颅内动脉狭窄血管内治疗的现状及展望
Status and Prospect of Endovascular Treatments for Intracranial Arterial Stenosis
DOI: 10.12677/acm.2024.1441265, PDF, HTML, XML, 下载: 37  浏览: 61 
作者: 杨正宇:山东大学齐鲁医学院,山东 济南
关键词: 颅内动脉狭窄血管内治疗缺血性卒中Intracranial Arterial Stenosis Endovascular Treatments Ischemic Stroke
摘要: 颅内动脉粥样硬化性疾病及其导致的颅内动脉狭窄是全球卒中的主要原因之一,构成了持续的治疗挑战。在颅内动脉狭窄的患者中,那些存在血流动力学障碍的患者尽管接受药物治疗和危险因素控制,仍面临再次卒中的高风险。对于这些高危患者,重新建通供血不足的区域是最合理的治疗策略,然而在随机对照试验中,血管内治疗尚未显示出足够的安全性和有效性。诊断和治疗技术的进步重燃了对血管内治疗策略的关注,并有越来越多的证据支持进一步评估这些策略在特定患者群体中的治疗作用。本综述概述了当前和新兴的血管内治疗方法,并提出未来可能有前景的管理策略。
Abstract: Intracranial atherosclerotic disease and resultant intracranial arterial stenosis constitute one of the leading causes of stroke globally, posing a persistent therapeutic challenge. Among patients with intracranial arterial stenosis, those with hemodynamic disturbances continue to face a high risk of recurrent stroke despite medical treatment and risk factor control. For these high-risk patients, revascularization of the hypoperfused territory is the most rational therapeutic strategy. However, in randomized controlled trials, endovascular therapy has yet to demonstrate sufficient safety and efficacy. Advances in diagnostic and therapeutic techniques have reignited interest in endovascular treatment strategies, with increasing evidence supporting further evaluation of these strategies’ therapeutic effects in specific patient populations. This review outlines current and emerging endovascular treatment approaches and proposes promising management strategies for the future.
文章引用:杨正宇. 颅内动脉狭窄血管内治疗的现状及展望[J]. 临床医学进展, 2024, 14(4): 2076-2083. https://doi.org/10.12677/acm.2024.1441265

1. 绪论

颅内动脉粥样硬化性疾病(Intracranial Atherosclerotic Disease, ICAD)及其导致的颅内动脉狭窄(Intracranial Arterial Stenosis, ICAS)是全球缺血性中风的主要原因之一,在美国占据所有缺血性中风的10%,在亚洲估计占50% [1] [2] [3] 。加剧其影响的是,在ICAS患者中,再发中风的风险仍然很高,在真实世界的情况下,30天内超过20% [4] 。

在患有ICAS的患者中,卒中的机制可以广泛地归类为血流动力学受损引起的低灌注、动脉内栓子形成以及分支动脉粥样硬化病理三种,每种机制对药物治疗和介入策略的预期反应不同 [5] [6] [7] 。虽然栓塞现象和潜在的动脉粥样硬化疾病可能最适合采用抗血栓治疗和药物风险因素修正,但患有持续低灌注的患者尽管采取了这些干预措施,仍然面临着卒中的高风险,而提供低灌注区域再灌注的治疗策略仍然是最有前景的潜在干预手段 [7] [8] [9] 。然而,到目前为止,血管内再灌注疗法在随机对照试验(Randomized Controlled Trials, RCTs)中大多未能证明其安全性和有效性,并且目前的批准应用范围较窄 [10] 。

因此,尽管诊断和治疗技术和技术不断进步,ICAS仍然造成高发中风负担,并且构成了治疗挑战,特别是在血流动力学受损的患者中,尽管采取了适当的药物治疗,其再发卒中的风险仍然很高。本综述概述了当前和新兴的血管内治疗管理策略,并突出了有一定前景的管理策略。

2. 血管内治疗现状

2.1. 球囊扩张与支架血管成形术

血管内治疗为ICAS中再灌注提供了一种合理的治疗策略。血管内治疗在立即恢复血流并逆转ICAS中的血流动力学不足方面是有效的,即提供了这样的想法:这种干预措施在减少未来卒中风险方面可能是有效的 [11] [12] 。

在将血管内治疗方法应用于颅内血管之前,其在心脏冠状动脉中实现血管内再灌注的方法已经被广泛建立。经皮经导管球囊扩张术(PTA)首次报道用于ICAS治疗是在1980年 [13] 。在早期采用阶段,球囊扩张术在有症状的ICAS患者中显示出一定的益处,但术中并发症率明显较高,最常见的是血管夹层、血管痉挛和远端栓塞 [14] 。另一个缺点是治疗血管的再狭窄,这是由于损伤内膜导致纤维化而导致的后果,在成功扩张后3个月的再狭窄率超过30% [15] 。

类似的并发症历史上在冠状动脉和周围血管球囊扩张术中也能观察到,但在与支架联合使用时大大降低 [16] 。然而,与冠状动脉或周围血管不同,颅内血管更加迂曲,更容易发生夹层和破裂。最初报道显示,通过迂曲的颅内血管将刚性的球扩支架固定到位的情况,其并发症率甚至比单纯的扩张术更高,尽管术后即刻残留狭窄率较低 [17] 。

