血管内皮屏障功能损伤在疾病中的研究进展
Research Progress of Vascular Endothelial Barrier Dysfunction in Diseases
DOI: 10.12677/pi.2024.133018, PDF, HTML, XML, 下载: 77  浏览: 251  国家自然科学基金支持
作者: 李旭璐, 吴斐华:中国药科大学中药学院,中药药理与中医药学系,江苏 南京
关键词: 内皮屏障功能内皮连接急性肺损伤糖尿病并发症Endothelial Barrier Function Endothelial Cell Junctions Acute Lung Injury Complications of Diabetes
摘要: 许多疾病都具有血管渗漏的共同特征,内皮屏障功能损伤通常是其根本原因。内皮屏障是内皮细胞在血管腔和血管壁之间形成的独特屏障,具有选择性透过作用,对维持血管、组织和器官间的稳态至关重要。血管渗漏是由内皮细胞之间的间隙以及跨细胞转运途径的改变引起的。改善内皮屏障功能的具体机制取决于受影响的组织和引起高通透性的原因。本文综述了以内皮屏障破坏为特征的疾病,重点讨论了内皮屏障功能在急性肺损伤、缺血性脑卒中以及糖尿病并发症中的作用机制及其药物干预进展。
Abstract: Many diseases have the common characteristics of vascular leakage, and the damage of endothelial barrier is the basic cause. The endothelial barrier is a unique barrier formed by endothelial cells between the vascular lumen and vascular wall. It has selective penetration and is essential for maintaining homeostasis among blood vessels, tissues, and organs. Vascular leakage is caused by changes in the spaces between endothelial cells and trans-cellular transport pathways. The mechanism for improving endothelial barrier function depends specifically on the affected tissue and the cause of the high permeability. This article reviews the diseases characterized by endothelial barrier disruption and discusses the mechanism of endothelial barrier function in acute lung injury, ischemic stroke, and diabetic complications and the progress of drug intervention.
文章引用:李旭璐, 吴斐华. 血管内皮屏障功能损伤在疾病中的研究进展[J]. 药物资讯, 2024, 13(3): 141-148. https://doi.org/10.12677/pi.2024.133018

1. 引言

内皮屏障由紧密组织的内皮细胞组成,这些细胞通过细胞间的多种连接蛋白连接,保持内皮细胞对溶质、血浆蛋白和液体的选择性通透性。血管通透性是一个动态调节过程,用以保持组织稳态。内皮连接主要包括紧密连接、粘附连接和间隙连接,它们之间的相互作用对于支持屏障功能起着至关重要的作用。其中紧密连接主要是由Claudins、Occludins和JAM介导的,它们与细胞内闭塞带蛋白相连,并附着在肌动蛋白细胞骨架上,形成紧密的细胞–细胞连接;粘附连接主要是由血管内皮钙粘蛋白(Vascular endothelial cell cadherin, VE-cadherin)介导的,它是一种内皮特异性粘附蛋白,由细胞外钙粘蛋白基序、跨膜结构域和介导与β-连环蛋白、p120-连环蛋白和γ-连环蛋白相互作用的细胞内结构域组成 [1] 。VE-cadherin和连环蛋白组成的细胞内复合物对于连接稳定性至关重要。

内皮屏障功能受损是多种疾病发病的关键因素,包括急性肺损伤、缺血性卒中、糖尿病相关血管疾病、癌症、关节炎、感染和创伤等 [2] [3] [4] 。内皮屏障功能受损的发生部位不同导致了疾病的后果不同,在大脑中,血脑屏障的破坏可导致脑水肿、颅内压升高、认知或运动功能受损,甚至死亡。在肺部,渗漏会损害气体交换,导致肺水肿、缺氧甚至呼吸衰竭的致命后果。在癌症期间,实体瘤会释放促进血管渗漏的生长因子,从而导致癌症的转移扩散并限制抗癌药物的靶向递送。本文重点综述以内皮屏障功能受损为主要特征的疾病,旨在阐明其作用机制及近来的药物干预进展,以期为血管渗透如何影响各种疾病的进展提供更深入的了解。

