黏膜相关淋巴组织淋巴瘤合并干燥综合征1例并文献复习
Mucosal-Associated Lymphoid Tissue Lymphoma with Sjogren’s Syndrome: A Case Report and Literature Review
DOI: 10.12677/acm.2024.1441375, PDF, HTML, XML, 下载: 32  浏览: 48 
作者: 尹高慧, 孙琳茜:青岛大学医学部,山东 青岛;王吉波*:青岛大学附属医院风湿免疫科,山东 青岛
关键词: 原发性干燥综合征黏膜相关淋巴组织淋巴瘤临床特点诊断治疗Primary Sjogren’s Syndrome Mucosal Associated Lymphoid Tissue Lymphoma Clinical Characteristics Diagnosis Treatment
摘要: 目的:报道黏膜相关淋巴组织淋巴瘤(mucosa associated lymphoid tissue, MALT)并干燥综合征(Primary Sjögren’s Syndrome, SS)的临床特点与诊治重点,分析其预后。方法:回顾1例MALT并SS患者的临床资料并复习相关文献。结果:本例报道的MALT并pSS患者以肺部结节为首发表现,无明显伴随症状,经多次肺组织穿刺活检的病理结果不能排除淋巴瘤可能,结合免疫组化结果确诊为MALT合并SS,在疾病进展过程中可根据胸部CT检查结果发现肺内结节的增长趋势,经过治疗后随访,患者现病情稳定。结论:MALT并pSS患者较少,发病隐匿,初期临床表现可不典型,根据临床表现及影像学检查易漏诊,临床医师在疾病诊断过程中需加强对MALT并pSS的认识,及时给予治疗。
Abstract: Objective: To report the clinical features, diagnosis and treatment of mucosa associated lymphoid tissue (MALT) and Primary Sjögren’s Syndrome (pSS), and analyze its prognosis. Methods: The clinical data of a case of MALT complicated with SS were reviewed and the related literature was reviewed. Results: The patients with MALT and pSS reported in this case presented with pulmonary nodules as the first symptom, and there were no obvious accompanying symptoms. The pathological results of lung biopsy for many times could not rule out the possibility of lymphoma. Combined with immunohistochemical results, MALT with SS was diagnosed. In the process of disease progress, the growth trend of pulmonary nodules could be found according to the results of chest CT examination. After treatment and follow-up, the patient’s condition was stable. Conclusion: There are few patients with MALT complicated with pSS, and the initial clinical manifestations are atypical. According to the clinical manifestations and imaging examination, it is easy to miss the diagnosis. Clinicians should strengthen their understanding of MALT complicated with pSS in the process of disease diagnosis.
文章引用:尹高慧, 王吉波, 孙琳茜. 黏膜相关淋巴组织淋巴瘤合并干燥综合征1例并文献复习[J]. 临床医学进展, 2024, 14(4): 2943-2949. https://doi.org/10.12677/acm.2024.1441375

1. 背景

原发性干燥综合征(Primary Sjögren’s Syndrome, pSS)是自身免疫介导、炎性细胞浸润导致的唾液腺、泪腺受累为主的外分泌腺上皮炎(epithelitis),伴或不伴腺体外多器官受累的系统疾病 [1] [2] 。pSS可累及各个器官和系统,外分泌腺淋巴细胞和浆细胞的高度浸润导致腺体功能低下或缺乏是pSS基本的病理特点,淋巴结或淋巴组织中的淋巴细胞在增殖、分化过程中发生恶变时即形成恶性淋巴瘤(lymphoma)。黏膜相关淋巴组织淋巴瘤(mucosa associated lymphoid tissue, MALT)与pSS密切相关,是一种常见的低度恶性淋巴组织淋巴瘤,腮腺、肺部及胃肠道多见,约占非霍奇金淋巴瘤的7%~8%,由于自身免疫疾病起病的隐匿性,部分患者以淋巴瘤相关症状首发就诊,易造成pSS漏诊,pSS患者发生淋巴瘤的风险为正常人群的10~44倍,淋巴瘤可威胁约5%pSS患者的生命健康,与单纯pSS患者相比,合并淋巴瘤患者的死亡风险增加2~8倍 [3] [4] 。

