J.J.P. (2006) Structure of Electron Transfer Flavoprotein-Ubiquinone Oxidoreductase and Electron Transfer to the Mitochondrial Ubiquinone Pool. Proceedings of the National Academy of Sciences of the United States of America, 103, 16212-16217.
https://doi.org/10.1073/pnas.0604567103
[7] Lucas, T.G., Henriques, B.J. and Gomes, C.M. (2020) Conformational Analysis of the Riboflavin-Responsive ETF: QO-P.Pro456Leu Variant Associated with Mild Multiple Acyl-CoA Dehydrogenase Deficiency. Biochimica et Biophysica Acta (BBA)—Proteins and Proteomics, 1868, Article ID: 140393.
https://doi.org/10.1016/j.bbapap.2020.140393
[8] Ghisla, S. and Thorpe, C. (2004) Acyl-CoA Dehydrogenases: A Mechanistic Overview. European Journal of Biochemistry, 271, 494-508.
https://doi.org/10.1046/j.1432-1033.2003.03946.x
[9] Frerman, F.E. (1987) Reaction of Electron-Transfer Flavoprotein Ubiquinone Oxidoreductase with the Mitochondrial Respiratory Chain. Biochimica et Biophysica Acta, 893, 161-169.
https://doi.org/10.1016/0005-2728(87)90035-1
[10] Watmough, N.J., Bindoff, L.A., Birch-Machin, M.A., et al. (1990) Impaired Mitochondrial Beta-Oxidation in a Patient with an Abnormality of the Respiratory Chain. Studies in Skeletal Muscle Mitochondria. The Journal of Clinical Investigation, 85, 177-184.
https://doi.org/10.1172/JCI114409
[11] Nilipour, Y., Fatehi, F., Sanatinia, S., et al.(2020) Multiple Acyl-Coenzyme a Dehydrogenase Deficiency Shows a Possible Founder Effect and Is the Most Frequent Cause of Lipid Storage Myopathy in Iran. Journal of the Neurological Sciences, 411, Article ID: 116707.
https://doi.org/10.1016/j.jns.2020.116707
[12] Wu, Y., Zhang, X., Shen, R., et al. (2019) Expression and Significance of ETFDH in Hepatocellular Carcinoma. PathologyResearch and Practice, 215, Article ID: 152702.
https://doi.org/10.1016/j.prp.2019.152702
[13] Deng, H., Shang, W., Wang, K., et al. (2022) Targeted-Detection and Sequential-Treatment of Small Hepatocellular Carcinoma in the Complex Liver Environment by GPC-3-Targeted Nanoparticles. Journal of Nanobiotechnology, 20, Article No. 156.
https://doi.org/10.1186/s12951-022-01378-w
[14] Pavlova, N.N. and Thompson, C.B. (2016) The Emerging Hallmarks of Cancer Metabolism. Cell Metabolism, 23, 27-47.
https://doi.org/10.1016/j.cmet.2015.12.006
[15] Wise, D.R., DeBerardinis, R.J., Mancuso, A., et al. (2008) Myc Regulates a Transcriptional Program That Stimulates Mitochondrial Glutaminolysis and Leads to Glutamine Addiction. Proceedings of the National Academy of Sciences of the United States of America, 105, 18782-18787.
https://doi.org/10.1073/pnas.0810199105
[16] Goetze, K. (2011) Lactate Enhances Motility of Tumor Cells and Inhibits Monocyte Migration and Cytokine Release. International Journal of Oncology, 39, 453-463.
https://doi.org/10.3892/ijo.2011.1055
[17] Fischer, K., Hoffmann, P., Voelkl, S., et al. (2007) Inhibitory Effect of Tumor Cell-Derived Lactic Acid on Human T Cells. Blood, 109, 3812-3819.
https://doi.org/10.1182/blood-2006-07-035972
[18] Colegio, O.R., Chu, N.Q., Szabo, A.L., et al. (2014) Functional Polarization of Tumour-Associated Macrophages by Tumour-Derived Lactic Acid. Nature, 513, 559-563.
https://doi.org/10.1038/nature13490
[19] Sonveaux, P., Copetti, T., De Saedeleer, C.J., et al. (2012) Targeting the Lactate Transporter MCT1 in Endothelial Cells Inhibits Lactate-Induced HIF-1 Activation and Tumor Angiogenesis. PLOS ONE, 7, e33418.
https://doi.org/10.1371/journal.pone.0033418
[20] Végran, F., Boidot, R., Michiels, C., et al. (2011) Lactate Influx through the Endothelial Cell Monocarboxylate Transporter MCT1 Supports an NF-κB/IL-8 Pathway That Drives Tumor Angiogenesis. Cancer Research, 71, 2550-2560.
https://doi.org/10.1158/0008-5472.CAN-10-2828
[21] Stern, R., Shuster, S., Neudecker, B.A. and Formby, B. (2002) Lactate Stimulates Fibroblast Expression of Hyaluronan and CD44: The Warburg Effect Revisited. Experimental Cell Research, 276, 24-31.
https://doi.org/10.1006/excr.2002.5508
[22] Martinez-Zaguilhn, R., Seftort, E.A., Seftort, R.E.B., et al. (1996) Acidic PH Enhances the Invasive Behavior of Human Melanoma Cells. Clinical & Experimental Metastasis, 14, 176-186.
https://doi.org/10.1007/BF00121214
[23] Rothberg, J.M., Bailey, K.M., Wojtkowiak, J.W., et al. (2013) Acid-Mediated Tumor Proteolysis: Contribution of Cysteine Cathepsins. Neoplasia, 15, 1125-1137, IN1-IN9.
