免疫检查点在胃癌中的研究进展
Research Progress on the Study of Immune Checkpoints in Gastric Cancer
DOI: 10.12677/acm.2024.1441275, PDF, HTML, XML, 下载: 88  浏览: 138 
作者: 蒲艳霞, 王若峥*:新疆医科大学附属肿瘤医院头颈放疗科,新疆 乌鲁木齐
关键词: 胃癌免疫检查点生物标志物Gastric Cancer Immune Checkpoints Biomarkers
摘要: 胃癌是全球最常见的消化道肿瘤之一。由于其晚期的患者预后较差,单纯传统的化疗效果并不能满足患者治疗需求,因此挖掘新的治疗策略来改善该疾病的生存率势在必行。目前程序性死亡受体1 (programmed cell death 1, PD-1)抑制剂联合化疗已用于晚期胃癌一线治疗。随着对胃癌免疫基因组学的进一步了解,新的免疫检查点调节剂可能变得更加重要,人们越来越关注在先进的姑息治疗环境中寻找可成药的靶点,发现新的预测生物标志物和实现个性化治疗势在必行。对免疫系统功能的进一步研究和认识将有助于未来免疫治疗的发展。
Abstract: Gastric cancer is one of the most frequent tumors in the digestive tract. Due to the poor prognosis of patients with its advanced stage, the effect of traditional chemotherapy alone cannot meet the patients’ therapeutic needs, so it is imperative to explore new therapeutic strategies to improve the survival rate of this disease. Currently, programmed cell death 1 (PD-1) inhibitors combined with chemotherapy have been used as the first-line treatment for advanced gastric cancer. With further understanding of the immunogenomics of gastric cancer, new immune checkpoint modulators are likely to become more important, and there is a growing interest in finding druggable targets in the advanced palliative care setting, where the discovery of new predictive biomarkers and the realization of personalized therapy are imperative. Further research and understanding of immune system function will contribute to the future development of immunotherapy.
文章引用:蒲艳霞, 王若峥. 免疫检查点在胃癌中的研究进展[J]. 临床医学进展, 2024, 14(4): 2144-2150. https://doi.org/10.12677/acm.2024.1441275

1. 引言

胃癌(Gastric cancer, GC)是世界上最常见也是最重要的消化道恶性肿瘤之一,关乎患者生活质量。其发病有明显的地域性差异,全球范围内以东亚的发病率最高,其次是东欧和中欧等地,然而在非洲和北美等地观察到的比率较低 [1] [2] 。据国际癌症研究机构的研究数据显示,胃癌每100万例病例约导致超过76.8万人死亡 [3] [4] 。在中国,胃癌发病率虽呈下降趋势,但发病率和死亡率仍居第三 [5] 。我们仍需更多的关注目前胃癌的治疗策略,以期提高患者的生存率。

目前胃癌的治疗手段包括内镜治疗、手术治疗、放疗、化疗及靶向治疗等 [6] 。早期手术治疗的患者有较好的生存率 [7] ,但由于多数患者确诊时已是晚期,针对这部分患者,预后仍然不容乐观 [8] 。

胃癌晚期的免疫治疗已成为继传统化疗联合靶向等治疗后的新方法。一项III期Checkmate-649试验 [9] 显示,与单独化疗相比,纳武利尤单抗是首个在既往未经治疗的晚期胃癌、胃食管交界处癌或食管腺癌患者中联合化疗显示出优越的总生存和无进展生存的PD-1抑制剂,并且安全性可以被接受,其联合化疗成了这些患者的一种新的一线治疗。免疫联合化疗及靶向治疗是当前研究的热点,但是部分患者免疫治疗效果相对局限,具体如何通过药物提高患者免疫功能水平以达到对各种癌症细胞的特异性识别治疗仍然是一大难题,因此探究新的免疫抑制受体及新的生物标志物也至关重要,本文将对胃癌中常见的受体及其生物标志物作一综述。

2. 抑制性检查点

2.1. PD-1

PD-1是一种主要在T细胞上表达的免疫检查点分子,同时也在B细胞、胸腺细胞、单核细胞等有表达 [10] ,当其配体PD-L1(programmed death-1igand 1, PD-L1)与PD-1结合,能够在炎症情况下保护正常组织,在肿瘤微环境(TME)中,PD-L1在肿瘤表面表达,并与T细胞上的受体PD-1结合,能够抵抗T细胞的杀伤作用,最终引起肿瘤免疫逃逸。应用阻断PD-1/PD-L1信号转导通路的PD-1/PD-L1抑制剂,已经在多种实体瘤中显示出优异的抗肿瘤功效,包括黑色素瘤、非小细胞肺癌和霍奇金淋巴瘤等 [11] 。

