脓毒症急性肾损伤的生物标记物研究进展
Research Progress on Biomarkers of Sepsis-Induced Acute Kidney Injury
DOI: 10.12677/acm.2024.1451415, PDF, HTML, XML, 下载: 41  浏览: 56 
作者: 邓翔宇*, 薛建江#:重庆医科大学第四临床学院,重庆
关键词: 脓毒症急性肾损伤生物标志物早期诊断Sepsis-Induced Acute Kidney Injury Biomarkers Early Diagnosis
摘要: 脓毒症(sepsis)是由感染引起的全身炎症反应综合征,可导致危及生命的器官功能障碍。脓毒症急性肾损伤(SA-AKI)是危重患者的常见并发症,发病率和死亡率居高不下,早期诊断SA-AKI对临床医师指导治疗和避免肾脏进一步损害至关重要。但至今SA-AKI的早期诊断仍存在许多不足,如何早发现早诊治一直是学术界研究的热点。近年来,随着对SA-AKI病理生理机制的深入研究,一些新兴的潜在生物标记物被发现。本篇综述旨在结合近年来学术界研究新进展对SA-AKI的生物标记物进行总结归纳。
Abstract: Sepsis is a systemic inflammatory response syndrome caused by infection, which can lead to life-threatening organ dysfunction. Sepsis-induced acute kidney injury (SA-AKI) is a common complication in critically ill patients with high morbidity and mortality. Early diagnosis of SA-AKI is essential for clinicians to guide treatment and avoid further kidney damage. However, there are still many deficiencies in the early diagnosis of SA-AKI. How to detect and diagnose SA-AKI as early as possible has always been a hot topic in academic research. In recent years, with the in-depth study of the pathophysiological mechanism of SA-AKI, some emerging potential biomarkers have been discovered. This review aims to summarize the biomarkers of SA-AKI based on the new progress of academic research in recent years.
文章引用:邓翔宇, 薛建江. 脓毒症急性肾损伤的生物标记物研究进展[J]. 临床医学进展, 2024, 14(5): 201-207. https://doi.org/10.12677/acm.2024.1451415

1. 引言

脓毒症(sepsis)是由感染引起的全身炎症反应综合征,可导致危及生命的器官功能障碍 [1] 。其中,AKI是最常见的器官功能障碍类型之一,通常出现在脓毒症病程早期。研究发现约50%的患者在重症监护病房环境中会发生AKI,且AKI导致其死亡率增加至30%~50% [2] [3] [4] 。现研究认为导致脓毒性急性肾损伤(SA-AKI)高死亡率的原因是SA-AKI早期诊断的缺乏,进而无法及时提供介入治疗 [5] [6] 。因此,发现有助于早期诊断SA-AKI相关的生物标志物是一个值得深入研究的课题。

SA-AKI生物标志物是机体免疫系统对感染的应答过程中产生的,理想的SA-AKI生物学标志物应具有灵敏度高、特异性好、可重复、低成本、便于检测等特征,可用于早期诊断、治疗监测及预后判断等 [7] 。SA-AKI的生物标志物层出不穷,但可用于早期诊断的高灵敏、高特异的生物学标志物却寥寥无几。本文对SA-AKI早期诊断相关的生物标志物进行总结,这对SA-AKI的早期诊断、分型、严重程度、预后判断及治疗的规划和管理都至关重要。

2. 传统标记物

2.1. 血肌酐(Scr)

Scr是肌肉在人体内代谢的产物,主要由肾小球滤过排出体外,它是衡量肾脏滤过功能的常用指标。根据脓毒症3.0版本 [1] 和KDIGO指南推荐,采用血肌酐(Scr)和尿量(UO)监测肾功以便早期诊断AKI [8] 。但在SA-AKI中,Scr因受到肾损伤后的延迟变化、肌肉代谢、蛋白摄入及疾病状态等限制,导致其对肾功能障碍的早期识别缺乏足够的灵敏度和特异性 [9] [10] 。

2.2. 尿量(UO)

UO是指24小时内机体排出体外的尿液总量。尿量的多少主要取决于肾小球的滤过率、肾小管的重吸收和稀释与浓缩功能。AKI的UO常在Scr浓度升高前下降,使其成为肾小球滤过率(GFR)的更具时间敏感性的标志物。然而,虽然UO是AKI定义的一部分 [8] ,但由于受到环境、食物种类、年龄、精神因素、活动量等影响,UO对于GFR的特异性并不高。此外,虽然持续的少尿总是与AKI有关,但在这种情况下,UO失去了作为早期指标的及时性。