2. 疾病中的内皮屏障功能及药物干预

2.1. 肺内皮屏障

内皮屏障功能受损导致的内皮高渗透性引起肺部疾病,主要包括急性肺损伤、哮喘以及呼吸机诱发的肺部损伤 [5] [6] [7] 。而急性肺损伤(Acute respiratory distress syndrome/Acute lung injury, ARDS/ALI)是一种高发病率和高死亡率的非心源性肺水肿的临床综合征,其特征是气体交换和/或肺力学受损,导致低氧血症和呼吸功率增加 [8] 。脓毒症、肺炎、胃内容物误吸和机械损伤等临床疾病都与急性呼吸窘迫综合征有关 [9] 。内皮屏障功能受损导致的肺血管通透性增加是急性呼吸窘迫综合征/急性肺损伤的主要病理特征。血管内皮完整性的破坏导致内皮屏障渗漏和肺泡中富含蛋白质的液体积聚,可引起肺水肿,降低肺通气效率,甚至导致呼吸衰竭 [10] 。这种血管屏障的一个重要生理功能是最大限度地减少血浆蛋白和血细胞渗漏到肺间质中,并防止在正常血管压下产生危及生命的肺泡充盈 [11] 。

2.1.1. 急性肺损伤

线粒体功能障碍是ARDS发病的重要机制 [12] 。脂多糖(Lipopolysaccharide, LPS)刺激导致原代人小气道上皮细胞和微血管内皮细胞的屏障完整性显著受损,这与严重的线粒体功能障碍以及线粒体生物发生和线粒体自噬的紊乱相关联。Kong等人也 [13] 发现,改善内皮粘附连接可能通过恢复线粒体生物发生和自噬功能降低肺内皮血管通透性。踝蛋白是一种重要的细胞骨架蛋白,踝蛋白裂解后的头和杆状结构域的过表达会增加Ras同源物基因组成员A活化、肌球蛋白轻链磷酸化和应激纤维形成,并增强肺内皮屏障破坏。Song等人 [14] 研究表明,钙蛋白酶的抑制减弱了LPS诱导的人肺微血管内皮细胞的踝蛋白的裂解,保护了肺内皮屏障免受破坏。表明调控钙蛋白酶可能成为踝蛋白裂解介导的ALI肺微血管内皮屏障破坏的潜在机制。非肌肉肌球蛋白重链IIA (Non-muscle myosin heavy chain IIA, NMMHC IIA)是维持细胞稳态所必须的运动蛋白,广泛参与多种细胞功能。最近的研究表明NMMHC IIA在调节内皮功能中起着重要作用。Wu等人 [2] 研究表明,NMMHC IIA靶向药物和NMMHC IIA的内皮特异性等位基因敲除可以改善LPS诱导的肺组织中VE-cadherin表达的降低,并起到保护肺内皮屏障功能的作用。

2.1.2. 急性肺损伤的治疗药物

布比司他汀是一种细胞渗透性抑制剂,能非特异性抑制NMMHC IIA。Zhang等人 [15] 研究表明,布比司他汀通过消除LPS诱导的肺内皮细胞中NMMHC IIA/Wnt5a/β-catenin通路的激活并显著抑制LPS诱导的小鼠肺组织中VE-cadherin含量的降低,抑制肺内皮屏障功能障碍和ALI的发展。磷脂酰肌醇3-激酶/蛋白激酶B (Phosphoinositide-3 kinase/protein kinase B, PI3K/AKT)是一种信号转导通路,可促进新陈代谢、增殖、细胞存活、生长和血管生成。PI3K/AKT信号通路的激活也可以诱导内皮紧密连接蛋白的组装和拆卸,是调控内皮通透性的重要信号通路 [16] 。研究表明,辛伐他汀发挥改善肺内皮屏障功能障碍的作用,是通过调控PI3K/AKT信号通路进而恢复细胞间连接和肌动蛋白细胞骨架动力学实现的 [17] 。中药单体在治疗ALI上也越来越被广泛报道,来自于中药麦冬的甾体皂苷元鲁斯可皂苷元的肺内皮屏障保护作用被报道与NMMHC IIA有关 [2] 。Xia等人 [18] 报道,薯蓣素可以通过降低支气管肺泡灌洗液中的蛋白质水平和中性粒细胞浸润,改善小鼠肺内皮高通透性。在ALI中,活性氧水平的异常增加也是血管渗漏增加的关键因素 [12] [19] ,因此抗氧化应激药物在治疗肺内皮屏障损伤相关疾病中可能存在广泛的前景。

2.2. 血脑屏障

血脑屏障(Blood-brain barrier, BBB)由紧密堆积的单层非开窗内皮细胞形成,这些细胞位于脑毛细血管内,被周细胞和血管周围星形胶质细胞包裹。BBB在中枢神经系统中形成保护层,严格限制循环血液和大脑微环境之间的分子交换。这是为了确保大脑微环境的稳态,以实现有效的神经信号传导 [20] ,并保护中枢神经系统免受毒素、病原体、炎症、损伤和疾病的侵害。BBB功能障碍的范围可以从紧密连接打开导致的BBB通透性的轻度和短暂变化到慢性屏障破坏。神经炎症、多发性硬化症、缺氧和缺血性脑损伤、癫痫等疾病都与BBB的破坏密切相关。

