甘油三酯葡萄糖指数与肾脏疾病相关性的研究进展
Research Progress of Correlation between Triglyceride Glucose Index and Kidney Disease
摘要: 甘油三酯葡萄糖指数是评估人体胰岛素抵抗水平的新型科学指标,相较于传统胰岛素测量方法,它具有操作简便、报告迅速、经济负担小等优势。已有多项研究证实甘油三酯葡萄糖指数与包括急性肾损伤、慢性肾脏病、肾结石在内的多种肾脏疾病的发生、发展关系密切。此篇综述就该指标与各类肾脏疾病相关性的研究进展作详细梳理与归纳、总结,旨在探索该指数在肾脏疾病风险分层评估及早期预防中的潜在临床应用价值。
Abstract: Triglyceride glucose index is a new scientific index to evaluate the insulin resistance of human body. Compared with the traditional insulin measurement method, it has the advantages of simple operation, rapid reporting and low economic burden. A number of domestic and foreign studies have proved that triglyceride glucose index is closely related to the occurrence and development of various kidney diseases. This review reviews the research progress of the correlation between this index and various kidney diseases in detail, and aims to explore the potential clinical application value of this index in stratified risk assessment and early prevention of kidney diseases.
文章引用:黄伊琳, 王妍秀, 陈丽英. 甘油三酯葡萄糖指数与肾脏疾病相关性的研究进展[J]. 临床医学进展, 2024, 14(4): 2137-2143. https://doi.org/10.12677/acm.2024.1441274

1. 引言

肾脏疾病是影响全球人类健康的几大重要疾病之一。根据世界卫生组织2020年发布的《2019年全球卫生估计报告》显示,肾脏疾病已位列全球十大死因之一,仅短短二十年内该类疾病所致死亡人数较前增加超过50% [1] 。在我国,肾脏疾病患病率亦居高不下,据统计,我国现有慢性肾脏病(chronic kidney disease, CKD)患者约1.2亿人,尿毒症患者100万~200万人,急性肾损伤(acute kidney injury, AKI)患者每年新发100万~300万 [2] 。第六次中国慢性病及危险因素监测结果显示,中国大陆成年人中慢性肾脏病、肾功能受损和白蛋白尿的患病率分别为8.2%、2.2%和6.7% [3] 。肾脏疾病尤其是CKD及终末期肾病(end stage kidney disease, ESKD)患者的逐年累加给我国医疗卫生事业带来巨大负荷与严峻挑战,这已成为影响我国居民健康的重大疾病和重要公共卫生问题,亟需采取有效的防治措施,对其进行科学、及时的管控与救治。近年来,随着社会经济水平迅速提升,居民饮食结构较前明显转变,胰岛素抵抗(insulin resistance, IR)的发病率不断攀升,随着相关研究的不断深入,新型胰岛素抵抗替代指标——甘油三酯葡萄糖指数(triglyceride glucose index,TyG指数)被证明或与多种肾脏疾病的发生、发展及转归有着密切关系,这为准确评估居民肾脏功能、发现居民肾脏损害的重要机制和干预靶点提供了崭新的研究思路与方向,对早期预防肾脏病发生、延缓肾脏病患者走向肾功能衰竭、减少相关并发症有重要意义。本文简要概述了TyG指数的临床意义,详细梳理、归纳其与多种肾脏疾病的潜在关系,最后展望该指数的未来研究前景及其临床转化应用价值。

2. 甘油三酯葡萄糖指数与胰岛素抵抗

IR通常是指胰岛素靶向器官或组织(主要包括肌肉、脂肪和肝脏)对高生理性水平胰岛素低反应性的状态,机体常表现出对葡萄糖代谢的控制缺失,已被广泛这证实是2型糖尿病、动脉粥样硬化、非酒精性脂肪性肝病等众多代谢性疾病的重要致病驱动因素,更有研究表明IR可能与某些癌症、神经系统退行性病变、精神疾病及虚弱相关 [4] [5] [6] 。高胰岛素–正葡萄糖钳夹试验是量化机体β细胞对胰岛素敏感性的金标准方法,但该方法操作复杂,耗时耗力且成本昂贵,不适宜在临床上大规模推广应用,只适用于小规模科学研究 [7] [8] 。在更大规模的研究中,胰岛素抵抗的稳态模型评估(homeostatic model assessment of insulin resistance, HOMA-IR)应用更为广泛 [9] 。HOMA-IR利用空腹血浆胰岛素和葡萄糖浓度来评估机体胰岛素抵抗的程度,即使在不同的人体代谢状况下进行测量,其结果与高胰岛素–正葡萄糖钳夹技术所测得的结果几乎相当 [10] 。然而,该检测受制于空腹胰岛素检测技术,在大多数基层医疗机构及不发达地区医疗单位开展亦受限制。