2.3. 尿液镜检

尿液镜检是指通过显微镜对尿液中的细胞、管型及结晶等有形成分进行检查,通过检查可以初步评估肾脏疾病 [11] 。Bagshaw等基于AKI颗粒管型和肾小管上皮细胞数量的尿液显微镜评分已被提出用于SA-AKI的预测,其研究认为评分 ≥ 3可预测严重AKI (见表1),且与尿液肾小管损伤标志物(NGAL)表现出强相关性 [12] 。但传统的显微镜检测在AKI的早期诊断和鉴别中的应用容易发生主观变异,且缺乏足够的敏感性、特异性和常规临床应用的预测能力。

Table 1. Score table of urine microscopy

表1. 尿液镜检评分表

3. 功能标记物

3.1. 胱抑素C (CysC)

CysC是一种有核细胞产生的半胱氨酸蛋白酶抑制剂,通过抑制半胱氨酸蛋白酶的活性调节蛋白质和多肽的降解,它能够被肾小球滤过并在近端小管中重吸收和代谢。现CysC已被提出作为Scr的替代品成为肾小球滤过率变化的功能标志物 [13] ,以识别危重疾病患者的AKI,包括SA-AKI患者 [14] 。然而在重症监护环境中存在一些干扰因素,例如糖皮质激素治疗、炎症等会导致CysC水平升高。因此,特殊的疾病进程和治疗环境会使得CysC在AKI早期诊断中具有一定局限性。

3.2. 脑啡肽原(penKid)

penKid是一种由脑啡肽家族前体衍生的肽,属于脑啡肽家族一员,其广泛表达于肾脏内源性阿片受体的配体,在肾小球中可以被自由过滤,其浓度与肾小球滤过率密切相关 [15] 。新的研究数据表明,血浆penKid可以识别脓毒症患者发生KDIGO定义的功能性AKI,其诊断性能显著优于Scr [16] [17] 。Donato等研究并探讨了使用血浆penKid预测危重患者发生AKI的可能,得出penKid可能是评估肾小球功能的敏感生物标志物的结论 [15] [18] 。

4. 压力标记物

TIMP-2是一种关键的蛋白酶抑制剂,由多种细胞产生,参与调节基质金属蛋白酶的活性,在组织中发挥着重要的调控作用。胰岛素样生长因子结合蛋白7 (IGFBP7)是胰岛素超家族的生长促进肽成员,可与胰岛素样生长因子结合,调控细胞生长、增值和分化,二者是G1细胞周期停滞的诱导因子。相关研究显示,在SA-AKI初期,其上皮细胞会在G1期进入短暂的细胞周期停滞,而作为细胞周期阻滞的标志物IGFBP7和TIMP-2会发出明确信号,提示肾小管上皮细胞已经受损并停止分裂 [19] [20] ,从而有机会早发现AKI。同时有多项研究分析证实[TIMP-2]*[IGFBP7]的乘积值能准确预测SA-AKI,此法虽有较高的敏感性,但阴性预测值却较低 [21] 。目前,二者在AKI早期诊断方面的作用已经被深刻的认识,但因其只可预测患者24小时内病情变化,故极易失去诊断时机 [22] 。

5. 损伤标记物

5.1. 肾损伤分子1 (KIM-1)

KIM-1是一种I型细胞膜糖蛋白,AKI可诱导KIM-1的合成,并脱落至外周循环和尿液中,故其可作为一种新型的肾损伤标志物 [23] 。Pei等研究发现,SA-AKI患者的血清和尿液中KIM-1水平均高于无AKI的脓毒症患者,且血清和尿液中的KIM-1均可在72小时内预测SA-AKI,是AKI进展或死亡的相对较好的预测指标 [24] 。同时美国食品和药物管理局、欧洲药物管理局提出,KIM-1在SA-AKI中的高表达被认为是针对AKI的敏感生物标志物,但由于KIM-1不仅反映了AKI的损伤情况,也参与修复和再生过程,因此对患者预后和严重程度的判断都有一定的局限性 [25] 。

5.2. 中性粒细胞明胶酶相关载脂蛋白(NGAL)