针对胃癌的免疫治疗,有一项临床实验(KEYNOTE-062) Ⅲ期研究结果报道在未经治疗且PD-L1联合性阳性评分(combined positive score, CPS) ≥ 1的晚期胃癌或胃食管结合部癌患者中,帕博利珠单抗不劣于化疗,甚至不良事件的发生较少 [12] 。2022版的CSCO胃癌诊疗指南在该项临床实验的基础上,推荐将帕博利珠单抗作为那些不能化疗且PD-L1 CPS ≥ 1分的晚期胃癌患者的一线治疗。同样全球首个获得成功的III期研究CheckMate-649 [9] ,主要针对晚期胃癌一线免疫治疗PD-1抑制纳武利尤单抗联合化疗实现总生存和无进展生存双均获益,也实现了对中国的晚期胃癌患者的较长生存和良好安全性的双重承诺,为晚期胃癌免疫治疗领域再添新彩。多个抗PD-L1单克隆抗体在GC中正在评估中,包括NCT03675737、NCT03813784、NCT03777657、NCT03802591等。

2.2. CTLA-4

细胞毒性T淋巴细胞相关抗原4 (cytotoxic T lymphocyte associated antigen 4, CTLA-4)是一种T细胞表面的负性调节因子,其与CD28是由T细胞表达的同源受体,能介导T细胞活化的相反功能 [13] 。两种受体共享一对在抗原呈递细胞(APC)表面表达的配体。当CTLA-4与其配体B7分子相互结合后,能够产生抑制性的信号,有助于抑制T细胞反应 [14] 。因此其抑制剂有可能用于激活T细胞的活化,同时能杀伤肿瘤细胞。一项CTLA-4抑制剂联合纳武利尤单抗和曲妥珠单抗的开放性、多中心II期临床试验INTEGA显示出该抑制剂伊匹木单抗有增强抗肿瘤免疫的功效,也表明伊匹木单抗可以成为胃癌免疫治疗的一个有前景的药物 [15] 。有研究报道CTLA-4功能不全患者有发生恶性肿瘤的风险,尤其是EBV驱动的胃癌和淋巴瘤 [16] ,胃癌中CTLA-4的特征尚未明确,因此需进一步研究。

继CheckMate-649之后,一项实验招募了813例不可切除的晚期或转移性胃、胃食管结合部或食管腺癌患者,其中409例接受纳武利尤单抗和伊匹木单抗治疗,404例接受化疗,在PD-L1 CPS ≥ 5的患者中,中位生存时间没有明显差异,但在微卫星不稳定性高(MSI-H)的肿瘤患者中较化疗(70%比57%)有更高的客观缓解率,雷莫芦单抗在胃癌免疫治疗中的临床试验已进入II期,一项纳入18例转移性胃食管癌患者的II期临床试验显示,二线替西木单抗(Tremelimumab)治疗后,发生癌胚抗原增殖反应的患者中位生存时间比未发生反应的患者时间长(17.1个月VS 4.7个月) [17] 。此外,新辅助治疗的多中心II期临床试验INFINITY联合(抗PD-L1抗体)和二线治疗的DURIGAST联合DOV02正在进行中 [18] 。

2.3. KLRG1

杀伤细胞凝集素样受体G1 (killer cell lectin-like receptor G1, KLRG1)是一种能使NK细胞、T细胞增殖功能障碍和效应功能降低的抑制性受体,主要在人类和小鼠的NK和T细胞亚群上表达,作为一种跨膜蛋白,KLRG1胞浆区域内含有的免疫受体酪氨酸抑制基序(ITIM)经过其配体E-cadherin和SHIP-1和SHP-2结合,可以导致淋巴细胞的增殖能力受损,提示了其在免疫系统中的负性作用 [19] [20] 。一项动物模型研究表明,KLRG1+ T细胞以多种方式发挥抗肿瘤免疫的作用 [21] 。有研究显示KLRG1在结鼻咽癌 [22] 、宫颈癌 [23] 等肿瘤组织及外周血淋巴细胞中高表达,并且可能与不良预后相关。而在胃癌中的报道几乎没有,因此值得进一步探追踪,同时也是以后一个新的研究方向。

