三维集流体实现无枝晶锂金属负极
3D Current Collectors Realizing Dendrite-Free Lithium Metal Anode
DOI: 10.12677/ms.2024.144054, PDF, HTML, XML, 下载: 40  浏览: 58 
作者: 王 翱:成都大学机械工程学院,四川 成都
关键词: 锂沉积亲锂性锂枝晶3D集流体Lithium Deposition Lithiophilicity Lithium Dendrites 3D Current Collectors
摘要: 近年来,随着锂空气电池和锂硫电池的快速发展,具有高能量密度的锂金属电池再次受到动力电池研究人员的广泛关注。但是,在电池的循环过程中,锂金属负极存在锂枝晶、体积膨胀以及剧烈的副反应,这会导致电池充放电效率的降低并使得电池存在安全隐患。为了获得稳定的锂金属负极,提出了各种改性策略,例如,电解质添加剂、隔膜改性、人工SEI膜和3D集流体等。其中,集流体的改性直接影响着负极表面结构,并且3D集流体所具有的大的比表面积可以有效地降低局部电流密度,诱导锂的均匀成核与沉积。本文综述了3D集流体改性中具有指导意义的部分研究,旨在为进一步的3D集流体的设计提供参考。
Abstract: In recent years, with the rapid development of lithium-air batteries and lithium-sulfur batteries, lithium-metal batteries with high energy density have once again received extensive attention from power battery researchers. However, during the cycling process of the battery, the lithium metal anode is prone to dendrite formation, volume expansion, and intense side reactions, which can lead to a decrease in the efficiency of charge-discharge cycles and pose safety risks for the battery. To obtain a stable lithium metal anode, various modification strategies have been proposed, such as electrolyte additives, diaphragm modification, artificial SEI, and 3D current collectors. Among them, the modification of the collector directly affects the surface structure of the anode, and the large specific surface area of the 3D current collectors can effectively reduce the local current density and induce the uniform nucleation and deposition of lithium. In this paper, we review some of the instructive research in the modification of 3D collectors, aiming to provide reference for further design 3D collectors.
文章引用:王翱. 三维集流体实现无枝晶锂金属负极[J]. 材料科学, 2024, 14(4): 474-482. https://doi.org/10.12677/ms.2024.144054

1. 引言

1991年以石墨为阳极的锂离子电池(LIBs)正式投入商业化使用。它促进了便携式电子设备的迅速发展,使新能源汽车能够在路上行驶,其影响甚至颠覆了生产和生活方式。新能源汽车的高速发展使得续航里程更高且安全性更好的电池具有更强的市场竞争力。大规模储能的需求以及“碳中和”观念的提出,也急需更加优秀的电池储能技术来充分利用风能、太阳能等可持续发展能源 ‎[1] 。将要达到理论能量密度的锂离子电池已然无法满足需求 ‎[2] ‎[3] 。但幸运的是,具有高理论比容量(3860 mAh/g,是石墨的十倍)和最低的氧化还原电位(−3.04 V,与标准氢电极相比)的锂金属电池似乎是一个有效的选择 ‎[4] ‎[5] ‎[6] 。

在实际应用中,充放电过程中电池内部总是不可避免地发生副反应,生成不具备电化学活性的副反应产物 ‎[7] 。锂金属电池中的SEI膜、锂枝晶和死锂便是这种副反应的产物。锂金属电池之所以难以进入实际应用以及商业化是因为它存在着锂枝晶、体积膨胀、副反应剧烈等问题 ‎[8] 。其中最重要的便是由于锂的非均匀沉积所造成的锂枝晶的不可控生长。这些负面问题都在不同程度上加速着电池的衰退 ‎[9] ‎[10] 。更严重的是,锂枝晶还有可能穿破隔膜,与正极接触,造成电池内部短路,引起热失控,引发电池着火等安全性问题 ‎[10] ‎[11] 。

2D铜箔用作负极的常规集流体,然而,集流体不仅将负极活性材料与外电路连接起来,而且还是锂金属电池中锂沉积的基底,对锂枝晶的成核和生长起着决定性的作用。2D铜箔固有的疏锂性和高的局部电流密度影响锂金属负极(LMA)中的Li+通量,使锂枝晶和“死锂”迅速形成。根据空间电荷模型,锂枝晶生长不受控制的原因是离子通量和局部电流密度不均匀 ‎[12] ‎[13] 。根据Sand’s Time理论,可以通过高比表面积的3D框架来耗散局部电流密度以抑制枝晶生长 ‎[14] ‎[15] ‎[16] 。因此,具有大比表面积、多活性位点以及能够调节电场梯度以更好地控制局部电流密度的3D集流器正在被广泛研究。