NGAL是一种25kD多肽,在不同的组织中均有低浓度表达,在AKI中NGAL在转录和蛋白水平会显著上调,早在损伤后3 h尿液中就可检测到升高的NGAL,避免了传统肾功能异常检测导致的滞后时间效应,故其已成为近几年AKI标志物的研究重点 [26] [27] 。动物模型研究的蛋白质组学分析显示,uNGAL是肾脏损伤后最早的产物,优于Pngal [28] 。Si Nga等对脓毒症患者入院后48小时内的uNGAL和uCr的关系进行分析,发现二者都是AKI的良好预测因子,根据ROC分析显示,uNGAL/uCr对预测AKI具有良好的准确性(0.84)和高敏感性(75%) [29] 。尽管NGAL是新型标志物中研究得较为成熟的一种,但其在血清中和尿液中的表达与肾损伤的关系还需进一步探讨。

5.3. 血栓调节蛋白(THBD)

THBD是由血管内皮细胞分泌的,它参与了蛋白C系统的激活 [30] 。当血管内皮细胞受损时,大量的THBD被释放到血液中,因此血浆THBD水平的升高可以更好地反映血管内皮细胞的损伤。Katayama等在对2011至2016年的一家医院成人重症监护病房住院的脓毒症患者进行了回顾性分析显示,THBD是AKI的独立预测因子,其AUROC为0.758 [31] [32] 。

6. 血浆游离硫醇

硫醇是一种具有游离巯基基团的有机硫化物,可作为电子受体,通过其氧化作用中和活性氧,进而发挥抗氧化作用,成为机体抗氧化应激最重要的保护机制之一。而SA-AKI发病机制的重要贡献者就是氧化应激 [33] ,因此可以通过测量血浆游离硫醇的水平轻松可靠地监测 [34] 。Elisabeth C等人研究评估了脓毒症中血清游离硫醇的浓度,并将这些与主要的不良肾脏事件联系起来,同时回顾分析了SA-AKI患者在急诊时的血浆游离硫醇水平与住院后3个月和1年相比,急诊就诊期间的血浆游离硫醇水平较低,表明早期SA-AKI的氧化应激水平较高 [35] 。这些数据表明,氧化应激在SA-AKI的发病机制中具有明确的作用,具体反映在血浆游离硫醇水平的降低上。

7. 尿Gc-球蛋白(u-Gc)

Gc-球蛋白,由肝细胞合成,在急性肾小管损伤的情况下被越来越多地过滤到尿液中,因此尿u-Gc水平有可能预测SA-AKI。Kőszegi的研究团队采用荧光酶联免疫吸附实验(ELISA)对脓毒症患者尿液样本进行检测,并将数据与对照组进行比较,显示SA-AKI患者的u-Gc/u-Cr值高于无AKI的患者,说明尿u-Gc的检测可能对SA-AKI有预测价值,但此研究结果需要在更大规模的临床研究中去进行验证 [36] 。

8. 骨保护素(OPG)

OPG是肿瘤坏死因子受体超家族的一种可溶性的分泌型糖蛋白,主要由成骨细胞和血管内皮细胞生成。Schaalan等研究表明,与不同严重程度的脓毒症患者相比,SA-AKI患者的循环OPG显著升高。同时当OPG > 275.65 pg/mL时对SA-AKI患者的识别准确性良好(敏感性为84%,特异性为85%),其ROC分析证明,OPG具有与KIM-1相似的特异性,有作为SA-AKI的可靠生物标志物的潜力 [13] 。

9. MicroRNAs

MicroRNAs (miRNAs)是由19~23核苷酸组成的短的内源性非编码RNA,参与调节靶基因的表达 [37] 。一些miRNAs被释放到细胞外空间,并在血液、尿液和其他体液中被检测到,可作为人类疾病诊断的新型生物标志物 [38] 。在肾脏中,miRNAs参与了包括AKI在内的各种肾脏疾病的发病机制,而特异性miRNAs的表达变化才被认为对AKI具有诊断价值 [39] 。在Liu等的研究中建立SA-AKI的实验模型证实了核因子κB蛋白信号通路在SA-AKI过程中介导了miR-452的诱导,并进一步验证了尿miR-452作为一种有效的早期生物标志物可用于SA-AKI的诊断。为了进一步评估miR-452的生物标志物潜力,又比较了SA-AKI患者与无AKI患者的血清和尿miR-452,与预期的一样,SA-AKI患者尿和血清miR-452水平明显高于无AKI的患者。其中血清miR-452的AUC为0.7698,尿miR-452的AUC为0.8985,提示血清和尿miR-452在SA-AKI中检测效率较高 [40] 。