在2008年的一项横断面研究中,TyG指数被首次提出,该研究发现与HOMA-IR相比,TyG指数可作为替代指标来识别IR,其敏感性达到84.0% [11] ,但研究显示该指数特异性较低且潜在假阳性检测比例较高,使其在人群胰岛素抵抗筛查中的广泛应用受到限制。而在2010年,Guerrero-Romero [12] 等学者通过对不同体重及糖代谢状态水平的个体进行比较分析,指出与高胰岛素–正葡萄糖钳夹试验相比,TyG指数具有较高的灵敏度(96.5%)和特异性(85.0%),这表明TyG指数可以有效识机体对胰岛素敏感程度的下降。随后,科学界对TyG指数的关注度与日俱增,现已有众多大型临床研究证明该指数是评估高危人群胰岛素抵抗的可靠指标,同时因它具备更简便的技术优势,经济负担小,是评估胰岛素敏感性的潜在理想替代手段。

3. 胰岛素抵抗与肾脏疾病

胰岛素作为人体的核心激素之一,在肝脏、骨骼肌和白色脂肪组织等经典靶器官或靶组织中与其受体结合发挥调控作用,参与调节葡萄糖和脂质代谢等多种机体活动,帮助维持机体内环境稳态、促进细胞生长等。实际上,胰岛素受体在人体各器官组织中普遍表达,其信号传导过程也存在于其他非经典胰岛素靶组织中,比如动脉血管系统和肾脏。在血管中,胰岛素通过激活磷脂酰肌醇3-激酶(phosphate-dylinositol 3-kinase, PI3K)信号通路来促进内皮细胞产生一氧化氮(nitric oxide, NO),从而实现血管舒张 [13] 。在IR状态下肾脏血管对胰岛素敏感性下降,NO生成减少从而减弱血管内皮细胞舒张功能,增加肾血管血液流通阻力,最终可导致肾脏血流量减少 [14] 。而同时肾脏本身就是胰岛素的靶器官之一,肾小球足细胞、系膜细胞、肾小管细胞等多种细胞结构上的受体均可与胰岛素结合并发挥多种功能,包括改变血流学动力、调节肾小球滤过作用、协助肾小管电解质转运和糖异生等 [15] [16] [17] [18] 。当机体处于IR状态时,相应细胞和组织无法发挥功能,从而引发各类肾脏疾病。

4. 甘油三酯葡萄糖指数在肾脏疾病中的研究进展

4.1. 甘油三酯葡萄糖指数与急性肾损伤

AKI是一组临床综合征,通常指突发的短期内肾功能快速下降,血清肌酐水平上升,可出现氮质血症、电解质紊乱、酸碱失衡和少尿或无尿等临床表现及症状,根据其病因可分为肾前性、肾性(肾实质或肾血管相关性)、肾后性三类。不管是在低收入还是高收入国家,AKI的发病率正在稳步上升 [19] 。评估AKI发生风险、今早识别AKI的发生对疾病的治疗和预后极为重要,同时需要更多的指标协助评估当前肾功能的恢复和对肾脏储备功能的影响 [20] 。