综合来看,了解MALT与pSS的密切关系对于诊断和治疗这两种疾病非常重要。在临床实践中,应当警惕pSS患者合并淋巴瘤的可能性,并进行及时的诊断和治疗以改善患者的预后。

2. 病历资料

患者女,32岁,于2020年6月发现右侧腋窝淋巴结肿大,偶有胸闷,畏寒,晨起咳黄色粘痰,量约5 ml/次,夜间睡眠质量差,多梦易醒。查体发现左侧颈部、右侧腋下、双侧腹股沟多淋巴结肿大,无压痛,移动度可,2021年胸部CT检查发现3个肺结节(肺结节1,肺结节2,肺结节3),自2021年至2023年患者规律复查胸部CT,影像示3个肺结节均呈持续增大趋势,见表1图1~3所示。行PET-CT检查提示部分结节代谢轻度增高,不排除炎性肉芽肿及淋巴瘤可能。2021年行2次右侧腋窝淋巴结穿刺:第1次病理诊断提示:淋巴组织反应性增生。第2次病理诊断示淋巴结结构尚存,各级淋巴细胞可见,倾向于反应性增生,结合免疫组化结果:EBER(原位杂交) (−),CD3 (T细胞+),CD20 (B细胞+),Bc1-2 (+),Bc1-6 (+),CD21示FDC网,CD10部分(+),CD30 (−),Ki-67表达正常,符合淋巴组织反应性增生。2021年5月及2023年5月行肺穿刺活检:2021年5月行CT引导下左肺穿刺组织活检术,病理示:肺组织呈慢性炎伴活动,间质纤维组织增生并多量淋巴细胞及中性粒细胞浸润,淋巴组织增生并淋巴滤泡形成,部分区域肺泡腔闭锁,局灶肺泡上皮略增生。免疫结果:CD3 (+),CD20 (+),CD10 (−),Bc1-2 (+),Bcl-6 (−),CD43 (+),CD21示FDC网,Kappa (+),Lambda (+),IgG4 (−),IgG (散+),特染:AFB (−),GMS (−),PAS (−),粘液卡红(−),革兰氏染色(−)。IGH、IGK、IGL重排克隆性分析检测结果:IGIGH-A:阴性;IGIGH-B:阴性;IGIGH-C:阴性;IGIGH-D:阴性;IGIGH-E:阴性;IGIGK-A:阴性;IGIGK-B:阳性;IGIGL:阳性IG。2023年5月CT引导下肺穿刺活检,病理结果示:(右肺穿刺活检)穿刺肺组织呈慢性炎,间质纤维组织增生并较多淋巴细胞及浆细胞浸润,局灶见淋巴滤泡形成,部分区域呈肺实变形态,局灶肺泡上皮略增生。加做IGH、IGK、IGL重排克隆性分析结果:IGIGH-A:阴性;IGH-B:阴性;IGH-C:阴性;IGH-D:阴性;IGH-E:阳性;IGK-A:阴性;IGK-B:阳性;IGL:阴性;IG重排阳性主要见于淋巴细胞增殖性疾病。免疫组化结果:CD20B细胞(+),CD3T细胞(+),浆细胞:CD38 (+),CD138 (+),Kappa(+),Lambda(+),IgG(+),IgG4 (−);Ki-67 (+,约3%),CD10 (−),CyclinD1 (−),Bcl-2 (+),Bcl-6 (散在+),CD5 (−)。EBER(原位杂交) (−)。2023年6月考虑患者既往2021年曾做肺穿刺,检测到IG-K重排,2023年第2次活检发现多量B细胞及浆细胞,浆细胞较成熟,蛋白水平未见轻链限制性,但基因水平可见单克隆性,诊断为:黏膜相关淋巴组织淋巴瘤,伴浆细胞分化。药物治疗上给予泽布替尼治疗。