https://doi.org/10.1593/neo.13946
[24] Chokchaiwong, S., et al. (2019) ETF-QO Mutants Uncoupled Fatty Acid β-Oxidation and Mitochondrial Bioenergetics Leading to Lipid Pathology. Cells, 8, Article 106.
https://doi.org/10.3390/cells8020106
[25] Yang, L.Q., Chen, M., Ren, D.L. and Hu, B. (2020) Dual Oxidase Mutant Retards Mauthner-Cell Axon Regeneration at an Early Stage via Modulating Mitochondrial Dynamics in Zebrafish. Neuroscience Bulletin, 36, 1500-1512.
https://doi.org/10.1007/s12264-020-00600-9
[26] Brand, M.D. (2016) Mitochondrial Generation of Superoxide and Hydrogen Peroxide as the Source of Mitochondrial Redox Signaling. Free Radical Biology & Medicine, 100, 14-31.
https://doi.org/10.1016/j.freeradbiomed.2016.04.001
[27] De Giusti, V.C., Caldiz, C.I., Ennis, I.L., et al.(2013) Mitochondrial Reactive Oxygen Species (ROS) as Signaling Molecules of Intracellular Pathways Triggered by the Cardiac Renin-Angiotensin II-Aldosterone System (RAAS). Frontiers in Physiology, 4, Article 126.
https://doi.org/10.3389/fphys.2013.00126
[28] Kaminskyy, V.O. and Zhivotovsky, B. (2014) Free Radicals in Cross Talk between Autophagy and Apoptosis. Antioxidants & Redox Signaling, 21, 86-102.
https://doi.org/10.1089/ars.2013.5746
[29] Galon, J., Costes, A., Sanchez-Cabo, F., et al. (2006) Type, Density, and Location of Immune Cells within Human Colorectal Tumors Predict Clinical Outcome. Science, 313, 1960-1964.
https://doi.org/10.1126/science.1129139
[30] Deschoolmeester, V., Baay, M., Lardon, F., et al. (2011) Immune Cells in Colorectal Cancer: Prognostic Relevance and Role of MSI. Cancer Microenvironment, 4, 377-392.
https://doi.org/10.1007/s12307-011-0068-5
[31] Sautès-Fridman, C., Lawand, M., Giraldo, N.A., et al. (2016) Tertiary Lymphoid Structures in Cancers: Prognostic Value, Regulation, and Manipulation for Therapeutic Intervention. Frontiers in Immunology, 7, 407-418.
https://doi.org/10.3389/fimmu.2016.00407
[32] Galon, J., Mlecnik, B., Bindea, G., et al. (2014) Towards the Introduction of the “Immunoscore” in the Classification of Malignant Tumours. The Journal of Pathology, 232, 199-209.
https://doi.org/10.1002/path.4287
[33] Locati, M., Curtale, G. and Mantovani, A. (2020) Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annual Review of Pathology: Mechanisms of Disease, 15, 123-147.
https://doi.org/10.1146/annurev-pathmechdis-012418-012718
[34] Isidro, R.A. and Appleyard, C.B. (2016) Colonic Macrophage Polarization in Homeostasis, Inflammation, and Cancer. American Journal of Physiology-Gastrointestinal and Liver Physiology, 311, G59-G73.
https://doi.org/10.1152/ajpgi.00123.2016
[35] Najafi, M., Hashemi, Goradel, N., Farhood, B., et al. (2019) Macrophage Polarity in Cancer: A Review. Journal of Cellular Biochemistry, 120, 2756-2765.
https://doi.org/10.1002/jcb.27646
[36] Mlecnik, B., Van Den Eynde, M., Bindea, G., et al. (2018) Comprehensive Intrametastatic Immune Quantification and Major Impact of Immunoscore on Survival. JNCI: Journal of the National Cancer Institute, 110, 97-108.
https://doi.org/10.1093/jnci/djx123
[37] O’Malley, G., Treacy, O., Lynch, K., et al. (2018) Stromal Cell PD-L1 Inhibits CD8 T-Cell Antitumor Immune Responses and Promotes Colon Cancer. Cancer Immunology Research, 6, 1426-1441.
https://doi.org/10.1158/2326-6066.CIR-17-0443
[38] Olesch, C., Sirait-Fischer, E., Berkefeld, M., et al. (2020) S1PR4 Ablation Reduces Tumor Growth and Improves Chemotherapy via CD8 T Cell Expansion. Journal of Clinical Investigation, 130, 5461-5476.
https://doi.org/10.1172/JCI136928
[39] Mizuno, R., Kawada, K., Itatani, Y., et al. (2019) The Role of Tumor-Associated Neutrophils in Colorectal Cancer. International Journal of Molecular Sciences, 20, Article 529.
https://doi.org/10.3390/ijms20030529
[40] 崔忠泽, 何双, 等. 基于生物信息学分析筛选结肠癌关键基因[J]. 医学信息, 2022, 35(10): 1-7.
[41] Mosegaard, S., Dipace, G., Bross, P., et al. (2020) Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism. International Journal of Molecular Sciences, 21, Article 3847.
https://doi.org/10.3390/ijms21113847
[42] Henriques, B.J., Katrine Jentoft Olsen, R., Gomes, C.M. and Bross, P. (2021) Electron Transfer Flavoprotein and Its Role in Mitochondrial Energy Metabolism in Health and Disease. Gene, 776, Article ID: 145407.
https://doi.org/10.1016/j.gene.2021.145407
[43] Tummolo, A., Leone, P., Tolomeo, M., et al. (2022) Combined Isobutyryl-CoA and Multiple Acyl-CoA Dehydrogenase Deficiency in a Boy with Altered Riboflavin Homeostasis. JIMD Reports, 63, 276-291.
https://doi.org/10.1002/jmd2.12292