在这篇综述中,我们从3D框架和亲锂材料两个方面综述了近年来代表性的3D集流体的研究并进行了合理的分析,总结了有效的3D集流体的设计重点,为进一步的3D集流体的设计提供指导。

2. 3D集流体

锂枝晶的产生与锂金属表面的局部电场强度不均匀有关,锂金属负极表面电流密度不均匀引发的局部强电场会导致锂离子分布不均匀,从而诱导锂枝晶的形成。这种影响随着电流密度的升高而更加明显。由于以上原因,便有研究从增加集电器的表面积来降低局部电流密度,控制锂沉积,进而限制锂枝晶的成核与生长 ‎[17] 。关于利用集流体改性来抑制枝晶生长的研究一直深受关注 ‎[18] 。相较于二维结构,具有更大表面积、更多活性位点、能够调节电场梯度、能够更好控制局部电流密度等特点的3D集电器被重点利用 ‎[15] ‎[16] 。

三维电流收集器具有三大优势 ‎[19] 。首先,有效的三维结构可以实现高效的且可逆的锂存储,例如具有界面活性梯度的三维框架电极 ‎[20] 和双相储锂材料 ‎[21] 等。其次,3D集流体可以使电极/电解质界面更加稳定,例如由石蜡构建的保护层等 ‎[22] 。第三,3D集流体上存在的亲锂位点可以诱导锂的均匀沉积。例如锚定在碳纤维上的超细银粒子等 ‎[23] 。

2.1. 3D负极结构

Figure 1. Structure of (a) hollow carbon nanospheres and behavior of lithium deposition; ‎[37] (b) hyper branched vertical array defective graphene (HVDG); (c) Li-HVDG||LFP cells and Li-Cu||LFP cells at 0.2 mA cm−2 with N/P ratio of 1:1 and E/C ratio of 12 g Ah−1 ‎[38]

图1. (a) 空心碳纳米球的结构和锂沉积的行为; ‎[37] (b) 超支化垂直阵列缺陷石墨烯(HVDG)示意图;(c) Li-HVDG||LFP电池和Li-Cu||LFP电池在0.2 mA cm2,N/P比为1:1,E/C比为12 g Ah1 ‎[38]

在锂金属负极的研究中,有些传统的金属材料和碳基材料可以有效地起到抑制锂枝晶的生长和LMAs体积膨胀的问题。其中,由于具有良好的导电性和电化学稳定性,金属骨架,例如泡沫铜 ‎[24] 、泡沫镍 ‎[25] ‎[26] 、铜线 ‎[27] 、多孔铜 ‎[28] ‎[29] 等,被广泛作为LMAs的3D电流收集器使用。但是由于Cu和Ni固有的疏锂性和作为基底所带来的局部电流分布不均匀等特性,想要达到理想效果,仍需要进一步的改性。对于碳基材料而言,由于碳材料具备质量密度低、导电性能良好、特定的多孔结构等特点,已被广泛应用到各种储能系统(例如,锂离子电池)中 ‎[30] ‎[31] 。在锂金属电池的研究中,也有碳纤维 ‎[32] ‎[33] 、碳纳米管 ‎[34] ‎[35] 、碳布 ‎[36] 等碳基材料得到应用。其中,多孔碳材料能够有效降低局部电流密度,具有足够孔隙度的碳材料可以更多地储存锂并且可以适应锂阳极的体积变化 ‎[18] 。Yan等人就曾提出了一种由内部带有纳米颗粒种子的空心碳球组成纳米胶囊结构,它可以有效地将锂限制在空心碳球内部进行生长(图1(a)) ‎[37] 。

有些设计是通过特殊结构设计,即使仍然具有体积膨胀,但是可以通过转移膨胀所产生的机械应力,使电池的电化学性能衰减减少。例如通过高弹性聚合物橡胶制备的可拉伸锂金属负极 ‎[39] 。还有一些特殊结构也具有允许锂枝晶的生长,但可以减少锂枝晶对电池造成的损害,例如控制锂枝晶横向生长的聚酰亚胺(PI)包覆铜板集流器(E-Cu) ‎[40] 。但是为了锂金属电池的长期稳定循环,以上方法存在着明显的缺陷。近年来,3D纳米多孔的氮掺杂石墨烯 ‎[41] 、Li+导电性Li3N和亲锂LiAl合金组成的3D复合结构 ‎[42] 等更加复杂和有效的结构被投入抑制锂枝晶的研究中,但大多以能量密度为代价。因此,为了充分发挥三维电流收集器的优势,关于结构的改性仍然值得研究人员进一步的进行研究。