2.4. TIGIT

T细胞免疫球蛋白和ITIM结构域蛋白(T cell immunoglobulin and ITIM domains, TIGIT)是一种跨膜糖蛋白,包含一个免疫球蛋白变异结构域、一个I型跨膜结构域和一个具有基于免疫受体酪氨酸的抑制基序(ITIM)和免疫球蛋白酪氨酸尾部(ITT)样基序的细胞质尾 [24] 。TIGIT通过能有效抑制先天性和适应性免疫。在小鼠模型中,TIGIT通过与CD155结合间接阻碍T细胞功能,其结合诱导CD155磷酸化并触发促进耐受性树突状细胞的信号级联反应,导致白细胞介素(IL)-12的产生减少,而IL-10的产生增加 [25] 。TIGIT是癌症免疫治疗的一个有前途的靶点,特别是与PD-1阻断联合使用有研究表明,其中抗TIGIT与抗PD-L1联合治疗比CTLA4联合PD-L1治疗有更好的耐受性,并且它改善了PD-L1免疫敏感患者的反应和无病进展期。事实上,TIGIT在CD8+ T细胞上与PD-1一起表达,这就解释了为什么所有讨论的临床试验都测试了TIGIT和PD-1抑制剂的组合 [26] 。

抗TIGIT抑制剂在胃癌治疗中的研究处于起步阶段。开放性II期临床试验NCT04933227计划阿替利珠单抗atezolizumab (抗PD-L1抗体)和替瑞利尤单抗tiragolumab (抗TIGIT)联合化疗作为一线治疗60例转移性或复发性胃或胃食管结合部癌患者。一项开放性、多中心、随机对照I/II期试验NCT05251948拟采阿替利珠单抗联合化疗用于二线治疗90例晚期胃或胃食管结合部癌患者。两项研究的主要研究终点均为客观缓解率。抗TIGIT抗体作为一种新的免疫治疗方法正在开发中,可能有助于胃癌的免疫治疗,能促进TIGIT阻断对癌症患者的影响中的作用,给患者带来新的希望。

2.5. TIM-3

T细胞免疫球蛋白和粘蛋白结构域3 (T cell immunoglobulin and mucin domain-containing protein 3, TIM3)是免疫调节蛋白TIM家族的成员,它选择性的表达于辅助性T细胞1 (Thelper 1, Th1)表面,并且通过与其配体半乳凝素-9结合抑制Th1细胞的活化,研究报道TIM-3可作为HIV感染患者CD8+ T细胞高度功能失调亚群的标志物,体外实验表明,用抗体阻断TIM-3可以恢复HIV-1的增殖反应,TIM-3表达跟慢性病毒感染相关,此外,在许多病毒感染中,TIM3水平与病毒载量和疾病进展呈正相关 [27] 。在一项研究中,Koyama等 [28] 发现抗PD-1治疗失败与TIM-3表达上调有关,TIM-3可能是一个潜在的免疫检查点,抗TIM-3单抗可以通过阻断TIM-3受体来获得免疫耐受,研究表明其抗体抑制剂与抗CTLA-4/抗PD-1抑制剂联合使用的疗效好,且耐受性良好 [29] 。

抗TIM-3抑制剂目前正处于胃癌治疗的Ⅰ期临床试验阶段。一项I期临床试验NCT03652077入组40例晚期癌症患者,使用抗TIM-3抑制剂作为一线治疗,研究其安全性、耐受性和初始疗效。在胃癌组织的免疫微环境中,TIM-3的表达水平明显高于正常胃黏膜组织 [30] ,且TIM-3的表达水平与PD-1/PD-L1呈正相关 [31] ,提示TIM-3可能具有抗PD-1/PD-L1免疫治疗的作用。目前,使用抗TIM3抑制剂治疗胃癌的临床研究较少。抗TIM-3抑制剂对胃癌患者的潜在益处及其与抗PD-1/PD-L1抑制剂联合治疗胃癌的潜力有待进一步研究。针对抗TIM-3的抑制剂(R07121661、LY3415244等)已被研究出来,其在胃癌中的作用需要进一步研究。