综上所述,本文总结了近些年来早期诊断SA-AKI相关生物标志物的作用及局限性,但尚未找到一种可以完全替代传统指标(如血肌酐和尿量)的生物标志物,而且相对于单独的生物标志物,在早期联合多种生物标志物是诊断SA-AKI进而及时介入治疗的较好的策略。同时随着对SA-AKI的更深入的研究,预计将有更多实用的SA-AKI诊断生物标志物出现并应用于临床,为SA-AKI的早期诊断和治疗提供更有力的支持。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard, G.R., Chiche, J.-D., Coopersmith, C.M., Hotchkiss, R.S., Levy, M.M., Marshall, J.C., Martin, G.S., Opal, S.M., Rubenfeld, G.D., van der Poll, T., Vincent, J.-L. and Angus, D.C. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810.
https://doi.org/10.1001/jama.2016.0287
[2] Bagshaw, S.M., Uchino, S., Bellomo, R., Morimatsu, H., Morgera, S., Schetz, M., Tan, I., Bouman, C., Macedo, E., Gibney, N., Tolwani, A., Oudemans-van Straaten, H.M., Ronco, C. and Kellum, J.A. (2007) Septic Acute Kidney Injury in Critically Ill Patients: Clinical Characteristics and Outcomes. Clinical Journal of the American Society of Nephrology, 2, 431-439.
https://doi.org/10.2215/CJN.03681106
[3] Kolhe, N.V., Stevens, P.E., Crowe, A.V., Lipkin, G.W. and Harrison, D.A. (2008) Case Mix, Outcome and Activity for Patients with Severe Acute Kidney Injury during the First 24 Hours after Admission to an Adult, General Critical Care Unit: Application of Predictive Models from a Secondary Analysis of the ICNARC Case Mix Programme Database. Critical Care, 12, Article No. S2.
https://doi.org/10.1186/cc7003
[4] Bagshaw, S.M., George, C., Bellomo, R., the ANZICS Database Management Committee. (2008) Early Acute Kidney Injury and Sepsis: A Multicentre Evaluation. Critical Care, 12, Article No. R47.
https://doi.org/10.1186/cc6863
[5] Bellomo, R., Kellum, J.A., Ronco, C., Wald, R., Martensson, J., Maiden, M., Bagshaw, S.M., Glassford, N.J., Lankadeva, Y., Vaara, S.T. and Schneider, A. (2017) Acute Kidney Injury in Sepsis. Intensive Care Medicine, 43, 816-828.
https://doi.org/10.1007/s00134-017-4755-7
[6] Li, C., Wang, W., Xie, S., Ma, W., Fan, Q., Chen, Y., He, Y., Wang, J., Yang, Q., Li, H., Jin, J., Liu, M., Meng, X. and Wen, J. (2021) The Programmed Cell Death of Macrophages, Endothelial Cells, and Tubular Epithelial Cells in Sepsis-AKI. Frontiers in Medicine, 8, Article 796724.
https://doi.org/10.3389/fmed.2021.796724
[7] 张杰, 章雄, 刘琰. 脓毒症生物标志物研究进展[J]. 中华损伤与修复杂志(电子版), 2020, 15(4): 316-321.
https://doi.org/10.3877/cma.j.issn.1673-9450.2020.04.017
[8] Soliman, N.A. (2012) Orphan Kidney Diseases. Nephron Clinical Practice, 120, c194-c199.
https://doi.org/10.1159/000339785
[9] Cardoso, C. and Coelho, S. (2021) Review of: “Urinary Actin, as a Potential Marker of Sepsis-Related Acute Kidney Injury: A Pilot Study.” Qeios.
https://doi.org/10.32388/RGERRR
[10] Ostermann, M., Zarbock, A., Goldstein, S., Kashani, K., Macedo, E., Murugan, R., Bell, M., Forni, L., Guzzi, L., Joannidis, M., Kane-Gill, S.L., Legrand, M., Mehta, R., Murray, P.T., Pickkers, P., Plebani, M., Prowle, J., Ricci, Z., Rimmelé, T., Rosner, M., Shaw, A.D., Kellum, J.A. and Ronco, C. (2020) Recommendations on Acute Kidney Injury Biomarkers from the Acute Disease Quality Initiative Consensus Conference: A Consensus Statement. JAMA Network Open, 3, e2019209.
https://doi.org/10.1001/jamanetworkopen.2020.19209