2021年5月住院行穿刺检查结束后患者出现口干,结合入院时辅助检查:风湿四项:RF:119 IU/ml;抗核抗体及滴度:核颗粒型1:3200;ENA抗体谱:抗核糖体P蛋白抗体(+),抗SSA抗体(3+),抗Ro-52抗体(3+);免疫球蛋白:IgG 26.30 g/L;免疫球蛋白轻链(血):免疫球蛋白κ轻链6.79 g/L,免疫球蛋白λ轻链2.73 g/L;免疫球蛋白轻链(尿):免疫球蛋白κ轻链7.58 g/L;补体测定、ANCA、β2微球蛋白测定等未见明显异常。涎腺超声检查示:双侧腮腺及颌下腺弥漫性病变,淋巴上皮病可能。唇腺活检提示:慢性炎,间质纤维组织增生,见淋巴细胞、浆细胞浸润(超过50个细胞)。于风湿免疫科诊断“干燥综合征”,给予激素、赛可平、羟氯喹治疗。2022年9月出现脱发,查:淋巴细胞比率55.00%,淋巴细胞计数3.51 × 109/L,中性粒细胞比率38.4%,噬酸性粒细胞比率0.20%,IgG 17.40 g/L,CRP、转氨酶、肾内科肾功、蛋白测定未见明显异常,调整用药为“泼尼松、赛可平、环磷酰胺”治疗,2022年10月,脱发较前缓解。

Table 1. Changes of pulmonary nodules with the largest diameter in chest CT

表1. 胸部CT中直径最大肺结节变化情况

Figure 1. Changes of pulmonary nodule 1 on the same plain scan level (upper left: 2021.1, upper right: 2021.7, lower left: 2022.9, lower right: 2023.5)

图1. 肺结节1于同一平扫层面变化情况(左上:2021.1,右上:2021.7,左下:2022.9,右下:2023.5)

Figure 2. Changes of pulmonary nodule 2 on the same plain scan level (upper left: 2021.1, upper right: 2021.7, lower left: 2022.9, lower right: 2023.5)

图2. 肺结节2于同一平扫层面变化情况(左上:2021.1,右上:2021.7,左下:2022.9,右下:2023.5)

Figure 3. Changes of pulmonary nodule 3 on the same plain scan level (upper left: 2021.1, upper right: 2021.7, lower left: 2022.9, lower right: 2023.5)

图3. 肺结节3于同一平扫层面变化情况(左上:2021.1,右上:2021.7,左下:2022.9,右下:2023.5)

患者规律于风湿免疫科及血液科复诊,2023年11月,无明显不适,查:血常规、CRP、转氨酶、肾功未见明显异常,停用药物治疗,观察随诊3月。

3. 文献回顾与讨论

MALT的发生与各种染色体易位有关,这些易位主要导致转录因子κ-b (NF-κB)活化增加,转录因子NF-κB调节许多生理和病理过程:免疫反应、炎症反应、细胞增殖和凋亡,介导细胞质–细胞核信号,NF-κB活化后与DNA结合并调节多种基因的转录活化 [5] [6] 。NF-kappaB1和NF-kappaB2分别作为前体蛋白NF-kappaB1 p105和NF-kappaB2 p100产生,这些被蛋白酶体蛋白水解处理以产生成熟的转录因子NF-kappaB1p50和NF-kappaB2 p52,NF-kappaB2 p100加工最近被证明通过一种新的信号通路受到NF-kappaB诱导剂子集的刺激,包括淋巴毒素-β、B细胞活化因子和CD40配体,这促进了含有p52的NF-κB二聚体的核易位,其调节外周淋巴器官发生和B淋巴细胞分化,p100处理的增加也有助于某些T细胞和B细胞淋巴瘤的恶性表型,NF-κB1具有与NF-κB2不同的功能,在免疫和炎症反应中控制淋巴细胞和巨噬细胞功能很重要 [7] 。蛋白质A20是由基因TNFAIP3编码的NP-κB的负反馈调节因子,是一种泛素编辑酶,在人多数细胞类型中以低基础水平表达 [8] 。它被肿瘤坏死因子(TNF)或to11样受体介导的NF-κB激活,在超过70%患有MALT淋巴瘤的pSS患者中观察到A20功能异常。基因和体细胞的异常共同促进淋巴瘤的发展 [9] [10] [11] 。而NF-κB同样参与pSS的发病机制,参与B细胞的增殖与活化,通过PRMT5进行精氨酸甲基化修饰,从而调节炎症反应的发生并诱导唾液上皮细胞的凋亡 [12] [13] [14] 。