在最近的研究中,Fang等人设计了超支化垂直阵列缺陷石墨烯(HVDG),以满足对高表面容量的需求 ‎[38] 。它允许锂金属负极在表面容量大于6 mAh cm−2的条件下进行深度的锂沉积/剥离。HVDG中的缺陷主要来自碳的固有缺陷,这些空位可诱导形成高锂碳比的锂插层,从而促进锂的均匀成核和沉积。同时,HVDG中的非共轭碳(氢化碳是其主要成分)具有很强的区域电负性,这使得Li+的成核势垒很低。超支化结构有利于电荷转移。和完美石墨烯(Gperf)和仅有空位的缺陷石墨烯(Gdefc)相比,HVDG与Li的相互作用更强。在面容量为6 mAh cm−2,电流密度为1 mA cm−2的条件下,Li||HVDG电池的库伦效率100次循环中可保持在99%左右。更重要的是,在极限N/P比为1:1的条件下测试电池时,Li-HVDG||LFP全电池的稳定循环次数超过200次,容量保持率为80%,平均库伦效率为99.2%,而Li-Cu||LFP电池只能循环40圈。

与2D集流体相比,3D集流体可以提供更大的比表面积,有效降低局部电流密度。此外,3D集流体的结构构造具有多样性,核壳结构、包层结构等各种3D集流体可以有效限制锂的生长位置或生长行为。然而,在增大比表面积的同时,还应注意将比表面积控制在可控范围内。这是因为高比表面积会导致初始循环期间产生的SEI增加,最终导致界面在循环期间加速劣化 ‎[38] ‎[43] 。尤其是当表面容量和电流密度较大时,SEI的结构稳定性会更差 ‎[44] ‎[45] 。因此,在设计纳具有高比表面积的3D集流体时,我们不仅要提高容量和初始库仑效率,还要在确保LMA具有有效容量的同时关注锂金属负极的长期循环稳定性。更重要的是,单纯的结构改性只能在空间策略上限制锂的生长行为并缓解锂金属负极的体积膨胀,无法有效地避免锂枝晶的生长。

2.2. 亲锂材料的引入

亲锂层常用来提高基底和锂之间的亲和力、控制锂沉积和抑制枝晶生长。目前被广泛研究的用于提高亲锂性的主要包括杂原子掺杂(N掺杂石墨烯 ‎[46] 等)、过渡金属(Ag ‎[47] 、Au ‎[48] )、金属氧化物(SnO2 ‎[49] 等)和聚合物涂层 ‎[50] 等。使用亲锂材料制备锂金属负极可以有效地控制锂的均匀沉积。在最近的研究中,Fan ‎[51] 等受到锂成核与生长之间的竞争动力学模型的启发,制备了铟层修饰的3D泡沫镍骨架(In@NF)。在初次放电过程中,泡沫镍上的铟转变为In3Li13合金,使得锂原子更倾向于沉积在In3Li13上,从而形成颗粒状的、更加均匀的锂沉积。这个实验就是利用了当基底表面原子与锂离子的相互作用大于锂离子与已经沉积的锂原子之间的作用时,更有利于锂进行均匀沉积的特性。

Qiu等人设计了一种平行排列的Co纤维阵列 ‎[52] 。当熔融锂与这种基底接触时,锂很容易在纤维的作用下沿着纤维生长,然后封住Co纤维,形成Li-Co复合负极(图2(a))。由于Co纤维的成核过电位(49.6 mV)低于铜箔的成核过电位(76.8 mV) (图2(b)),且Co与锂的结合能(−3.05 eV)远低于铜与锂的结合能(−2.78 eV) (图2(c)),Co纤维阵列可提供更好的亲理性,使锂沉积更均匀。理论计算结果显示,锂原子与LiZn (111)平面的结合能为−1.96 eV,远高于Li (110)平面和石墨烯平板的−1.20和−1.21 eV,这表明锂与LiZn (111)之间存在很强的相互作用,证明了LiZn合金具有良好的亲锂性 ‎[53] 。金属氧化物中丰富的氧键容易使其与金属锂发生高度反应,表现出卓越的亲锂性 ‎[54] 。基于以上原因,Wang等人通过用规则排列的ZnO纳米棒阵列修饰具有规则孔隙结构的三维铜网(CM),制备出亲锂的Li-ZnO@CM负极 ‎[55] 。在电化学作用下,ZnO和Li反应生成LiZn和LiO2。LiZn/Li2O纳米棒阵列提供了一个均匀的沉积场所,引导锂的均匀沉积,同时纳米棒提供的无机富集界面可以控制均匀电场强度的形成,加速电荷转移,促进锂的迁移,有效引导锂沿纳米棒成核。此外,CM的周期性多孔结构为锂的横向生长提供了良好的空隙空间。在1 mA cm−2,1 mAh cm−2的条件下,锂在ZnO@CM上的成核过电位为14 mV,明显低于CF的24 mV和CM的19 mV,这侧面反映出了ZnO的引入所带来的亲锂特性。类似地,Gao等人在3D CM上生成了CuO纳米棒阵列,以改善集电极的亲锂性,其作用与ZnO相似,使负极表现出卓越的性能 ‎[56] 。由于ZnO和CuO的有效性,Ma等人在碳布上制备了ZnO-CoO纳米颗粒(图2(d)),熔锂时间仅为8秒 ‎[57] 。在3 mA cm−2的电流密度下,Li-ZnO-CoO/CC复合阳极组装的对称电池仍可稳定循环600小时以上,电压滞后低至11 mV (图2(e))。在0.3 C下循环300次后,NCM523||Li-ZnO-CoO/CC全电池的容量保持率高达92.4%。