Qin [21] 等学者在一项包括928名接受冠状动脉造影(coronary angiography, CAG)或经皮冠状动脉介入治疗(percutaneous coronary intervention, PCI)患者的前瞻性队列研究中发现,造影剂诱发的急性肾损伤(contrast-induced acute kidney injury, CI-AKI)发病率随着TyG指数的增加而显著增加,该研究首次证明TyG指数是CI-AKI的独立危险因素,对CI-AKI的诊断具有良好的预测价值,其预测CI-AKI的AUC达到0.728,相应灵敏度为94.7%,优于其他IR评估的简单指标如空腹血糖和甘油三酯。另有中国、土耳其等地的多位学者在探讨不同糖代谢状态下接受冠脉造影相关治疗术的患者TyG指数与CI-AKI之间关系时,亦得出相似结论,即高TyG指数可增加CAG或PCI术后CI-AKI的发生率 [22] [23] 。而Yang [24] 及其研究团队对重症监护医学信息市场IV(MIMIC-IV)数据库中6697名入住重症监护室的心力衰竭(heart failure, HF)患者进行Cox比例风险分析,发现TyG指数是危重型HF患者并发AKI等不良肾脏结局的可靠的独立预测因子。

4.2. 甘油三酯葡萄糖指数与慢性肾脏病

CKD是一种由多种原因引起的渐进性肾脏结构或功能异常疾病,该疾病通常发病隐匿,早期症状不典型,民众知晓率低,因此在人群中呈高患病率状态。目前临床对于CKD的诊断标准较为明确、便捷,但对其预防仍具有一定挑战性,早期快速发现肾脏功能下降并对其进行风险分层评估、干预能有效延缓慢性肾病病程进展及终末期肾脏病的发生,减少患者健康损害,减轻个体和社会疾病负担。

2017年在中国东北农村地区进行的一项横断面研究是中国首项基于大型一般人群揭示高TyG指数与低估算肾小球滤过率(eGFR)之间强关联的医学研究。该研究依据TyG指数数值将人群四等划分,调整各类协变量后,发现TyG指数最高四分位数组发生eGFR下降的风险是最低四分位数组的1.93倍,TyG指数每增加1个单位SD,eGFR降低的风险就会增加42.6%,一般人群发生eGFR降低风险与TyG指数呈线性增加关系。该研究显示了TyG指数对eGFR降低风险分层评估的价值,为明确该指数与eGFR的相关性提供了临床证据 [25] 。Li [26] 等中国学者基于中国健康与养老纵向研究(CHARLS)数据库进一步探讨了TyG指数及其衍生指数(包括TyG-BMI指数和TyG-WC指数)与eGFR和血清肌酐水平的关系,发现上述指数与eGFR呈显著负相关,与血清肌酐呈显著正相关,为该类指数在中国人群肾功能评估中的潜在作用提供了补充证据。日本学者Okamura [27] 等人在一项基于纳入11,712名体检人群的历史性队列研究里,利用Cox比例风险模型分析发现高TyG指数与不同性别人群CKD事件的发生均有显著关系,且ROC分析发现其对CKD的预测作用等于或优于其他胰岛素抵抗标志物如甘油三酯、甘油三酯/高密度脂蛋白胆固醇、腰围和糖化血红蛋白,更一步肯定了TyG指数在CKD疾病预测和评估应用中的优越性。

更有国内学者对CHARLS数据库中6496名受试者进行最长为期7年的追踪调查,发现TyG指数和eGFR水平均与心血管疾病显著相关。与TyG指数低和eGFR较高的人群相比,TyG指数较高且eGFR降低的患者患心血管疾病的风险最高,eGFR降低显著介导了TyG指数与心血管疾病之间29.6%的关联。该研究结果不仅再次证明TyG指数与心血管系统疾病关系密切,更指出肾脏功能或可介导TyG指数与心血管风险之间的关联,为以肾脏为治疗起始点和有效靶点精准治疗TyG指数升高人群的心血管疾病提供相关理论支持 [28] 。

4.3. 甘油三酯葡萄糖指数与终末期肾病

CKD患者因各种原因病情持续进展,最终将进入ESKD阶段,该类患者往往需进行长期规律的透析甚至肾脏移植治疗。由于肾脏分泌、排泄等功能严重受损,ESKD患者体内机体代谢废物严重蓄积,引起水钠潴留、酸碱失衡等,常可合并心血管疾病、血液系统疾病、肾性骨病、代谢性疾病等,降低患者生存质量,增加死亡风险。