2.6. LAG-3

淋巴细胞活化基因3 (Lymphocyte Activation Gene-3, LAG-3)是数年前发现的一种抑制性分子,其主要在活化的T细胞以及自然杀伤(NK)细胞亚群上表达上调,抗LAG3抗体已被证明可以增强T细胞的增殖和功能 [32] 。研究表明LAG-3可作为潜在的免疫标志物 [33] 。既往研究分析外周血中LAG3的表达水平被证明与胃癌的TNM分期、浸润深度和组织学分化程度密切相关,揭示了LAG3表达水平作为胃癌诊断的生物标志物的前景 [34] 。此外,胃黏膜免疫微环境中LAG3高表达提示胃癌预后不良 [35] 。

三种抗LAG3单抗联合抗PD-1治疗方案正在进行早期临床试验,包括BMS-986016、LAG525和MK-4280。尽管抗LAG3抑制剂在胃癌中的研究目前处于I/II期临床试验阶段,尚无研究发表,但是结合其在胃癌目前研究结果,可能是影响胃癌免疫治疗疗效的重要因素,抗LAG3抑制剂可能具有开发新型免疫治疗策略的潜力。

3. 其他刺激性免疫检查点

PD-1抑制剂并非对所有恶性疾病都有效,在胃癌患者中,仅有小部分患者获得了较好的结果。这是因为胃癌具有较差的免疫原性和复杂的肿瘤微环境 [36] 。因此,需要新的潜在的精准免疫治疗检查点,人们在致力于研究抑制性受体的时候,一部分刺激性受体在肿瘤中的研究也脱颖而出。

3.1. OX40

OX40是一种作为T细胞共刺激分子发挥作用的刺激性受体,其同源配体为OX40L (CD134L、CD252)激活,OX40-OX40L相互作用被认为是治疗自身免疫的潜在治疗靶点 [37] 。OX40表达于T细胞以及中性粒细胞和NK细胞,在T细胞活化过程中通过与其配体OX40L结合发挥共刺激功能 [38] [39] 。OX40激动剂在胃癌治疗中的研究也处于早期阶段。一项开放、非随机、对照的I期试验NCT04198766目前处于招募阶段,研究OX40激动剂INBRX-106-Hexavalent单用或与帕博利珠单抗联用于200例患者的安全性和可耐受剂量。

3.2. ICOS

诱导T细胞共刺激因子(cluster of differentiation, ICOS)是CTLA-4/PD-1/CD28家族的T细胞共刺激分子,在CD4+ T细胞上发挥与CD28非重叠的功能。在人类中,ICOS在树突状细胞或T细胞相互作用中起主导作用 [40] 。ICOS激活可能增强抑制性检查点阻断的效果,而其中和可以降低免疫抑制性调节性T细胞的功能并抑制表达滤泡辅助性T细胞(Tfh)标记的淋巴肿瘤细胞 [41] 。有研究表明,在抗CTLA-4抗体和抗PD-1/PD-L1抗体的临床疗效支持下,中和性抗ICOS单抗将成为中和乳腺癌中调节性T细胞的有效治疗药物 [42] 。MEDI-570是针对ICOS的特异性单克隆抗体,目前处于I期。针对ICOS在胃癌研究报道少,其与胃癌的相关性需要进一步探究。

3.3. 4-1BB

4-1BB (CD137,肿瘤坏死因子受体超家族9)也是一种可诱导的共刺激受体,属于TNF受体(TFNR)家族。41BB激动剂与包括检查点抑制剂 [43] 在内的多种癌症免疫疗法具有协同作用。目前已有激动剂型抗CD137 mAb但在临床试验中不幸引起Fc受体(FcR)依赖的免疫介导的肝毒性 [44] 。旨在对肝脏更安全的CD137激动剂的新格式和结构重新出现在临床上。但是4-1BB于胃癌在的研受限,未来需要对其进行研究,以了为增强对胃癌患者有益的反应。

4. 总结

终上所述,免疫检查点改变了晚期胃癌一线治疗现状,目前关于胃癌免疫检查点的阻断治疗集主要中在PD-1/PD-L1免疫检查点或PD-1和CTLA-4共同阻断上。但对于TIGIT、KLRG1、TIM-3、LAG3等抑制性免疫检查点及刺激性检查点的关注较少,另外还有其他的抑制性和刺激性受体,本综述主要围绕本实验室涉及的常见分子进行阐述,希望通过本研究能给胃癌患者的单靶点或者多靶点的免疫治疗带来思路。未来进一步的研究旨在揭示相关的分子通路和寻找新的免疫治疗点,以待通过更多的临床研究发现更加精准的预测免疫抑制剂标志物,同时也希望未来有更多的免疫抑制剂出现,为晚期胃癌患者带来新的希望。