2.2.1. 缺血性脑卒中

缺血性脑卒中的关键病理生理特征之一是BBB的破坏,BBB损伤的生化特征包括紧密连接组成蛋白的表达降低和组织改变,以及内源性BBB转运蛋白功能表达的调节 [21] 。在这期间损伤相关细胞因子包括白细胞介素-1β (Interleukin-1β, IL-1β)、肿瘤坏死因子α (Tumor necrosis factor-α, TNF-α)、基质金属蛋白酶(Matrix metalloproteinase-9, MMP9)和血管内皮生长因子的释放以及氧化应激的相互作用介导缺血性脑卒中和随后的出血转化期间的神经元和BBB损伤 [22] 。近来,越来越多新的BBB的潜在治疗靶点正在被探索。Wang等人 [23] 研究表明,小鼠中组蛋白甲基化转移酶Smyd2的缺失可降低BBB通透性,这至少部分是通过调控Sphk/S1PR途径实现的。另外,瞬时受体电位M2通道TRPM2介导的Ca2+信号传导是CD36诱导的内皮功能障碍和紧密连接降解所必需的。CD36和TRPM2的激活形成一个正反馈回路,促进缺血性中风期间血脑屏障的降解。研究表明,衰老是卒中的主要危险因素,Sirtuin (SIRT)超家族的成员在调节衰老、细胞代谢、炎症和细胞凋亡等生物过程中发挥着重要作用。Liberale等人 [24] 发现,短期神经功能改善患者的SIRT6 mRNA水平显著升高,内皮特异性SIRT6基因缺失通过加剧细胞凋亡和BBB功能障碍来增加卒中大小并降低卒中后生存率和神经功能缺损。

2.2.2. 缺血性脑卒中的治疗药物

重组组织纤溶酶原激活剂是美国食品药品监督管理局批准的治疗缺血性脑卒中的药物,但严格的时间窗口、副作用和禁忌证限制了其使用 [25] 。所以寻找更有效、更安全的疗法来保护BBB完整性和治疗缺血性卒中变的迫切。依达拉奉是一种靶向过氧自由基的低分子量抗氧化药物。该药于2001年在日本正式获批用于急性缺血性脑卒中,并在包括中国和印度在内的多个亚洲国家得到广泛应用。依达拉奉右莰醇是一种新型的神经保护剂,药理学研究表明,依达拉奉右莰醇具有协同作用,可以下调中性粒细胞胞外陷阱并改善BBB [26] ,比单独使用依达拉奉具有更好的治疗缺血性中风的作用。徐等人 [27] 研究表明,给予鸢尾素治疗的大鼠,其白IL-6水平(但不是TNF-α或IL-1β)降低,氧化应激减弱,BBB的完整性增强。芹菜素是一种天然多酚,广泛分布于欧芹、芹菜和洋甘菊等水果和蔬菜中。Wang等人 [28] 证明芹菜素可以通过抑制多种途径中的MMP表达来保护缺血后脑卒中的BBB。Yang等人 [29] 表明,槲皮素可通过调控另一衰老基因SIRT1显著降低脑梗死体积、神经功能缺损、BBB通透性,对脑缺血再灌注损伤具有神经保护作用。

2.3. 糖尿病并发症

糖尿病是一种多病因引起的以慢性高血糖为特征的代谢性疾病。在糖尿病的情况下,血管内皮可以发挥至关重要的病理生理作用。健康的标志之一是细胞和组织水平屏障的完整性。不受控制的糖尿病和急性高血糖可能破坏生理屏障的完整性,主要是通过改变组织的血管完整性,并可能导致临床公认的糖尿病并发症。越来越多的证据表明,不同器官(如视网膜、肾脏、神经)的内皮连接的破坏在糖尿病慢性并发症的发生中起着基本的病理学作用 [30] 。