Figure 2. (a) Flow chart for the preparation of SFI@Li/Co negative electrode; (b) Discharge curves of Co fibers and copper foils; (c) Binding energy of Co/Cu with Li; ‎[52] (d) SEM images of ZnO-CoO/CC negative electrode; (e) Time-voltage curves of ZnO-CoO/CC symmetric cell at 3 mA cm−2, 1 mAh cm−2; ‎[57] (f) SEM images of MnO2@NF; (g) Mn 2p energy spectrum of MnO2@NF before and after cycling ‎[58]

图2. (a) SFI@Li/Co负极的制备流程图;(b) Co纤维和铜箔的放电曲线;(c) Co/Cu与Li的结合能; ‎[52] (d) ZnO-CoO/CC负极的扫描电镜图像;(e) 3 mA cm2,1 mAh cm2的条件下,ZnO-CoO/CC对称电池的时间–电压曲线; ‎[57] (f) MnO2@NF的扫描电镜图像;(g) 循环前后MnO2@NF的Mn 2p能谱 ‎[58]

循环过程中的锂沉积/剥离行为也是研究锂金属负极中亲锂位点的有效手段。Fan等人通过水热法设计了具有锂沉积/剥离高可逆性的纳米花阵列(图2(f)) ‎[58] 。他们将亲锂的MnO2完全覆盖在泡沫镍表面,在初始循环过程中转化为具有独特结构的Mn/Li2O (图2(g)),为泡沫镍提供了丰富的锂沉积位点。由于原位生成了亲锂的Mn和Li2O,在锂沉积过程中,初始沉积的锂以均匀致密的球形形态成核,这种沉积形态可以诱导锂在后续沉积过程中沿锂核边缘沉积。随着镀锂量的增加,集流体表面逐渐形成致密的块状锂,没有锂枝晶生成。在完全剥离锂后,纳米花成功还原为初始形态,不会产生和保留“死锂”。即使经过20次充放电循环,MnO2@NF仍能保持无树枝状物的电镀和剥离形态。对称电池测试表明,即使在3 mA cm−2、1 mAh cm−2的条件下,Li-MnO2@NF也能稳定地循环900小时以上。除了引入亲锂材料外,MnO2@NF远大于泡沫镍的比表面积(0.7074 m2 g−1,泡沫镍为m2 g−1)以及其独特的纳米花结构也是其优异性能的重要原因。

除此之外,亲锂层的构建可以有效地和SEI的改性相结合来稳定锂金属负极。Ponraj ‎[59] 等设计了一种涂覆在3D泡沫铜上的富氮石墨烯量子点(N-GQDs)作为集流体来控制锂沉积。首先,在首次充电过程中,N-GQD层会诱导生成均匀且稳定的SEI。其次,亲锂的N-GQD具有良好的电绝缘性和离子导电性,使得锂沉积主要在SEI-泡沫铜界面处。这种方法综合利用了SEI和3D集流体的优势,在控制锂沉积的同时,在高功率工作条件下保持了SEI的稳定,降低了由SEI破裂所引发的锂沉积热点,有效地在诱导均匀锂沉积的同时稳定界面结构。