2019年中国一项大型前瞻性队列研究指出TyG指数可能是接受腹膜透析(PD)治疗的ESKD患者心血管死亡风险增加的独立危险因素。基于超重或肥胖的人更容易出现胰岛素抵抗,该研究在按照四分位数对样本人群进行分组基础上,同时依据是否超重(BMI ≥ 25 kg/m2)对其进行亚组分析,结果显示TyG指数与接受PD治疗的ESKD患者心血管死亡率呈线性关系,在超重人群中,与最低四分位数组患者相比,最高四分位数组的患者心血管死亡风险高达2.82倍 [29] 。奥地利一项纳入176,420名参与者的前瞻性队列研究在调整性别、年龄和吸烟状况等变量后,亦指出TyG指数与ESKD发病风险显著相关,该研究同样根据BMI对受试者进行亚组分析,进而发现BMI每增加5个百分点,ESKD的风险增加58%,且BMI与ESKD之间约40%的关联是通过TyG指数介导的,表明该指数在BMI相关ESKD风险中具有强中介作用,间接支持了从肥胖到IR到CKD和ESKD的因果途径的观点,强调了减重对维持肾脏健康的重要性,也为TyG指数有望成为精准评估以保护肾脏功能为主要目的的减重治疗相关临床测量指标提供强有力的科学支持依据 [30] 。

4.4. 甘油三酯葡萄糖指数与糖尿病肾病

IR是2型糖尿病(type 2 diabetes, T2DM)的主要发病机制之一,2018年一项糖尿病聚类分析研究揭示了重度胰岛素抵抗型糖尿病(severe insulin-resistant diabetes mellitus, SIRD)亚型不仅表现出代谢异常,而且具有更高的心血管、肾脏和肝脏合并症风险 [31] 。Jin [32] 等中国学者通过一项嵌套病例对照研究证明TyG指数与经活检明确诊断的T2DM患者糖尿病肾病(diabetic nephropathy, DN)之间存在非线性关系。另有研究对T2DM患者进行横断面分析,发现TyG指数较高的患者发生微量白蛋白尿和eGFR下降的风险升高,同时通过纵向分析发现混杂因素调整后,基线时TyG指数高三分位数组的患者发生DN的风险高于低三分位数的患者 [33] 。而在成人潜伏性自身免疫性糖尿病(latent autoimmune diabetes in adults, LADA)患者中,有学者通过logistic回归分析发现,TyG指数与尿白蛋白/肌酐比值呈正相关,调整混杂因素后,TyG指数与eGFR之间也存在显著相关,受试者特征曲线提示AUC为0.708 [34] 。上述研究结果均为TyG指数成为不同类型糖尿病所致肾功能损害的重要临床评估指标提供重要参考价值。

4.5. 甘油三酯葡萄糖指数与其他肾脏疾病

肾结石是常见的肾脏疾病,尽管随着医学技术的发展,肾结石的治疗取得了显著进展,但如何降低发病率和复发率仍是困扰临床医生和广大患者的重要问题之一。已有多位学者及其研究团队分别对美国国家健康和营养检查调查(national health and nutrition examination survey, NHANES)不同子集的受试者相关数据进行分析,均发现TyG指数与肾结石风险呈正相关,提示该指数亦可作为预测肾结石发生率的新生物标志物 [35] [36] 。

5. 小结与展望

各类肾脏疾病尤其是CKD目前仍然是威胁人类健康的主要疾病之一,大多数进展到ESKD阶段的患者通常只能依靠频繁的透析治疗维持生命,给患者个人、社会和国家带来沉重负担。众多研究证明肾脏是胰岛素的重要靶器官之一,IR在急性肾损伤、慢性肾衰竭及泌尿系结石等疾病发生进程中扮演重要角色。新型IR测量指标TyG指标被初步证明对多种肾脏疾病有良好预测作用,且相比传统测量指标与检测方式,TyG指数的测量操作更便捷,价格更经济。未来或可通过大型多中心队列研究甚至随机对照研究以进一步确定该指标与肾脏疾病的相关性,为基层社区医院、经济不发达地区等地的医疗卫生机构开展使用临床实践性强、应用广泛的新型肾脏疾病预测指标提供科学依据,为临床医生对肾脏疾病风险分层和早期预防提供新的干预思路。