2.3.1. 糖尿病视网膜病变

糖尿病视网膜病变(Diabetes retinopathy, DR)是全球糖尿病的常见慢性并发症,也是20~74岁成年人视力障碍和失明的主要原因。血液–视网膜屏障(Blood-retinal barrier, BRB)是由视网膜血管内皮细胞组成,它们排列在起源于视网膜中央动脉的视网膜脉管系统的两侧 [30] 。BRB完整性的丧失和随后对视网膜神经血管单位的损害是DR的根本原因,导致BRB功能障碍的主要机制包括细胞间屏障连接缺失、血管内皮生长因子、晚期糖基化终产物诱导的损伤和氧化应激和其他细胞内信号转导通路(如PKC)的激活等 [31] 。Huang等人 [32] 在链脲佐菌素诱导的糖尿大鼠和暴露于D-葡萄糖的视网膜周细胞中观察到间隙连接细胞间通讯损伤以及血液–视网膜屏障特异性缝隙连接蛋白CX43的下调。Li等人 [33] 发现,肿瘤坏死因子配体相关分子1A是保护DR中视网膜内皮细胞完整性的关键因素,可通过阻断SHP1-Src调节的VE-Cadherin磷酸化来稳定细胞内连接并保护血管完整性。炎症在DR的发病机制中也起着重要作用。高迁移率族蛋白B1 (High mobility group box-1 protein, HMGB1)是一种高度保守的核蛋白,在感染或受损的细胞中释放后可作为晚期重要炎症介质介导机体损伤,Mohammad等人 [34] 发现,在增值性糖尿病视网膜病变患者玻璃体中HMGB1的水平显著高于非糖尿病对照组,参与调节DR的BRB分解。Monickaraj等人 [35] 检查了暴露于晚期糖基化终产物的人视网膜内皮细胞的转录组学特征,揭示了中性粒细胞趋化因子CXCL1是上调最多的基因之一,CXCL1通过中性粒细胞募集改变DR中的BRB,从而成为潜在的新治疗靶点。

2.3.2. 糖尿病肾病

糖尿病肾病(Diabetic nephropathy, DN)是糖尿病的严重微血管并发症,也是终末期肾病的最常见原因。据统计,30%的糖尿病患者受到DN的影响,对公共卫生造成相当大的负担 [36] 。肾小球滤过屏障由内皮层、肾小球基底膜和足细胞3层组成。肾小球滤过屏障作为一个整体发挥作用,破坏任何一层的通透性,都会影响整体通透性。慢性高血糖症后最早的事件之一是内皮细胞功能障碍。内皮糖萼是血管内皮内衬的富含碳水化合物的层,具有重要的血管屏障功能和细胞粘附特性。内皮糖萼脱落被认为是产生微血管功能障碍的基本病理生理过程 [37] 。内皮糖萼是形成肾小球滤过屏障的第一部分,Crompton等人 [38] 表明,链脲佐菌素诱导的糖尿病Wistar大鼠出现白蛋白尿,肾小球白蛋白通透性增加,肾小球MMP活性增加,并伴有相应的肾小球内皮糖萼丢失。另外,肾小球内皮细胞开窗被认为是肾小球滤过屏障的重要组成部分,其开窗密度的丧失与糖尿病肾病患者滤过功能下降有关 [39] 。

2.3.3. 糖尿病神经病变

糖尿病神经病变是也是糖尿病的常见慢性并发症。越来越多的证据表明,血神经屏障(Blood-nerve barrier, BNB)的破坏在糖尿病神经病变中起着关键的病理生理学作用。BNB是由神经束周围的神经膜和神经内膜血管内皮组成的具有高度选择性的半透性屏障,通过限制血液传播溶质的被动扩散和主动运输控制血液和神经组织之间的交换 [40] 。高血糖诱导的通量通过多元醇途径促进膜通透性破坏,后者反过来又导致蛋白质分子和电解质转运的调节改变,神经周围基底或外层增厚,从而导致水肿 [41] 。另外糖尿病引发的BNB的完整性破坏与紧密连接密切相关。Ben-Kraiem等人 [42] 强调了特异性紧密连接蛋白和BNB分解在糖尿病神经病变维持中的作用,靶向Claudin-1可降低神经周围渗透性可以稳定疼痛并将进一步防治高糖诱导的神经损伤。同时在2型糖尿病小鼠中增加Claudin-5的表达,降低了神经内毛细血管通透性,并恢复了糖尿病小鼠的热痛觉 [43] 。血管内皮生长因子(vascular endothelial growth factor, VEGF),又称血管通透因子是一种高度特异性的促血管内皮细胞生长因子,具有促进血管通透性增加、血管内皮细胞迁移、增殖和血管形成等作用。Konigs等人 [44] 在链脲佐菌素诱导的1型糖尿病野生小鼠和G蛋白耦联受体40 (G-protein-coupled receptor 40, GPR40)缺失小鼠中发现VEGF-A表达的增加,在GPR40激活后VEGF-A表达受到抑制,从而降低糖尿病诱导的血神经屏障通透性并恢复糖尿病诱导的超敏反应。