肺MALT淋巴瘤的CT表现多种多样:实变影、肺结节及肺肿块,多伴支气管充气征 [15] [16] [17] [18] 。胸部CT主要表现为:结节/肿块型、肺炎肺泡型、间质型、粟粒型及混合型,其中以结节/肿块型最常见。本病例以肺结节为首要临床表现,且在疾病进展过程中,结节逐渐增大。肺MALT淋巴瘤可出现独特的染色体异常,主要有t (11; 18) (q21; q21),t (14; 18) (q32; q21)和t (1; 14) (p22; q32)三种易位,可常伴有3、8和18号染色体序列的额外拷贝,以t (11; 18) (q21; q21)易位最多见,在肺MALT淋巴瘤组织中约占40% [18] 。以肺结节为表现的肺MALT淋巴瘤需与肺结核、IgG4相关性疾病及间质型肺炎相鉴别,肺部感染可通第二代测序NGS (Next Throughput Sequencing)确定感染菌群,完善免疫相关指标及肺部穿刺活检取肺组织病理可明确诊断。本案例肺部影像学表现为肺结节,在疾病进展过程中结节直径逐渐增大,经肺穿刺活检后诊断为肺黏膜相关淋巴组织淋巴瘤。

肺MALT是一种B细胞淋巴瘤,特征性表达B细胞表面抗原,包括CD20、Bcl-2等 [19] 是低度恶性淋巴组织淋巴瘤,且预后良好,5年OS率大于80% [20] 。pSS患者淋巴结或淋巴组织中的淋巴细胞在增殖、分化过程中发生恶变时即形成恶性淋巴瘤,其治疗可使用免疫抑制和免疫调节药物、糖皮质激素及生物制剂治疗。本案例中淋巴瘤与pSS发展较难区分事件前后顺序,结合病理诊断,最终诊断为pSS并黏膜相关淋巴组织林巴黎,考虑合并疾病情况,针对使用靶向药物泽布替尼治疗,泽布替尼通过靶向抑制蛋白激酶BTK (Bruton’s Tyrosine Kinase)刺激B细胞抗原受体(B Cell Receptor, BCR)下游的多种信号转导途径影响B细胞的增殖、转运、趋化和黏附等功能进而抑制肿瘤细胞的生长,BTK抑制导致不同下游细胞信号通路的阻断,这些通路与B细胞恶性肿瘤的发展以及自身免疫性疾病的发生密切相关,BTK抑制剂可分为两大类:可逆和不可逆。不可逆抑制剂的特征在于受体部分能够与ATP结合位点中Cys481残基形成共价键,而可逆抑制剂与SH3结构域结合,通过弱的可逆相互作用(例如氢键或疏水相互作用),导致酶的非活性构象 [21] [22] [23] [24] 。

根据文献回顾的结果,MALT并SS患者的临床特点包括肺部结节为首发表现、隐匿的发病过程、可伴有不典型症状等。诊治重点在于结合肺组织穿刺活检和免疫组化结果进行确诊,并根据胸部CT检查结果监测病情进展。治疗过程中需密切随访,及时调整治疗方案。预后方面,患者经过治疗后病情稳定,预后较好。