NOTES

*通讯作者。

参考文献

[1] Smyth, E.C., Nilsson, M., Grabsch, H.I., Van Grieken, N.C. and Lordick, F. (2020) Gastric Cancer. The Lancet, 396, 635-648.
https://doi.org/10.1016/S0140-6736(20)31288-5
[2] Ajani, J.A., D’Amico, T.A., Bentrem, D.J., et al. (2022) Gastric Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, National Comprehensive Cancer Network, 20, 167-192.
https://doi.org/10.6004/jnccn.2022.0008
[3] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[4] Chandra, R., Balachandar, N., Wang, S., et al. (2021) The Changing Face of Gastric Cancer: Epidemiologic Trends and Advances in Novel Therapies. Cancer Gene Therapy, 28, 390-399.
https://doi.org/10.1038/s41417-020-00234-z
[5] Xia, C., Dong, X., Li, H., et al. (2022) Cancer Statistics in China and United States, 2022: Profiles, Trends, and Determinants. Chinese Medical Journal, 135, 584-590.
https://doi.org/10.1097/CM9.0000000000002108
[6] Sexton, R.E., Al Hallak, M.N., Diab, M., et al. (2020) Gastric Cancer: A Comprehensive Review of Current and Future Treatment Strategies. Cancer and Metastasis Reviews, 39, 1179-1203.
https://doi.org/10.1007/s10555-020-09925-3
[7] Ono, H., Yao, K., Fujishiro, M., et al. (2021) Guidelines for Endoscopic Submucosal Dissection and Endoscopic Mucosal Resection for Early Gastric Cancer (Second Edition). Digestive Endoscopy, 33, 4-20.
https://doi.org/10.1111/den.13883
[8] Song, Z., Wu, Y., Yang, J., et al. (2017) Progress in the Treatment of Advanced Gastric Cancer. Tumor Biology, 39.
https://doi.org/10.1177/1010428317714626
[9] Janjigian, Y.Y., Shitara, K., Moehler, M., et al. (2021) First-Line Nivolumab plus Chemotherapy versus Chemotherapy Alone for Advanced Gastric, Gastro-Oesophageal Junction, and Oesophageal Adenocarcinoma (CheckMate 649): A Randomised, Open-Label, Phase 3 Trial. The Lancet, 398, 27-40.
https://doi.org/10.1016/S0140-6736(21)00797-2
[10] Liu, J., Chen, Z., Li, Y., et al. (2021) PD-1/PD-L1 Checkpoint Inhibitors in Tumor Immunotherapy. Frontiers in Pharmacology, 12, Article ID: 731798.
https://doi.org/10.3389/fphar.2021.731798
[11] Gordon, S.R., Maute, R.L., Dulken, B.W., et al. (2017) PD-1 Expression by Tumour-Associated Macrophages Inhibits Phagocytosis and Tumour Immunity. Nature, 545, 495-499.
https://doi.org/10.1038/nature22396
[12] Shitara, K., Van Cutsem, E., Bang, Y.J., et al. (2020) Efficacy and Safety of Pembrolizumab or Pembrolizumab plus Chemotherapy vs Chemotherapy Alone for Patients with First-Line, Advanced Gastric Cancer: The KEYNOTE-062 Phase 3 Randomized Clinical Trial. JAMA Oncology, 6, 1571-1580.
https://doi.org/10.1001/jamaoncol.2020.3370
[13] Rowshanravan, B., Halliday, N. and Sansom, D.M. (2018) CTLA-4: A Moving Target in Immunotherapy. Blood, 131, 58-67.
https://doi.org/10.1182/blood-2017-06-741033
[14] Xu, X., Dennett, P., Zhang, J., et al. (2023) CTLA4 Depletes T Cell Endogenous and Trogocytosed B7 Ligands via Cis-Endocytosis. Journal of Experimental Medicine, 220, e20221391.
https://doi.org/10.1084/jem.20221391
[15] Pereira, M.A., Castria, T.B., Ramos, M., et al. (2021) Cytotoxic T‐Lymphocyte‐Associated Protein 4 in Gastric Cancer: Prognosis and Association with PD‐L1 Expression. Journal of Surgical Oncology, 124, 1040-1050.
https://doi.org/10.1002/jso.26604