2.3.4. 糖尿病并发症的治疗药物

二甲双胍是一种应用广泛的治疗糖尿病的药物,最近研究表明二甲双胍通过AMPK活化重塑了细胞骨架动力学,从而降低了糖尿病条件下的过滤屏障渗透性 [45] 。黄斑水肿是视网膜中央积液的病理性积聚,它是许多视网膜疾病的并发症。目前的治疗方法包括血管内皮生长因子阻滞剂、皮质类固醇和非甾体抗炎药。这些治疗主要针对的是导致血液–视网膜屏障破坏的血管活性和炎症介质 [46] 。肾素–血管紧张素–醛固酮系统阻滞剂已作为一类药物用于抑制DN的发生,然而,它的长期影响是有限的。益肾化湿颗粒是一种传统中药处方,已在临床上用于治疗肾脏疾病。研究发现益肾化湿颗粒可通过保持肾小球内皮细胞和足细胞的活力、抑制肾小球纤维化、减少氧化应激损伤以及增强肾小球内皮细胞和足细胞之间的串扰来保持肾小球滤过屏障的完整性 [47] 。在糖尿病神经病变中,控制血糖是减少1型糖尿病患者的神经病变的主要策略,但对2型糖尿病患者效果较差。除了一些抗惊厥药和抗抑郁药治疗糖尿病神经病变以外,越来越多的天然黄酮类化合物如黄烷醇类槲皮素、黄烷酮类橙皮甙和黄酮类芹菜素、叶黄素等都展示了治疗糖尿病神经病变的优势 [48] 。

2.4. 其他

除此之外,脓毒症患者容易出现血管通透性增加的表现,内皮屏障的修复和维持对脓毒症患者的生存率至关重要。在细菌、真菌或病毒感染期间,外源性病原体相关分子模式和内源性损伤相关分子模式会触发内皮细胞激活,内皮糖萼分解、内皮细胞凋亡和连接蛋白失调,导致血管屏障受损。在脓毒症中重建内皮屏障功能的新型干预措施逐渐开始被关注,包括抗VEGF抗体、血管生成素和酪氨酸激酶受体(Tie2激动剂、磷酸鞘氨醇受体)激动剂、肝素结合蛋白分子靶标等。

3. 结语

尽管血管屏障功能障碍是急性肺损伤、缺血性脑卒中、糖尿病并发症和脓毒症的发生和进展的基础早已成共识,但是抗高通透性的药物和疗法仍处于起步阶段。虽然目前现有的药物和疗法独立治疗内皮高通透性不太现实,但是其作为辅助或者联合疗法可能更具价值。另外,在疾病中引起内皮屏障功能损伤的根本原因并不完全相同,所以了解这些疾病中内皮屏障功能损伤的具体机制,阐明药物如何调控内皮通透性保护血管功能以及探索潜在的药物治疗靶点仍是我们当下需要解决的问题。