在这个案例中,我们可以看到MALT并pSS患者的诊断和治疗过程中需要综合运用多种方法,包括临床表现观察、影像学检查、组织病理学分析等。在治疗过程中,及时调整治疗方案并密切随访也是非常重要的。通过对该病例的分析,可以帮助临床医师更好地认识和处理MALT并pSS患者,提高治疗效果和预后质量。

NOTES

*通讯作者。

参考文献

[1] Apaydın, H., Bicer, C., Yurt, E., et al. (2022) AB0552 Elevated Kynurenine Levels in Patients with Primary Sjögren’s Syndrome. Annals of the Rheumatic Diseases, 81, 1401-1403.
https://doi.org/10.1136/annrheumdis-2022-eular.4493
[2] Foguem, C., Seror, R. and Gosset, M. (2022) Chemosensory Dysfunction in Primary Sjögren’s Syndrome: A Topical Review. Clinical Rheumatology, 42, 1-14.
https://doi.org/10.1007/s10067-022-06359-w
[3] Isaacson, P.G. and Wright, D. (1983) Malignant Lymphoma of Mucosa-Associated Lymphoid Tissue—A Distinctive Type of B-Cell Lymphoma. Cancer, 52, 1410-1416.
https://doi.org/10.1002/1097-0142(19831015)52:8<1410::AID-CNCR2820520813>3.0.CO;2-3
[4] Jo, V. and Fletcher, C. (2013) WHO Classification of Soft Tissue Tumours. Pathology, 46, 95-104.
[5] Vallabhapurapu, S. and Karin, M. (2009) Regulation and Function of NF-κB Transcription Factors in the Immune System. Annual Review of Immunology, 27, 693-733.
https://doi.org/10.1146/annurev.immunol.021908.132641
[6] Zhu, H., Zheng, J., Zhou, Y., et al. (2021) Knockdown of RSAD2 Attenuates B Cell Hyperactivity in Patients with Primary Sjögren’s Syndrome (PSS) via Suppressing NF-κB Signaling Pathway. Molecular and Cellular Biochemistry, 476, 2029-2037.
https://doi.org/10.1007/s11010-021-04070-z
[7] Beinke, S. and Ley, S.C. (2004) Functions of NF-KappaB1 and NF-KappaB2 in Immune Cell Biology. Biochemical Journal, 382, 393-409.
https://doi.org/10.1042/BJ20040544
[8] Nordmark, G., Wang, C., Vasaitis, L., et al. (2013) Association of Genes in the NF‐κB Pathway with Antibody‐Positive Primary Sjögren’s Syndrome. Scandinavian Journal of Immunology, 78, 447-454.
https://doi.org/10.1111/sji.12101
[9] Nocturne, G., Boudaoud, S., Miceli, C., et al. (2013) Germline and Somatic Genetic Variations of TNFAIP3 in Lymphoma Complicating Primary Sjogren’s Syndrome. Blood, 122, 4068-4076.
https://doi.org/10.1182/blood-2013-05-503383
[10] Nocturne, G., Tarn, J., Boudaoud, S., et al. (2015) Germline Variation of TNFAIP3 in Primary Sjögren’s Syndrome-Associated Lymphoma: Table 1. Annals of the Rheumatic Diseases, 75, 780-783.
https://doi.org/10.1136/annrheumdis-2015-207731
[11] Nocturne, G., Virone, A., Ng, W.-F., et al. (2015) Rheumatoid Factor and Disease Activity Are Independent Predictors of Lymphoma in Primary Sjögren’s Syndrome. Arthritis & Rheumatology (Hoboken, N.J.), 68, 977-985.
https://doi.org/10.1002/art.39518
[12] Chen, W., Lin, J., Cao, H., et al. (2015) Local and Systemic IKKε and NF-κB Signaling Associated with Sjögren’s Syndrome Immunopathogenesis. Journal of Immunology Research, 2015, Article ID: 534648.
https://doi.org/10.1155/2015/534648