3. 总结与讨论

3D集流体的设计也有值得注意的地方。首先,比表面积并不一定越大越好。随着比表面积的增大,电解液的消耗量必然增加,SEI的面积也会增大,从而导致副反应不可避免地增加。因此,引入亲锂阵列的实验设计需要全面考虑电解液的调节和稳定的SEI的构建。其次,亲锂材料的选择至关重要。由于不同材料本身的物理和化学性质不同,当它们作为亲锂材料被引入阵列时,可能会带来不利影响。例如,一些具有电子绝缘特性的材料会降低电子转移能力,从而使亲锂层失效。其中最常见的是金属氧化物。因此,在设计亲锂材料时,我们需要充分了解引入材料的特性。最后,我们需要更深入地了解亲锂性。有必要找到一种准确的指标或方法来深入分析亲锂性,如亲锂官能团的量化和分类。这将对高稳定性锂金属负极的开发和锂金属电池的商业化具有重要指导意义。

由于电池系统内部的复杂性和金属锂所固有的高反应活性,利用现有表征技术精确表征和准确分析锂枝晶的成核与生长的具体过程仍然有一段路要走。幸运的是,3D集流体的改性为稳定的锂金属负极的开发提供了更多可能性。进入二十世纪后,计算技术高速发展带来的各种原子尺度和连续介质水平的计算方法为锂沉积和锂枝晶的研究提供了更广阔的视野。在亲锂材料的研究中,通常通过计算表面能和结合能来反映材料的亲锂性,但随着计算机模拟技术的发展,我们应尝试发展先进的理论计算来直接显示亲锂性。此外尝试开发更先进的原位表征技术来表征锂沉积/溶解行为,将有助于应用于锂金属阳极的纳米阵列的设计和应用。

除此之外,我们在探索和测试各种策略的同时,应充分考虑锂金属电池的实际应用场景,比如需要高充电效率的新能源汽车、需要考虑空间和环境因素的大规模储能等。在想办法降低成本的同时可以实现大规模生产,这对锂金属电池投入商业化和实际应用无疑是重要的,这也是将科研成果化为社会进步的推动力、实现锂金属电池研究价值所必须要考虑的。无论如何,3D集流器的优势是显而易见的。我们相信,3D集流体的发展和完善将有效地推动锂金属电池的应用。