基金项目

国家自然科学基金(81873061)。

参考文献

[1] Claesson-Welsh, L., Dejana, E. and McDonald, D.M. (2021) Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. Trends in Molecular Medicine, 27, 314-331.
https://doi.org/10.1016/j.molmed.2020.11.006
[2] Wu, Y., Yu, X., Wang, Y., et al. (2022) Ruscogenin Alleviates LPS-Triggered Pulmonary Endothelial Barrier Dysfunction through Targeting NMMHC IIA to Modulate TLR4 Signaling. Acta Pharmaceutica Sinica B, 12, 1198-1212.
https://doi.org/10.1016/j.apsb.2021.09.017
[3] Nian, K., Harding, I.C., Herman, I.M., et al. (2020) Blood-Brain Barrier Damage in Ischemic Stroke and Its Regulation by Endothelial Mechanotransduction. Frontiers in Physiology, 11, Article 605398.
https://doi.org/10.3389/fphys.2020.605398
[4] Hellenthal, K.E.M., Brabenec, L. and Wagner, N.M. (2022) Regulation and Dysregulation of Endothelial Permeability during Systemic Inflammation. Cells, 11, Article 1935.
https://doi.org/10.3390/cells11121935
[5] Garcia-Flores, A.E., Gross, C.M., Zemskov, E.A., et al. (2022) Loss of SOX18/CLAUDIN5 Disrupts the Pulmonary Endothelial Barrier in Ventilator-Induced Lung Injury. Frontiers in Physiology, 13, Article 1066515.
https://doi.org/10.3389/fphys.2022.1066515
[6] Zhang, J., Zhang, J., Zhang, C., et al. (2022) Diabetic Macular Edema: Current Understanding, Molecular Mechanisms and Therapeutic Implications. Cells, 11, Article 3362.
https://doi.org/10.3390/cells11213362
[7] Colunga Biancatelli, R.M.L., Solopov, P., Gregory, B., et al. (2021) The HSP90 Inhibitor, AUY-922, Protects and Repairs Human Lung Microvascular Endothelial Cells from Hydrochloric Acid-Induced Endothelial Barrier Dysfunction. Cells, 10, Article 1489.
https://doi.org/10.3390/cells10061489
[8] González-López, A. and Albaiceta, G.M. (2012) Repair after Acute Lung Injury: Molecular Mechanisms and Therapeutic Opportunities. Critical Care, 16, Article No. 209.
https://doi.org/10.1186/cc11224
[9] Matthay, M.A. and Zemans, R.L. (2011) The Acute Respiratory Distress Syndrome: Pathogenesis and Treatment. Mechanisms of Disease, 6, 147-163.
https://doi.org/10.1146/annurev-pathol-011110-130158
[10] Hao, Y., Wang, Z., Frimpong, F., et al. (2022) Calcium-Permeable Channels and Endothelial Dysfunction in Acute Lung Injury. Current Issues in Molecular Biology, 44, 2217-2229.
https://doi.org/10.3390/cimb44050150
[11] Sukriti, S., Tauseef, M., Yazbeck, P., et al. (2014) Mechanisms Regulating Endothelial Permeability. Pulmonary Circulation, 4, 535-551.
https://doi.org/10.1086/677356
[12] Silva, J.D., Su, Y., Calfee, C.S., et al. (2021) Mesenchymal Stromal Cell Extracellular Vesicles Rescue Mitochondrial Dysfunction and Improve Barrier Integrity in Clinically Relevant Models of ARDS. European Respiratory Journal, 58, Article 2002978.
https://doi.org/10.1183/13993003.02978-2020
[13] Kong, X., Lin, D., Lu, L., et al. (2021) Apelin-13-Mediated AMPK Ameliorates Endothelial Barrier Dysfunction in Acute Lung Injury Mice via Improvement of Mitochondrial Function and Autophagy. International Immunopharmacol, 101, Article 108230.
https://doi.org/10.1016/j.intimp.2021.108230
[14] Song, L., Shi, X., Kovacs, L., et al. (2023) Calpain Promotes LPS-Induced Lung Endothelial Barrier Dysfunction via Cleavage of Talin. American Journal of Respiratory Cell and Molecular Biology, 69, 678-688.
https://doi.org/10.1165/rcmb.2023-0009OC
[15] Zhang, J.Z., Pan, Z.Q., Zhou, J.H., et al. (2022) The Myosin II Inhibitor, Blebbistatin, Ameliorates Pulmonary Endothelial Barrier Dysfunction in Acute Lung Injury Induced by LPS via NMMHC IIA/Wnt5a/β-Catenin Pathway. Toxicology and Applied Pharmacology, 450, Article 116132.
https://doi.org/10.1016/j.taap.2022.116132
[16] Cong, X. and Kong, W. (2020) Endothelial Tight Junctions and Their Regulatory Signaling Pathways in Vascular Homeostasis and Disease. Cell Signal, 66, Article 109485.
https://doi.org/10.1016/j.cellsig.2019.109485