[11] Palsson, R., Colona, M.R., Hoenig, M.P., Lundquist, A.L., Novak, J.E., Perazella, M.A. and Waikar, S.S. (2020) Assessment of Interobserver Reliability of Nephrologist Examination of Urine Sediment. JAMA Network Open, 3, e2013959.
https://doi.org/10.1001/jamanetworkopen.2020.13959
[12] Bagshaw, S.M., Haase, M., Haase-Fielitz, A., Bennett, M., Devarajan, P. and Bellomo, R. (2012) A Prospective Evaluation of Urine Microscopy in Septic and Non-Septic Acute Kidney Injury. Nephrology Dialysis Transplantation, 27, 582-588.
https://doi.org/10.1093/ndt/gfr331
[13] Schaalan, M. and Mohamed, W. (2017) Predictive Ability of Circulating Osteoprotegerin as a Novel Biomarker for Early Detection of Acute Kidney Injury Induced by Sepsis. European Cytokine Network, 28, 52-62.
https://doi.org/10.1684/ecn.2017.0393
[14] Wiersema, R., Jukarainen, S., Vaara, S.T., Poukkanen, M., Lakkisto, P., Wong, H., Linder, A., Van Der Horst, I.C.C. and Pettilä, V. (2020) Two Subphenotypes of Septic Acute Kidney Injury Are Associated with Different 90-Day Mortality and Renal Recovery. Critical Care, 24, Article No. 150.
https://doi.org/10.1186/s13054-020-02866-x
[15] Donato, L.J., Meeusen, J.W., Lieske, J.C., Bergmann, D., Sparwaßer, A. and Jaffe, A.S. (2018) Analytical Performance of an Immunoassay to Measure Proenkephalin. Clinical Biochemistry, 58, 72-77.
https://doi.org/10.1016/j.clinbiochem.2018.05.010
[16] Melo, P.S.A., Andrade, P.D.O.N., Vasconcelos, R.L., Oliveira, S.C.D., Mendes, R.C.M.G. and Linhares, F.M.P. (2021) Validation of the Knowledge, Attitude and Practice Survey on Nursing Assistance during Delivery and Childbirth. Texto & Contexto Enfermagem, 30, e20200420.
https://doi.org/10.1590/1980-265x-tce-2020-0420
[17] Hollinger, A., Wittebole, X., François, B., et al. (2019) Proenkephalin A 119-159 (penKid) Is an Early Biomarker of Septic Acute Kidney Injury: The Kidney in Sepsis and Septic Shock (Kid-SSS) Study. Kidney Int Rep. 2018; 3: 1424-1433. Kidney International Reports, 4, 187.
https://doi.org/10.1016/j.ekir.2018.11.006
[18] Zarbock, A., Nadim, M.K., Pickkers, P., Gomez, H., Bell, S., Joannidis, M., Kashani, K., Koyner, J.L., Pannu, N., Meersch, M., Reis, T., Rimmelé, T., Bagshaw, S.M., Bellomo, R., Cantaluppi, V., Deep, A., De Rosa, S., Perez-Fernandez, X., Husain-Syed, F., Kane-Gill, S.L., Kelly, Y., Mehta, R.L., Murray, P.T., Ostermann, M., Prowle, J., Ricci, Z., See, E.J., Schneider, A., Soranno, D.E., Tolwani, A., Villa, G., Ronco, C. and Forni, L.G. (2023) Sepsis-Associated Acute Kidney Injury: Consensus Report of the 28th Acute Disease Quality Initiative Workgroup. Nature Reviews Nephrology, 19, 401-417.
https://doi.org/10.1038/s41581-023-00683-3
[19] Jia, H.-M., Cheng, L., Weng, Y.-B., Wang, J.-Y., Zheng, X., Jiang, Y.-J., Xin, X., Guo, S.-Y., Chen, C.-D., Guo, F.-X., Han, Y.-Z., Zhang, T.-E. and Li, W.-X. (2022) Cell Cycle Arrest Biomarkers for Predicting Renal Recovery from Acute Kidney Injury: A Prospective Validation Study. Annals of Intensive Care, 12, Article No. 14.
https://doi.org/10.1186/s13613-022-00989-8