参考文献

[1] Armand, M. and Tarascon, J.-M. (2001) Building Better Batteries. Nature, 451, 652-657.
https://doi.org/10.1038/451652a
[2] Zhang, X., Wang, A. and Liu, X. (2019) Dendrites in Lithium Metal Anodes: Suppression, Regulation, and Elimination. Accounts of Chemical Research, 52, 3223-3232.
https://doi.org/10.1021/acs.accounts.9b00437
[3] Simon, P., Gogotsi, Y. and Dunn, B. (2014) Where Do Batteries End and Supercapacitors Begin? Science, 343, 1210-1211.
https://doi.org/10.1126/science.1249625
[4] Chen, S., Dai, F. and Cai, M. (2020) Opportunities and Challenges of High-Energy Lithium Metal Batteries for Electric Vehicle Applications. ACS Energy Letters, 5, 3140-3151.
https://doi.org/10.1021/acsenergylett.0c01545
[5] Yasin, G., Arif, M. and Mehtab, T. (2020) Understanding and Suppression Strategies toward Stable Li Metal Anode for Safe Lithium Batteries. Energy Storage Materials, 25, 644-678.
https://doi.org/10.1016/j.ensm.2019.09.020
[6] Albertus, P., Babinec, S. and Litzelman, S. (2017) Status and Challenges in Enabling the Lithium Metal Electrode for High-Energy and Low-Cost Rechargeable Batteries. Nature Energy, 3, 16-21.
https://doi.org/10.1038/s41560-017-0047-2
[7] Xiao, J., Li, Q. and Bi, Y. (2020) Understanding and Applying Coulombic Efficiency in Lithium Metal Batteries. Nature Energy, 5, 561-568.
https://doi.org/10.1038/s41560-020-0648-z
[8] Krauskopf, T., Richter, F.H. and Zeier, W.G. (2020) Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries. Chemical Reviews, 120, 7745-7794.
https://doi.org/10.1021/acs.chemrev.0c00431
[9] Bai, P., Li, J. and Brushett, F.R. (2016) Transition of Lithium Growth Mechanisms in Liquid Electrolytes. Energy & Environmental Science, 9, 3221-3229.
https://doi.org/10.1039/C6EE01674J
[10] Lin, D., Liu, Y. and Cui, Y. (2017) Reviving the Lithium Metal Anode for High-Energy Batteries. Nature Nanotechnology, 12, 194-206.
https://doi.org/10.1038/nnano.2017.16
[11] Yang, H., Guo, C. and Naveed, A. (2018) Recent Progress and Perspective on Lithium Metal Anode Protection. Energy Storage Materials, 14, 199-221.
https://doi.org/10.1016/j.ensm.2018.03.001
[12] Zheng, J., Kim, M.S. and Tu, Z. (2020) Regulating Electrodeposition Morphology of Lithium: Towards Commercially Relevant Secondary Li Metal Batteries. Chemical Society Reviews, 49, 271-275.
https://doi.org/10.1039/C9CS00883G
[13] Brissot, C., Rosso, M. and Chazalviel, J.-N. (1999) Dendritic Growth Mechanisms in Lithium/Polymer Cells. Journal of Power Sources, 81, 925-929.
https://doi.org/10.1016/S0378-7753(98)00242-0
[14] Sand, H.J. (1901) III. On the Concentration at the Electrodes in a Solution, with Special Reference to the Liberation of Hydrogen by Electrolysis of a Mixture of Copper Sulphate and Sulphuric Acid. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1, 45-79.
https://doi.org/10.1080/14786440109462590
[15] Cheng, Y., Chen, J. and Chen, Y. (2021) Lithium Host: Advanced Architecture Components for Lithium Metal Anode. Energy Storage Materials, 38, 276-298.
https://doi.org/10.1016/j.ensm.2021.03.008
[16] Cheng, X.-B., Peng, H.-J. and Huang, J.-Q. (2014) Dendrite-Free Nanostructured Anode: Entrapment of Lithium in a 3D Fibrous Matrix for Ultra-Stable Lithium-Sulfur Batteries. Small, 10, 4257-4263.
https://doi.org/10.1002/smll.201401837
[17] Zhang, R., Cheng, X.-B. and Zhao, C.-Z. (2016) Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth. Advanced Materials, 28, 2155-2162.
https://doi.org/10.1002/adma.201504117
[18] Yuan, H., Ding, X. and Liu, T. (2022) A Review of Concepts and Contributions in Lithium Metal Anode Development. Materials Today, 53, 173-196.
https://doi.org/10.1016/j.mattod.2022.01.015
[19] Wang, J., Lan, D. and Chen, G. (2022) Built-In Stable Lithiophilic Sites in 3D Current Collectors for Dendrite Free Li Metal Electrode. Small, 18, Article 2106718.
https://doi.org/10.1002/smll.202106718
[20] Yun, J., Park, B.-K. and Won, E.-S. (2020) Bottom-Up Lithium Growth Triggered by Interfacial Activity Gradient on Porous Framework for Lithium-Metal Anode. ACS Energy Letters, 5, 3108-3114.
https://doi.org/10.1021/acsenergylett.0c01619
[21] Kim, J., Lee, J. and Yun, J. (2020) Functionality of Dual-Phase Lithium Storage in a Porous Carbon Host for Lithium-Metal Anode. Advanced Functional Materials, 30, Article 1910538.