[17] Han, D., Sun, J.J., Fan, D.K., et al. (2020) Simvastatin Ameliorates Oxygen Glucose Deprivation/Reoxygenation-Induced Pulmonary Endothelial Barrier Dysfunction by Restoring Cell-Cell Junctions and Actin cytoskeleton Dynamics via the PI3K/Akt Signaling Pathway. American Journal of Translational Research, 12, 5586-5596.
[18] Xia, J.Y., Li, J.H., Deng, M.S., et al. (2023) Diosmetin Alleviates Acute Lung Injury Caused by Lipopolysaccharide by Targeting Barrier Function. Inflammopharmacology, 31, 2037-2047.
https://doi.org/10.1007/s10787-023-01228-7
[19] Qi, D., Deng, W., Chen, X., et al. (2022) Adipose-Derived Circulating Exosomes Promote Protection of the Pulmonary Endothelial Barrier by Inhibiting EndMT and Oxidative Stress through Down-Regulation of the TGF-β Pathway: A Potential Explanation for the Obesity Paradox in ARDS. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 5475832.
https://doi.org/10.1155/2022/5475832
[20] Greene, C., Hanley, N. and Campbell, M. (2019) Claudin-5: Gatekeeper of Neurological Function. Fluids and Barriers of the CNS, 16, Article No. 3.
https://doi.org/10.1186/s12987-019-0123-z
[21] Abdullahi, W., Tripathi, D. and Ronaldson, P.T. (2018) Blood-Brain Barrier Dysfunction in Ischemic Stroke: Targeting Tight Junctions and Transporters for Vascular Protection. American Journal of Physiology-Cell Physiology, 315, C343-C356.
https://doi.org/10.1152/ajpcell.00095.2018
[22] Gao, H.M., Chen, H., Cui, G.Y., et al. (2023) Damage Mechanism and Therapy Progress of the Blood-Brain Barrier after Ischemic Stroke. Cell and Bioscience, 13, Article No. 196.
https://doi.org/10.1186/s13578-023-01126-z
[23] Wang, J.H., Zhong, W., Cheng, Q.W., et al. (2022) Histone Methyltransferase Smyd2 Contributes to Blood-Brain Barrier Breakdown in Stroke. Clinical and Translational Medicine, 12, e761.
https://doi.org/10.1002/ctm2.761
[24] Liberale, L., Gaul, D.S., Akhmedov, A., et al. (2020) Endothelial SIRT6 Blunts Stroke Size and Neurological Deficit by Preserving Blood-Brain Barrier Integrity: A Translational Study. European Heart Journal, 41, 1575-1587.
https://doi.org/10.1093/eurheartj/ehz712
[25] Spellicy, S.E. and Hess, D.C. (2022) Recycled Translation: Repurposing Drugs for Stroke. Translational Stroke Research, 13, 866-880.
https://doi.org/10.1007/s12975-022-01000-z
[26] Huang, Y., Zhang, X., Zhang, C., et al. (2022) Edaravone Dexborneol Downregulates Neutrophil Extracellular Trap Expression and Ameliorates Blood-Brain Barrier Permeability in Acute Ischemic Stroke. Mediators of Inflammation, 2022, Article ID: 3855698.
https://doi.org/10.1155/2022/3855698
[27] Xu, X.P., Zhou, R.X., Ying, J.J., et al. (2023) Irisin Prevents Hypoxic-Ischemic Brain Damage in Rats by Inhibiting Oxidative Stress and Protecting the Blood-Brain Barrier. Peptides, 161, Article 170945.
https://doi.org/10.1016/j.peptides.2023.170945
[28] Wang, X., Yu, Z.Q., Dong, F.X., et al. (2023) Clarifying the Mechanism of Apigenin against Blood-Brain Barrier Disrupttion in Ischemic Stroke Using Systems Pharmacology. Molecular Diversity, 1-22.
https://doi.org/10.1007/s11030-023-10607-9
[29] Yang, R., Shen, Y.J., Chen, M., et al. (2022) Quercetin Attenuates Ischemia Reperfusion Injury by Protecting the Blood-Brain Barrier through Sirt1 in MCAO Rats. Journal of Asian Natural Products Research, 24, 278-289.
https://doi.org/10.1080/10286020.2021.1949302
[30] Robles-Osorio, M.L. and Sabath, E. (2023) Tight Junction Disruption and the Pathogenesis of the Chronic Complications of Diabetes Mellitus: A Narrative Review. World Journal of Diabetes, 14, 1013-1026.
https://doi.org/10.4239/wjd.v14.i7.1013
[31] Rudraraju, M., Narayanan, S.P. and Somanath, P.R. (2020) Regulation of Blood-Retinal Barrier Cell-Junctions in Diabetic Retinopathy. Pharmacological Research, 161, 105-115.
https://doi.org/10.1016/j.phrs.2020.105115
[32] Huang, C.Y., Zhou, T., Li, G., et al. (2019) Asymmetric Dimethylarginine Aggravates Blood-Retinal Barrier Breakdown of Diabetic Retinopathy via Inhibition of Intercellular Communication in Retinal Pericytes. Amino Acids, 51, 1515-1526.
https://doi.org/10.1007/s00726-019-02788-1