NOTES

*通讯作者。

参考文献

[1] World Health Organization (2019) World Health Statistics 2019: Monitoring Health for the SDGs, Sustainable Development Goals. Geneva.
[2] 陈香美. 中国肾脏病学发展的现状与未来[J]. 中华医学信息导报, 2021, 36(5): 19.
[3] Wang, L., Xu, X., Zhang, M., et al. (2023) Prevalence of Chronic Kidney Disease in China: Results from the Sixth China Chronic Disease and Risk Factor Surveillance. JAMA Internal Medicine, 183, 298-310.
https://doi.org/10.1001/jamainternmed.2022.6817
[4] Lee, S.H., Park, S.Y. and Choi, C.S. (2022) Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes & Metabolism Journal, 46, 15-37.
https://doi.org/10.4093/dmj.2021.0280
[5] James, D.E., Stöckli, J. and Birnbaum, M.J. (2021) The Aetiology and Molecular Landscape of Insulin Resistance. Nature Reviews. Molecular Cell Biology, 22, 751-771.
https://doi.org/10.1038/s41580-021-00390-6
[6] Behnoush, A.H., Mousavi, A., Ghondaghsaz, E., Shojaei, S., Cannavo, A. and Khalaji, A. (2024) The Importance of Assessing the Triglyceride-Glucose Index (TyG) in Patients with Depression: A Systematic Review. Neuroscience and Biobehavioral Reviews, 159, Article ID: 105582.
https://doi.org/10.1016/j.neubiorev.2024.105582
[7] DeFronzo, R.A., Tobin, J.D. and Andres, R. (1979) Glucose Clamp Technique: A Method for Quantifying Insulin Secretion and Resistance. The American Journal of Physiology, 237, E214-E223.
https://doi.org/10.1152/ajpendo.1979.237.3.E214
[8] Park, S.Y., Gautier, J.F. and Chon, S. (2021) Assessment of Insulin Secretion and Insulin Resistance in Human. Diabetes & Metabolism Journal, 45, 641-654.
https://doi.org/10.4093/dmj.2021.0220
[9] Wallace, T.M., Levy, J.C. and Matthews, D.R. (2004) Use and Abuse of HOMA Modeling. Diabetes Care, 27, 1487-1495.
https://doi.org/10.2337/diacare.27.6.1487
[10] Matthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Treacher, D.F. and Turner, R.C. (1985) Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia, 28, 412-419.
https://doi.org/10.1007/BF00280883
[11] Simental-MendÍA, L.E., RodrÍGuez-MorÁN, M. and Guerrero-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304.
https://doi.org/10.1089/met.2008.0034
[12] Guerrero-Romero, F., Simental-Mendía, L.E., González-Ortiz, M., Martínez-Abundis, E., Ramos-Zavala, M.G., Hernández-González, S.O., Jacques-Camarena, O. and Rodríguez-Morán, M. (2010) The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. The Journal of Clinical Endocrinology and Metabolism, 95, 3347-3351.
https://doi.org/10.1210/jc.2010-0288
[13] Vincent, M.A., Montagnani, M. and Quon, M.J. (2003) Molecular and Physiologic Actions of Insulin Related to Production of Nitric Oxide in Vascular Endothelium. Current Diabetes Reports, 3, 279-288.
https://doi.org/10.1007/s11892-003-0018-9
[14] Artunc, F., Schleicher, E., Weigert, C., Fritsche, A., Stefan, N. and Häring, H.U. (2016) The Impact of Insulin Resistance on the Kidney and Vasculature. Nature Reviews. Nephrology, 12, 721-737.
https://doi.org/10.1038/nrneph.2016.145
[15] Coward, R.J., Welsh, G.I., Yang, J., Tasman, C., Lennon, R., Koziell, A., Satchell, S., Holman, G.D., Kerjaschki, D., TavarÉ, J.M., Mathieson, P.W. and Saleem, M.A. (2005) The Human Glomerular Podocyte Is a Novel Target for Insulin Action. Diabetes, 54, 3095-3102.
https://doi.org/10.2337/diabetes.54.11.3095