https://doi.org/10.1002/adfm.201910538
[22] Ye, M., Jin, X. and Nan, X. (2020) Paraffin Wax Protecting 3D Non-Dendritic Lithium for Backside-Plated Lithium Metal Anode. Energy Storage Materials, 24, 153-159.
https://doi.org/10.1016/j.ensm.2019.08.024
[23] Yang, C., Yao, Y. and He, S. (2017) Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode. Advanced Materials, 29, Article 1702714.
https://doi.org/10.1002/adma.201702714
[24] Zhang, R., Li, Y. and Qiao, L. (2021) Atomic Layer Deposition Assisted Superassembly of Ultrathin ZnO Layer Decorated Hierarchical Cu Foam for Stable Lithium Metal Anode. Energy Storage Materials, 37, 123-134.
https://doi.org/10.1016/j.ensm.2021.01.028
[25] Chi, S.-S., Liu, Y. and Song, W.-L. (2017) Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite-Free Lithium Metal Anode. Advanced Functional Materials, 27, Article 1700348.
https://doi.org/10.1002/adfm.201700348
[26] Liu, S., Zhang, H. and Liu, X. (2021) Constructing Nanoporous Ni Foam Current Collectors for Stable Lithium Metal Anodes. Journal of Energy Chemistry, 58, 124-132.
https://doi.org/10.1016/j.jechem.2020.09.013
[27] Yang, C.-P., Yin, Y.-X. and Zhang, S.-F. (2015) Accommodating Lithium into 3D Current Collectors with a Submicron Skeleton towards Long-Life Lithium Metal Anodes. Nature Communications, 6, Article No. 8058.
https://doi.org/10.1038/ncomms9058
[28] Lu, B., Olivera, E. and Scharf, J. (2021) Quantitatively Designing Porous Copper Current Collectors for Lithium Metal Anodes. ACS Applied Energy Materials, 4, 6454-6465.
https://doi.org/10.1021/acsaem.1c00438
[29] Li, Q., Zhu, S. and Lu, Y. (2017) 3D Porous Cu Current Collector/Li-Metal Composite Anode for Stable Lithium-Metal Batteries. Advanced Functional Materials, 27, Article 1606422.
https://doi.org/10.1002/adfm.201606422
[30] Xie, L., Tang, C. and Bi, Z. (2021) Hard Carbon Anodes for Next-Generation Li-Ion Batteries: Review and Perspective. Advanced Energy Materials, 11, Article 2101650.
https://doi.org/10.1002/aenm.202101650
[31] Jiang, X., Chen, Y. and Meng, X. (2022) The Impact of Electrode with Carbon Materials on Safety Performance of Lithium-Ion Batteries: A Review. Carbon, 191, 448-470.
https://doi.org/10.1016/j.carbon.2022.02.011
[32] Man, J., Liu, K. and Zhang, H. (2021) Dendrite-Free Lithium Metal Anode Enabled by Ion/Electron-Conductive N-Doped 3D Carbon Fiber Interlayer. Journal of Power Sources, 489, Article 229524.
https://doi.org/10.1016/j.jpowsour.2021.229524
[33] Zhang, R., Chen, X. and Shen, X. (2018) Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries. Joule, 2, 764-777.
https://doi.org/10.1016/j.joule.2018.02.001
[34] Liu, H. (2022) A Flexible Artificial Solid-Electrolyte Interlayer Supported by Compactness-Tailored Carbon Nanotube Network for Dendrite-Free Lithium Metal Anode. Journal of Energy Chemistry, 69, 421-427.
https://doi.org/10.1016/j.jechem.2022.01.033
[35] Sun, B., Li, P. and Zhang, J. (2018) Dendrite-Free Sodium-Metal Anodes for High-Energy Sodium-Metal Batteries. Advanced Materials, 30, Article 1801334.
https://doi.org/10.1002/adma.201801334
[36] Cheng, H., Zhang, S. and Mei, J. (2020) Lithiated Carbon Cloth as a Dendrite-Free Anode for High-Performance Lithium Batteries. Sustainable Energy & Fuels, 4, 5773-5782.
https://doi.org/10.1039/D0SE01096K
[37] Yan, K., Lu, Z. and Lee, H.-W. (2016) Selective Deposition and Stable Encapsulation of Lithium through Heterogeneous Seeded Growth. Nature Energy, 1, Article No. 16010.
https://doi.org/10.1038/nenergy.2016.10
[38] Fang, R., Han, Z. and Li, J. (2022) Rationalized Design of Hyperbranched Trans-Scale Graphene Arrays for Enduring High-Energy Lithium Metal Batteries. Science Advances, 8, eadc9961.
https://doi.org/10.1126/sciadv.adc9961
[39] Liu, K., Kong, B. and Liu, W. (2018) Stretchable Lithium Metal Anode with Improved Mechanical and Electrochemical Cycling Stability. Joule, 2, 1857-1865.
https://doi.org/10.1016/j.joule.2018.06.003
[40] Zou, P., Wang, Y. and Chiang, S.-W. (2018) Directing Lateral Growth of Lithium Dendrites in Micro-Compartmented Anode Arrays for Safe Lithium Metal Batteries. Nature Communications, 9, Article No. 464.
https://doi.org/10.1038/s41467-018-02888-8