[13] Tilioua, S., Mezioug, D., Amir-Tidadini, Z.C., et al. (2020) Potential Role of NF-κB Pathway in the Immuno-Inflammatory Responses during Human Cystic Echinococcosis. Acta Tropica, 203, Article ID: 105306.
https://doi.org/10.1016/j.actatropica.2019.105306
[14] Wei, H., Wang, B., Miyagi, M., et al. (2013) PRMT5 Dimethylates R30 of the P65 Subunit to Activate NF-κB. Proceedings of the National Academy of Sciences of the United States of America, 110, 13516-13521.
https://doi.org/10.1073/pnas.1311784110
[15] Hoshida, Y., Xu, J.X., Fujita, S., et al. (2007) Lymphoproliferative Disorders in Rheumatoid Arthritis: Clinicopathological Analysis of 76 Cases in Relation to Methotrexate Medication. The Journal of Rheumatology, 34, 322-331.
[16] Okabe, M., Inagaki, H., Ohshima, K., et al. (2003) API2-MALT1 Fusion Defines a Distinctive Clinicopathologic Subtype in Pulmonary Extranodal Marginal Zone B-Cell Lymphoma of Mucosa-Associated Lymphoid Tissue. The American Journal of Pathology, 162, 1113-1122.
https://doi.org/10.1016/S0002-9440(10)63908-9
[17] Remstein, E.D., Kurtin, P.J., Einerson, R.R., et al. (2004) Primary Pulmonary MALT Lymphomas Show Frequent and Heterogeneous Cytogenetic Abnormalities, Including Aneuploidy and Translocations Involving API2 and MALT1 and IGH and MALT1. Leukemia, 18, 156-160.
https://doi.org/10.1038/sj.leu.2403185
[18] Streubel, B., Simonitsch-Klupp, I., Müllauer, L., et al. (2004) Variable Frequencies of MALT Lymphoma-Associated Genetic Aberrations in MALT Lymphomas of Different Sites. Leukemia, 18, 1722-1726.
https://doi.org/10.1038/sj.leu.2403501
[19] Reichenberger, F., Wyser, C., Gonon, M., et al. (2001) Pulmonary Mucosa-Associated Lymphoid Tissue Lymphoma in a Patient with Common Variable Immunodeficiency Syndrome. Respiration, 68, 109-112.
https://doi.org/10.1159/000050475
[20] Borie, R., Wislez, M., Thabut, G., et al. (2009) Clinical Characteristics and Prognostic Factors of Pulmonary MALT Lymphoma. European Respiratory Journal, 34, 1408-1416.
https://doi.org/10.1183/09031936.00039309
[21] Alu, A., Lei, H., Han, X., et al. (2022) BTK Inhibitors in the Treatment of Hematological Malignancies and Inflammatory Diseases: Mechanisms and Clinical Studies. Journal of Hematology & Oncology, 15, Article No. 138.
https://doi.org/10.1186/s13045-022-01353-w
[22] Burger, J.A. (2019) Bruton Tyrosine Kinase Inhibitors: Present and Future. The Cancer Journal, 25, 386-393.
https://doi.org/10.1097/PPO.0000000000000412
[23] Fares, A., Uribe, C., Rehman, T., et al. (2024) Bruton’s Tyrosine Kinase Inhibitors: Recent Updates. International Journal of Molecular Sciences, 25, Article No. 2208.
https://doi.org/10.3390/ijms25042208
[24] Mano, H. (1999) Tec Family of Protein-Tyrosine Kinases: An Overview of Their Structure and Function. Cytokine & Growth Factor Reviews, 10, 267-280.
https://doi.org/10.1016/S1359-6101(99)00019-2