[16] Pina, A.F., Borges, D.O., Meneses, M.J., Branco, P., Birne, R., Vilasi, A. and Macedo, M.P. (2020) Insulin: Trigger and Target of Renal Functions. Frontiers in Cell and Developmental Biology, 8, Article No. 519.
https://doi.org/10.3389/fcell.2020.00519
[17] Singh, S., Sharma, R., Kumari, M. and Tiwari, S. (2019) Insulin Receptors in the Kidneys in Health and Disease. World Journal of Nephrology, 8, 11-22.
https://doi.org/10.5527/wjn.v8.i1.11
[18] Cersosimo, E., Garlick, P. and Ferretti, J. (2000) Regulation of Splanchnic and Renal Substrate Supply by Insulin in Humans. Metabolism: Clinical and Experimental, 49, 676-683.
https://doi.org/10.1016/S0026-0495(00)80048-7
[19] Lameire, N.H., Bagga, A., Cruz, D., De Maeseneer, J., Endre, Z., Kellum, J.A., Liu, K.D., Mehta, R.L., Pannu, N., Van Biesen, W. and Vanholder, R. (2013) Acute Kidney Injury: An Increasing Global Concern. The Lancet (London, England), 382, 170-179.
https://doi.org/10.1016/S0140-6736(13)60647-9
[20] Ostermann, M., Bellomo, R., Burdmann, E.A., Doi, K., Endre, Z.H., Goldstein, S.L., Kane-Gill, S.L., Liu, K.D., Prowle, J.R., Shaw, A.D., Srisawat, N., Cheung, M., Jadoul, M., Winkelmayer, W.C., Kellum, J.A. and Conference Participants (2020) Controversies in Acute Kidney Injury: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference. Kidney International, 98, 294-309.
https://doi.org/10.1016/j.kint.2020.04.020
[21] Qin, Y., Tang, H., Yan, G., Wang, D., Qiao, Y., Luo, E., Hou, J. and Tang, C. (2021) A High Triglyceride-Glucose Index Is Associated with Contrast-Induced Acute Kidney Injury in Chinese Patients with Type 2 Diabetes Mellitus. Frontiers in Endocrinology, 11, Article ID: 522883.
https://doi.org/10.3389/fendo.2020.522883
[22] Zhu, Y., He, H., Qiu, H., Zhang, X., Wang, L. and Li, W. (2023) Prognostic Nutritional Index Combined with Triglyceride-Glucose Index to Contrast a Nomogram for Predicting Contrast-Induced Kidney Injury in Type 2 Diabetes Mellitus Patients with Acute Coronary Syndrome after Percutaneous Coronary Intervention. Clinical Interventions in Aging, 18, 1663-1673.
https://doi.org/10.2147/CIA.S429957
[23] Aktas, H., Inci, S., Gul, M., Gencer, S. and Yildirim, O. (2023) Increased Triglyceride-Glucose Index Predicts Contrast-Induced Nephropathy in Non-Diabetic NSTEMI Patients: A Prospective Study. Journal of Investigative Medicine: The Official Publication of the American Federation for Clinical Research, 71, 838-844.
https://doi.org/10.1177/10815589231182317
[24] Yang, Z., Gong, H., Kan, F. and Ji, N. (2023) Association between the Triglyceride Glucose (TyG) Index and the Risk of Acute Kidney Injury in Critically Ill Patients with Heart Failure: Analysis of the MIMIC-IV Database. Cardiovascular Diabetology, 22, Article No. 232.
https://doi.org/10.1186/s12933-023-01971-9
[25] Shi, W., Liu, S., Jing, L., Tian, Y. and Xing, L. (2019) Estimate of Reduced Glomerular Filtration Rate by Triglyceride-Glucose Index: Insights from a General Chinese Population. Postgraduate Medicine, 131, 287-294.
https://doi.org/10.1080/00325481.2019.1595983
[26] Li, L., Xu, Z., Jiang, L., Zhuang, L., Huang, J., Liu, D. and Wu, Q. (2023) Triglyceride-Glucose Index and Its Correlates: Associations with Serum Creatinine and Estimated Glomerular Filtration Rate in a Cross-Sectional Study from CHARLS 2011-2015. Metabolic Syndrome and Related Disorders, 22, 179-189.