[16] Westermann-Clark, E., Ballow, M. and Walter, J.E. (2022) The New Quest in CTLA-4 Insufficiency: How to Immune Modulate Effectively? Journal of Allergy and Clinical Immunology, 149, 543-546.
https://doi.org/10.1016/j.jaci.2021.11.020
[17] Ralph, C., Elkord, E., Burt, D.J., et al. (2010) Modulation of Lymphocyte Regulation for Cancer Therapy: A Phase II Trial of Tremelimumab in Advanced Gastric and Esophageal Adenocarcinoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 16, 1662-1672.
https://doi.org/10.1158/1078-0432.CCR-09-2870
[18] Evrard, C., Louvet, C., Hajbi, F.E., et al. (2021) PRODIGE 59-DURIGAST Trial: A Randomised Phase II Study Evaluating FOLFIRI   Durvalumab ± Tremelimumab in Second-Line of Patients with Advanced Gastric Cancer. Digestive and Liver Disease: Official Journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver, 53, 420-426.
https://doi.org/10.1016/j.dld.2020.11.036
[19] Guo, Y., Feng, Y., Fan, P., et al. (2022) Expression and Clinical Significance of KLRG1 and 2B4 on T Cells in the Peripheral Blood and Tumour of Patients with Cervical Cancer. Immunological Investigations, 51, 670-687.
https://doi.org/10.1080/08820139.2020.1867567
[20] Tessmer, M.S., Fugere, C., Stevenaert, F., et al. (2007) KLRG1 Binds Cadherins and Preferentially Associates with SHIP-1. International Immunology, 19, 391-400.
https://doi.org/10.1093/intimm/dxm004
[21] Herndler-Brandstetter, D., Ishigame, H., Shinnakasu, R., et al. (2018) KLRG1 Effector CD8 T Cells Lose KLRG1, Differentiate into All Memory T Cell Lineages, and Convey Enhanced Protective Immunity. Immunity, 48, 716-729.E8.
https://doi.org/10.1016/j.immuni.2018.03.015
[22] 钱恒君. 局部晚期鼻咽癌患者外周血中淋巴细胞亚群KLRG1表达及预后分析[D]: [硕士学位论文]. 乌鲁木齐: 新疆医科大学, 2022.
[23] Li, L., Wan, S., Tao, K., et al. (2016) KLRG1 Restricts Memory T Cell Antitumor Immunity. Oncotarget, 7, 61670-61678.
https://doi.org/10.18632/oncotarget.11430
[24] Liu, L., You, X., Han, S., et al. (2021) CD155/TIGIT, a Novel Immune Checkpoint in Human Cancers (Review). Oncology Reports, 45, 835-845.
https://doi.org/10.3892/or.2021.7943
[25] Yu, X., Harden, K., Gonzalez, L.C., et al. (2009) The Surface Protein TIGIT Suppresses T Cell Activation by Promoting the Generation of Mature Immunoregulatory Dendritic Cells. Nature Immunology, 10, 48-57.
https://doi.org/10.1038/ni.1674
[26] Chauvin, J.M., Pagliano, O., Fourcade, J., et al. (2015) TIGIT and PD-1 Impair Tumor Antigen-Specific CD8 T Cells in Melanoma Patients. Journal of Clinical Investigation, 125, 2046-2058.
https://doi.org/10.1172/JCI80445
[27] Wolf, Y., Anderson, A.C. and Kuchroo, V.K. (2020) TIM3 Comes of Age as an Inhibitory Receptor. Nature Reviews Immunology, 20, 173-185.
https://doi.org/10.1038/s41577-019-0224-6
[28] Koyama, S., Akbay, E.A., Li, Y.Y., et al. (2016) Adaptive Resistance to Therapeutic PD-1 Blockade Is Associated with Upregulation of Alternative Immune Checkpoints. Nature Communications, 7, Article No. 10501.
[29] Ngiow, S.F., Von Scheidt, B., Akiba, H., et al. (2011) Anti-TIM3 Antibody Promotes T Cell IFN-γ-Mediated Antitumor Immunity and Suppresses Established Tumors. Cancer Research, 71, 3540-3551.
https://doi.org/10.1158/0008-5472.CAN-11-0096
[30] Cheng, G., Li, M., Wu, J., et al. (2015) Expression of Tim-3 in Gastric Cancer Tissue and Its Relationship with Prognosis. International Journal of Clinical and Experimental Pathology, 8, 9452-9457.