[33] Li, J., Xie, R., Jiang, F., et al. (2021) Tumor Necrosis Factor Ligand-Related Molecule 1A Maintains Blood-Retinal Barrier via Modulating SHP-1-Src-VE-Cadherin Signaling in Diabetic Retinopathy. The FASEB Journal, 35, e22008.
https://doi.org/10.1096/fj.202100807RR
[34] Mohammad, G., Abdelaziz, G.M., Siddiquei, M.M., et al. (2019) Cross-Talk between Sirtuin 1 and the Proinflammatory Mediator High-Mobility Group Box-1 in the Regulation of Blood-Retinal Barrier Breakdown in Diabetic Retinopathy. Current Eye Research, 44, 1133-1143.
https://doi.org/10.1080/02713683.2019.1625406
[35] Monickaraj, F., Acosta, G., Cabrera, A.P., et al. (2023) Transcriptomic Profiling Reveals Chemokine CXCL1 as a Mediator for Neutrophil Recruitment Associated with Blood-Retinal Barrier Alteration in Diabetic Retinopathy. Diabetes, 72, 781-794.
https://doi.org/10.2337/db22-0619
[36] Samsu, N. (2021) Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. Biomed Research International, 2021, Article ID: 1497449.
https://doi.org/10.1155/2021/1497449
[37] Fatmi, A., Saadi, W., Beltrán-García, J., et al. (2022) The Endothelial Glycocalyx and Neonatal Sepsis. International Journal of Molecular Sciences, 24, Article 364.
https://doi.org/10.3390/ijms24010364
[38] Crompton, M., Ferguson, J.K., Ramnath, R.D., et al. (2023) Mineralocorticoid Receptor Antagonism in Diabetes Reduces Albuminuria by Preserving the Glomerular Endothelial Glycocalyx. JCI Insight, 8, 154-164.
https://doi.org/10.1172/jci.insight.154164
[39] Finch, N.C., Fawaz, S.S., Neal, C.R., et al. (2022) Reduced Glomerular Filtration in Diabetes Is Attributable to Loss of Density and Increased Resistance of Glomerular Endothelial Cell Fenestrations. Journal of the American Society of Nephrology, 33, 1120-1136.
https://doi.org/10.1681/ASN.2021030294
[40] Richner, M., Ferreira, N., Dudele, A., et al. (2019) Functional and Structural Changes of the Blood-Nerve-Barrier in Diabetic Neuropathy. Frontiers in Neuroscience, 12, Article 1038.
https://doi.org/10.3389/fnins.2018.01038
[41] Galiero, R., Caturano, A., Vetrano, E., et al. (2023) Peripheral Neuropathy in Diabetes Mellitus: Pathogenetic Mechanisms and Diagnostic Options. International Journal of Molecular Sciences, 24, Article 3554.
https://doi.org/10.3390/ijms24043554
[42] Ben-Kraiem, A., Sauer, R.S., Norwig, C., et al. (2021) Selective Blood-Nerve Barrier Leakiness with Claudin-1 and Vessel-Associated Macrophage Loss in Diabetic Polyneuropathy. Journal of Molecular Medicine, 99, 1237-1250.
https://doi.org/10.1007/s00109-021-02091-1
[43] Chapouly, C., Yao, Q., Vandierdonck, S., et al. (2016) Impaired Hedgehog Signalling-Induced Endothelial Dysfunction Is Sufficient to Induce Neuropathy: Implication in Diabetes. Cardiovascular Research, 109, 217-227.
https://doi.org/10.1093/cvr/cvv263
[44] Konigs, V., Pierre, S., Schicht, M., et al. (2022) GPR40 Activation Abolishes Diabetes-Induced Painful Neuropathy by Suppressing VEGF-A Expression. Diabetes, 71, 774-787.
https://doi.org/10.2337/db21-0711
[45] Szrejder, M., Rachubik, P., Rogacka, D., et al. (2020) Metformin Reduces TRPC6 Expression through AMPK Activation and Modulates Cytoskeleton Dynamics in Podocytes under Diabetic Conditions. Biochimica et Biophysica ActaMolecular Basis of Disease, 1866, Article 165610.
https://doi.org/10.1016/j.bbadis.2019.165610
[46] Haydinger, C.D., Ferreira, L.B., Williams, K.A., et al. (2023) Mechanisms of Macular Edema. Frontiers in Medicine, 10, Article 1128811.
https://doi.org/10.3389/fmed.2023.1128811
[47] Zhao, T., Li, M., Xiang, Q., et al. (2022) Yishen Huashi Granules Ameliorated the Development of Diabetic Nephropathy by Reducing the Damage of Glomerular Filtration Barrier. Frontiers in Pharmacology, 13, Article 872940.
https://doi.org/10.3389/fphar.2022.872940
[48] Sivakumar, P.M., Prabhakar, P.K., Cetinel, S., et al. (2022) Molecular Insights on the Therapeutic Effect of Selected Flavonoids on Diabetic Neuropathy. Mini-Reviews in Medicinal Chemistry, 22, 1828-1846.
https://doi.org/10.2174/1389557522666220309140855