[20] Kashani, K., Al-Khafaji, A., Ardiles, T., Artigas, A., Bagshaw, S.M., Bell, M., Bihorac, A., Birkhahn, R., Cely, C.M., Chawla, L.S., Davison, D.L., Feldkamp, T., Forni, L.G., Gong, M., Gunnerson, K.J., Haase, M., Hackett, J., Honore, P. M., Hoste, E.A., Joannes-Boyau, O., Joannidis, M., Kim, P., Koyner, J.L., Laskowitz, D.T., Lissauer, M.E., Marx, G., McCullough, P.A., Mullaney, S., Ostermann, M., Rimmelé, T., Shapiro, N.I., Shaw, A.D., Shi, J., Sprague, A.M., Vincent, J.-L., Vinsonneau, C., Wagner, L., Walker, M.G., Wilkerson, R.G., Zacharowski, K. and Kellum, J.A. (2013) Discovery and Validation of Cell Cycle Arrest Biomarkers in Human Acute Kidney Injury. Critical Care, 17, Article No. R25.
https://doi.org/10.1186/cc12503
[21] Li, Z., Tie, H., Shi, R., Rossaint, J. and Zarbock, A. (2022) Urinary [TIMP-2]·[IGFBP7]-Guided Implementation of the KDIGO Bundle to Prevent Acute Kidney Injury: A Meta-Analysis. British Journal of Anaesthesia, 128, e24-e26.
https://doi.org/10.1016/j.bja.2021.10.015
[22] Jia, H.-M., Huang, L.-F., Zheng, Y. and Li, W.-X. (2017) Diagnostic Value of Urinary Tissue Inhibitor of Metalloproteinase-2 and Insulin-Like Growth Factor Binding Protein 7 for Acute Kidney Injury: A Meta-Analysis. Critical Care, 21, Article No. 77.
https://doi.org/10.1186/s13054-017-1660-y
[23] Yang, L., Brooks, C.R., Xiao, S., Sabbisetti, V., Yeung, M.Y., Hsiao, L.-L., Ichimura, T., Kuchroo, V. and Bonventre, J.V. (2015) KIM-1-Mediated Phagocytosis Reduces Acute Injury to the Kidney. Journal of Clinical Investigation, 125, 1620-1636.
https://doi.org/10.1172/JCI75417
[24] Pei, Y., Zhou, G., Wang, P., Shi, F., Ma, X. and Zhu, J. (2022) Serum Cystatin C, Kidney Injury Molecule-1, Neutrophil Gelatinase-Associated Lipocalin, Klotho and Fibroblast Growth Factor-23 in the Early Prediction of Acute Kidney Injury Associated with Sepsis in a Chinese Emergency Cohort Study. European Journal of Medical Research, 27, Article No. 39.
https://doi.org/10.1186/s40001-022-00654-7
[25] Vaidya, V.S., Ford, G.M., Waikar, S.S., Wang, Y., Clement, M.B., Ramirez, V., Glaab, W.E., Troth, S.P., Sistare, F.D., Prozialeck, W.C., Edwards, J.R., Bobadilla, N.A., Mefferd, S.C. and Bonventre, J.V. (2009) A Rapid Urine Test for Early Detection of Kidney Injury. Kidney International, 76, 108-114.
https://doi.org/10.1038/ki.2009.96
[26] Mishra, J., Ma, Q., Prada, A., Mitsnefes, M., Zahedi, K., Yang, J., Barasch, J. and Devarajan, P. (2003) Identification of Neutrophil Gelatinase-Associated Lipocalin as a Novel Early Urinary Biomarker for Ischemic Renal Injury. Journal of the American Society of Nephrology, 14, 2534-2543.
https://doi.org/10.1097/01.ASN.0000088027.54400.C6
[27] Marakala, V. (2022) Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Kidney Injury—A Systematic Review. Clinica Chimica Acta, 536, 135-141.
https://doi.org/10.1016/j.cca.2022.08.029
[28] Mishra, J., Mori, K., Ma, Q., Kelly, C., Barasch, J. and Devarajan, P. (2004) Neutrophil Gelatinase-Associated Lipocalin: A Novel Early Urinary Biomarker for Cisplatin Nephrotoxicity. American Journal of Nephrology, 24, 307-315.
https://doi.org/10.1159/000078452
[29] Si Nga, H., Medeiros, P., Menezes, P., Bridi, R., Balbi, A. and Ponce, D. (2015) Sepsis and AKI in Clinical Emergency Room Patients: The Role of Urinary NGAL. BioMed Research International, 2015, Article ID: 413751.