[31] Park, Y., Seo, A.N., Koh, J., et al. (2021) Expression of the Immune Checkpoint Receptors PD-1, LAG3, and TIM3 in the Immune Context of Stage II and III Gastric Cancer by Using Single and Chromogenic Multiplex Immunohistochemistry. Oncoimmunology, 10, Article ID: 1954761.
https://doi.org/10.1080/2162402X.2021.1954761
[32] Pardoll, D.M. (2012) The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nature Reviews. Cancer, 12, 252-264.
https://doi.org/10.1038/nrc3239
[33] Andrews, L.P., Marciscano, A.E., Drake, C.G., et al. (2017) LAG3 (CD223) as a Cancer Immunotherapy Target. Immunological Reviews, 276, 80-96.
https://doi.org/10.1111/imr.12519
[34] Li, N., Jilisihan, B., Wang, W., et al. (2018) Soluble LAG3 Acts as a Potential Prognostic Marker of Gastric Cancer and Its Positive Correlation with CD8 T Cell Frequency and Secretion of IL-12 and INF-γ in Peripheral Blood. Cancer Biomarkers: Section A of Disease Markers, 23, 341-351.
https://doi.org/10.3233/CBM-181278
[35] Lv, K., Li, R., Cao, Y., et al. (2021) Lymphocyte-Activation Gene 3 Expression Associates with Poor Prognosis and Immunoevasive Contexture in Epstein-Barr Virus-Positive and MLH1-Defective Gastric Cancer Patients. International Journal of Cancer, 148, 759-768.
https://doi.org/10.1002/ijc.33358
[36] Raufi, A.G. and Klempner, S.J. (2015) Immunotherapy for Advanced Gastric and Esophageal Cancer: Preclinical Rationale and Ongoing Clinical Investigations. Journal of Gastrointestinal Oncology, 6, 561-569.
[37] Webb, G.J., Hirschfield, G.M. and Lane, P.J.L. (2016) OX40, OX40L and Autoimmunity: A Comprehensive Review. Clinical Reviews in Allergy & Immunology, 50, 312-332.
https://doi.org/10.1007/s12016-015-8498-3
[38] Cebada, J., Perez-Santos, M., Bandala, C., et al. (2021) OX40 Agonists for Cancer Treatment: A Patent Review. Expert Opinion on Therapeutic Patents, 31, 81-90.
https://doi.org/10.1080/13543776.2021.1825688
[39] Redmond, W.L., Ruby, C.E. and Weinberg, A.D. (2009) The Role of OX40-Mediated Co-Stimulation in T-Cell Activation and Survival. Critical Reviews in Immunology, 29, 187-201.
https://doi.org/10.1615/CritRevImmunol.v29.i3.10
[40] Dong, C., Juedes, A.E., Temann, U.A., et al. (2001) ICOS Co-Stimulatory Receptor Is Essential for T-Cell Activation and Function. Nature, 409, 97-101.
https://doi.org/10.1038/35051100
[41] Amatore, F., Gorvel, L. and Olive, D. (2020) Role of Inducible Co-Stimulator (ICOS) in Cancer Immunotherapy. Expert Opinion on Biological Therapy, 20, 141-150.
https://doi.org/10.1080/14712598.2020.1693540
[42] Collin, M. (2016) Immune Checkpoint Inhibitors: A Patent Review (2010-2015). Expert Opinion on Therapeutic Patents, 26, 555-564.
https://doi.org/10.1080/13543776.2016.1176150
[43] Oda, S.K., Anderson, K.G., Ravikumar, P., et al. (2020) A Fas-4-1BB Fusion Protein Converts a Death to a Pro-Survival Signal and Enhances T Cell Therapy. The Journal of Experimental Medicine, 217, e20191166.
https://doi.org/10.1084/jem.20191166
[44] Segal, N.H., Logan, T.F., Hodi, F.S., et al. (2017) Results from an Integrated Safety Analysis of Urelumab, an Agonist Anti-CD137 Monoclonal Antibody. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 23, 1929-1936.
https://doi.org/10.1158/1078-0432.CCR-16-1272