[41] Huang, G., Han, J. and Zhang, F. (2018) Lithiophilic 3D Nanoporous Nitrogen-Doped Graphene for Dendrite-Free and Ultrahigh-Rate Lithium-Metal Anodes. Advanced Materials, 31, Article 1805334.
https://doi.org/10.1002/adma.201805334
[42] Zhang, T., Lu, H. and Yang, J. (2020) Stable Lithium Metal Anode Enabled by a Lithiophilic and Electron/Ion Conductive Framework. ACS Nano, 14, 5618-5627.
https://doi.org/10.1021/acsnano.9b10083
[43] Ding, Y., Sun, Y. and Shi, Z. (2023) Bismuthene Arrays Harvesting Reversible Plating-Alloying Electrochemistry toward Robust Lithium Metal Batteries. Small Structures, 4, Article 2200313.
https://doi.org/10.1002/sstr.202200313
[44] Kim, H., Jeong, G. and Kim, Y.-U. (2013) Metallic Anodes for Next Generation Secondary Batteries. Chemical Society Reviews, 42, 9011-9034.
https://doi.org/10.1039/c3cs60177c
[45] Liu, F., Xiao, Q. and Wu, H.B. (2018) Fabrication of Hybrid Silicate Coatings by a Simple Vapor Deposition Method for Lithium Metal Anodes. Advanced Energy Materials, 8, Article 1701744.
https://doi.org/10.1002/aenm.201701744
[46] Zhang, R., Wen, S. and Wang, N. (2018) N-Doped Graphene Modified 3D Porous Cu Current Collector toward Microscale Homogeneous Li Deposition for Li Metal Anodes. Advanced Energy Materials, 8, Article 1800914.
https://doi.org/10.1002/aenm.201800914
[47] Tian, B., Huang, Z. and Xu, X. (2018) Three-Dimensional Ag/Carbon Nanotube-Graphene Foam for High Performance Dendrite Free Li/Na Metal Anodes. Journal of Materials Science & Technology, 132, 50-58.
https://doi.org/10.1016/j.jmst.2022.05.044
[48] Ke, X., Liang, Y. and Ou, L. (2019) Surface Engineering of Commercial Ni Foams for Stable Li Metal Anodes. Energy Storage Materials, 23, 547-555.
https://doi.org/10.1016/j.ensm.2019.04.003
[49] Xia, Y., Jiang, Y. and Qi, Y. (2019) 3D Stable Hosts with Controllable Lithiophilic Architectures for High-Rate and High-Capacity Lithium Metal Anodes. Journal of Power Sources, 442, Article 227214.
https://doi.org/10.1016/j.jpowsour.2019.227214
[50] He, Y., Xu, H. and Shi, J. (2019) Polydopamine Coating Layer Modified Current Collector for Dendrite-Free Li Metal Anode. Energy Storage Materials, 23, 418-426.
https://doi.org/10.1016/j.ensm.2019.04.026
[51] Fan, Y., Liao, J. and Luo, D. (2023) in Situ Formation of a Lithiophilic Surface on 3D Current Collectors to Regulate Lithium Nucleation and Growth for Dendrite-Free Lithium Metal Anodes. Chemical Engineering Journal, 453, Article 139903.
https://doi.org/10.1016/j.cej.2022.139903
[52] Qiu, Z., Shen, S. and Liu, P. (2023) Plasma Enhanced Lithium Coupled with Cobalt Fibers Arrays for Advanced Energy Storage. Advanced Functional Materials, 33, Article 2214987.
https://doi.org/10.1002/adfm.202214987
[53] Wang, X., Pan, Z. and Wu, Y. (2019) Infiltrating Lithium into Carbon Cloth Decorated with Zinc Oxide Arrays for Dendrite-Free Lithium Metal Anode. Nano Research, 12, 525-529.
https://doi.org/10.1007/s12274-018-2245-z
[54] Liu, Y., Lin, D. and Liang, Z. (2016) Lithium-Coated Polymeric Matrix as a Minimum Volume-Change and Dendrite-Free Lithium Metal Anode. Nature Communications. Nature Publishing Group, 7, 1-9.
https://doi.org/10.1038/ncomms10992
[55] Wang, L., Yu, Z. and Zhong, Y. (2022) Controllable and Homogeneous Lithium Electrodeposition via Lithiophilic Anchor Points. The Journal of Physical Chemistry Letters, 13, 5977-5985.
https://doi.org/10.1021/acs.jpclett.2c01340
[56] Gao, T., Xu, D. and Yu, Z. (2021) A 3D Lithium Metal Anode Reinforced by Scalable In-Situ Copper Oxide Nanostick Copper Mesh. Journal of Alloys and Compounds, 865, Article 158908.
https://doi.org/10.1016/j.jallcom.2021.158908
[57] Ma, P., Zhuang, Z. and Cao, J. (2022) ZnO-CoO Composite Nanosphere Array-Modified Carbon Cloth for Low-Voltage Hysteresis Li Metal Anodes. ACS Applied Energy Materials, 5, 6417-6422.
https://doi.org/10.1021/acsaem.2c00860
[58] Fan, Y., Li, H. and He, X. (2022) In Situ Grown MnO2Nanoflower Arrays on Ni Foam (MnO2@NF) as 3D Lithiophilic Hosts for a Stable Lithium Metal Anode. ACS Applied Energy Materials, 5, 10034-10044.
https://doi.org/10.1021/acsaem.2c01660
[59] Ponraj, R., Yun, J.H. and Wang, J.E. (2022) Regulating Lithium Metal Interface Using Seed-Coating Layer for High-Power Batteries. Chemical Engineering Journal, 433, Article 134380.
https://doi.org/10.1016/j.cej.2021.134380