https://doi.org/10.1155/2015/413751
[30] Wenzel, J., Spyropoulos, D., Assmann, J.C., Khan, M.A., Stölting, I., Lembrich, B., Kreißig, S., Ridder, D.A., Isermann, B. and Schwaninger, M. (2020) Endogenous THBD (Thrombomodulin) Mediates Angiogenesis in the Ischemic Brain—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 2837-2844.
https://doi.org/10.1161/ATVBAHA.120.315061
[31] Li, Q., Yang, W., Zhao, K., Sun, X. and Bao, L. (2021) Thrombomodulin Gene Polymorphism and the Occurrence and Prognostic Value of Sepsis Acute Kidney Injury. Medicine, 100, e26293.
https://doi.org/10.1097/MD.0000000000026293
[32] Katayama, S. (2017) Markers of Acute Kidney Injury in Patients with Sepsis: The Role of Soluble Thrombomodulin. Critical Care, 21, Article No. 229.
https://doi.org/10.1186/s13054-017-1815-x
[33] Raghavan, M., Venkataraman, R. and Kellum, J.A. (2007) Sepsis-Induced Acute Renal Failure and Recovery. In: Abraham, E. and Singer, M., Eds., Mechanisms of Sepsis-Induced Organ Dysfunction and Recovery, Springer, Berlin, 393-405.
https://doi.org/10.1007/3-540-30328-6_28
[34] Boekhoud, L., Koeze, J., Van Der Slikke, E.C., Bourgonje, A.R., Moser, J., Zijlstra, J.G., Muller Kobold, A.C., Bulthuis, M.L.C., Van Meurs, M., Van Goor, H. and Bouma, H.R. (2020) Acute Kidney Injury Is Associated with Lowered Plasma-Free Thiol Levels. Antioxidants, 9, Article 1135.
https://doi.org/10.3390/antiox9111135
[35] Van Der Slikke, E.C., Boekhoud, L., Bourgonje, A.R., Olgers, T.J., Ter Maaten, J.C., Henning, R.H., Van Goor, H. and Bouma, H.R. (2022) Plasma Free Thiol Levels during Early Sepsis Predict Future Renal Function Decline. Antioxidants, 11, Article 800.
https://doi.org/10.3390/antiox11050800
[36] Kőszegi, T., Horváth-Szalai, Z., Ragán, D., Kósa, B., Szirmay, B., Kurdi, C., Kovács, G.L. and Mühl, D. (2023) Measurement of Urinary Gc-Globulin by a Fluorescence ELISA Technique: Method Validation and Clinical Evaluation in Septic Patients—A Pilot Study. Molecules, 28, Article 6864.
https://doi.org/10.3390/molecules28196864
[37] Aomatsu, A., Kaneko, S., Yanai, K., Ishii, H., Ito, K., Hirai, K., Ookawara, S., Kobayashi, Y., Sanui, M. and Morishita, Y. (2022) MicroRNA Expression Profiling in Acute Kidney Injury. Translational Research, 244, 1-31.
https://doi.org/10.1016/j.trsl.2021.11.010
[38] Glinge, C., Clauss, S., Boddum, K., Jabbari, R., Jabbari, J., Risgaard, B., Tomsits, P., Hildebrand, B., Kääb, S., Wakili, R., Jespersen, T. and Tfelt-Hansen, J. (2017) Stability of Circulating Blood-Based MicroRNAs—Pre-Analytic Methodological Considerations. PLOS ONE, 12, e0167969.
https://doi.org/10.1371/journal.pone.0167969
[39] Guo, C., Dong, G., Liang, X. and Dong, Z. (2019) Epigenetic Regulation in AKI and Kidney Repair: Mechanisms and Therapeutic Implications. Nature Reviews Nephrology, 15, 220-239.
https://doi.org/10.1038/s41581-018-0103-6
[40] Liu, Z., Yang, D., Gao, J., Xiang, X., Hu, X., Li, S., Wu, W., Cai, J., Tang, C., Zhang, D. and Dong, Z. (2020) Discovery and Validation of miR-452 as an Effective Biomarker for Acute Kidney Injury in Sepsis. Theranostics, 10, 11963-11975.
https://doi.org/10.7150/thno.50093