https://doi.org/10.1089/met.2023.0188
[27] Okamura, T., Hashimoto, Y., Hamaguchi, M., Obora, A., Kojima, T. and Fukui, M. (2019) Triglyceride-Glucose Index Is a Predictor of Incident Chronic Kidney Disease: A Population-Based Longitudinal Study. Clinical and Experimental Nephrology, 23, 948-955.
https://doi.org/10.1007/s10157-019-01729-2
[28] Cui, C., Liu, L., Zhang, T., Fang, L., Mo, Z., Qi, Y., Zheng, J., Wang, Z., Xu, H., Yan, H., Yue, S., Wang, X. and Wu, Z. (2023) Triglyceride-Glucose Index, Renal Function and Cardiovascular Disease: A National Cohort Study. Cardiovascular Diabetology, 22, Article No. 325.
https://doi.org/10.1186/s12933-023-02055-4
[29] Yan, Z., Yu, D., Cai, Y., Shang, J., Qin, R., Xiao, J., Zhao, B., Zhao, Z. and Simmons, D. (2019) Triglyceride Glucose Index Predicting Cardiovascular Mortality in Chinese Initiating Peritoneal Dialysis: A Cohort Study. Kidney and Blood Pressure Research, 44, 669-678.
https://doi.org/10.1159/000500979
[30] Fritz, J., Brozek, W., Concin, H., Nagel, G., Kerschbaum, J., Lhotta, K., Ulmer, H. and Zitt, E. (2021) The Triglyceride-Glucose Index and Obesity-Related Risk of End-Stage Kidney Disease in Austrian Adults. JAMA Network Open, 4, E212612.
https://doi.org/10.1001/jamanetworkopen.2021.2612
[31] Ahlqvist, E., Storm, P., Käräjämäki, A., Martinell, M., Dorkhan, M., Carlsson, A., Vikman, P., Prasad, R.B., Aly, D.M., Almgren, P., Wessman, Y., Shaat, N., SpÉGel, P., Mulder, H., Lindholm, E., Melander, O., Hansson, O., Malmqvist, U., Lernmark, Å., Lahti, K. and Groop, L. (2018) Novel Subgroups of Adult-Onset Diabetes and Their Association with Outcomes: A Data-Driven Cluster Analysis of Six Variables. The Lancet. Diabetes & Endocrinology, 6, 361-369.
https://doi.org/10.1016/S2213-8587(18)30051-2
[32] Shang, J., Yu, D., Cai, Y., Wang, Z., Zhao, B., Zhao, Z. and Simmons, D. (2019) The Triglyceride Glucose Index Can Predict Newly Diagnosed Biopsy-Proven Diabetic Nephropathy in Type 2 Diabetes: A Nested Case Control Study. Medicine, 98, E17995.
https://doi.org/10.1097/MD.0000000000017995
[33] Lv, L., Zhou, Y., Chen, X., Gong, L., Wu, J., Luo, W., Shen, Y., Han, S., Hu, J., Wang, Y., Li, Q., Wang, Z., Chongqing Diabetes Registry Group (2021) Relationship between the TyG Index and Diabetic Kidney Disease in Patients with Type-2 Diabetes Mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 3299-3306.
https://doi.org/10.2147/DMSO.S318255
[34] Fu, X., Xu, Z., Tan, Q., Wei, W. and Wang, Z. (2023) Association between a High Triglyceride-Glucose Index and Chronic Kidney Disease in Adult Patients with Latent Autoimmune Diabetes. BMC Endocrine Disorders, 23, Article No. 209.
https://doi.org/10.1186/s12902-023-01465-5
[35] Qin, Z., Zhao, J., Geng, J., Chang, K., Liao, R. and Su, B. (2021) Higher Triglyceride-Glucose Index Is Associated with Increased Likelihood of Kidney Stones. Frontiers in Endocrinology, 12, Article ID: 774567.
https://doi.org/10.3389/fendo.2021.774567
[36] Jiang, H., Li, L., Liu, J., Xu, B., Chen, S., Zhu, W. and Chen, M. (2021) Triglyceride-Glucose Index as a Novel Biomarker in the Occurrence of Kidney Stones: A Cross-Sectional Population-Based Study. International Journal of General Medicine, 14, 6233-6244.
https://doi.org/10.2147/IJGM.S334821