随着血管内治疗技术的不断进步,通过微导管能更轻松地导航和部署颅内支架,从而使得这种干预更加安全。然而,最初最大的两个针对重度ICAS的随机对照试验,SAMMPRIS (Stenting and Aggressive Medical Management for Prevention of Recurrent Stroke in Intracranial Stenosis)和VISSIT (Vitesse Intracranial Stent Study for Ischemic Therapy),由于术中风险高而未显示出颅内支架的益处(30天时中风/死亡风险分别为14.7%和24.1%) [18] [19] 。穿支动脉闭塞是最常见的并发症 [20] ,推测是由于支架支柱使斑块进入穿支动脉开口的倾向所致。尽管支架植入的随机对照试验未能提供在ICAS中使用该治疗的有效性证据,但这些研究主要是使用第一代血管内设备进行的,并且存在操作者的差异 [18] [19] [21] [22] 。目前血管内技术的进步和操作者经验的增加使大家对这种血管内治疗方法在ICAS治疗中再度产生兴趣。

2.2. 自膨支架与球扩支架

Wingspan -Gateway系统(Stryker神经血管)是第一种专门设计用于ICAS的微型支架。作为一种氮化钛自膨胀支架系统,由于氮化钛支架较低的径向支撑力,Wingspan 支架往往需要在植入支架之前以及可能在植入支架后使用Gateway球囊进行血管成形。如果需要支架植入前和支架植入后的扩张,则需要在狭窄血管段上进行多次导管交换。在2005年获得美国食品和药物监督管理局人道性设备豁免批准后,最初的研究,包括美国多中心登记和国立卫生研究院Wingspan 登记,分别报告了ICAS患者的术中并发症风险为6.1%和6.2% [23] [24] 。然而,随后对该设备的临床试验,即SAMMPRIS,与单纯药物管理相比,由于Wingspan 支架植入后的30天内高风险而提前终止(14.7%与5.8%;P = 0.002) [25] 。尽管在后续的高水平中心Wingspan 支架正式登记的登记研究中报告了较低的并发症率,但CASSISS研究(China Angioplasty and Stenting for Symptomatic Intracranial Severe Stenosis),这一项为了重新评估Wingspan 系统在高水平介入中心中通过更精确筛选患者群体中的RCT,仍未能证明支架在症状性ICAS患者中的任何获益 [22] [26] 。

与Wingspan 自膨胀支架相比,球扩支架只需要一个通道变定位装置,从而降低了潜在的并发症风险 [27] 。球扩裸金属冠状动脉支架的超说明书使用已有几十年历史,由此产生了早期专门的神经血管系统,包括Neurolink (Boston Scientific)和Apollo (MicroPort)支架 [27] [28] 。然而,早期的球扩支架在输送方面存在限制,因为支架更为刚性,导致了其输送性能的牺牲。Pharos Vitesse支架(Codman & Shurtleff, Raynham, MA)是第一代球扩支架神经血管支架,早期观察呈现了可接受的术中事件率(6.6%) [29] 。然而,类似于Wingspan 支架的经验,在随后的随机对照试验VISSIT研究显示了支架组更高的术中并发症发生率 [19] 。

在支架系统和导航导管的输送技术方面的进步产生了比先前一代支架系统更易导航的设备,而且只需要一次通过狭窄部位,简化了支架释放过程。新一代的自膨胀神经血管支架Credo (Acandis)可通过Neurospeed血管成形球囊(Acandis)输送,无需多次通过狭窄段 [30] 。最新的球扩支架主要由更易导航的药物涂层钴铬支架组成,具有更高的径向支撑力,目前仅用于冠状动脉疾病。这导致了在神内血管领域对涂层冠状动脉支架的超说明书使用,例如下文详细讨论的Onyx Resolute (Medtronic) [31] [32] 。为了优化ICAS的神经介入平台,设计开发需要投资于新技术,类似于急性大血管阻塞的治疗方面的进步,以及进行比较研究以明确新设备改进带来的获益。

2.3. 药物涂层支架系统

与只进行球囊血管成形术相同,支架植入后也可能出现再狭窄。裸金属支架植入后发生的血管壁内膜增生被认为是导致支架内症状性再狭窄(In-Stent Restenosis, ISR)的原因,该情况在高达32%的患者中可见 [33] 。重要的是,ISR已与再发症状相关联,根据SAMMPRIS的事后分析,患者中有1/7 (3年时为14.0%)出现症状性ISR的风险 [34] 。药物涂层支架(Drugeluting Stents, DES)旨在抑制这一过程,其由3个主要组成部分组成:金属支架,外覆一层有生物相容性的不可溶性聚合物涂层和嵌入聚合物中的抗增殖药物 [35] [36] 。另外还施加了扩散阻挡面漆,以实现抗增殖剂的控制和持续释放。这些额外的涂层使DES变得僵硬且不易导航,与裸金属支架相比,这是阻碍它们在神经血管领域广泛应用的主要障碍。

一些随机对照试验已经证明,在冠状动脉中使用DES可以改善长期预后,并降低ISR的发生率 [33] 。但将DES应用于脑血管更具挑战性,不仅因为更笨重的设备在更为曲折的脑血管中的导航能力降低,还因为存在晚期支架血栓形成的风险,从而导致卒中各种类型的聚合物涂层以及药物的抗增殖特性可能会显著延迟支架植入后的内皮化过程,并进而导致晚期支架血栓形成。为了降低这种风险,相对于裸金属支架,植入DES的患者通常需要更长时间的双抗血小板治疗(Dual Antiplatelet Therapy, DAPT),这便伴随着出血并发症的逐渐增加风险。西罗莫司和紫杉醇等旧一代药物被认为会延迟内皮化,而较新一代的药物之一佐他莫斯,其半衰期相对较短,免疫抑制效能降低4倍,并且支架的内皮化可以在28天内完成,从而减少了支架植入后所需的双抗血小板治疗的持续时间 [37] [38] [39] 。例如,Resolute Onyx (Medtronic)是一种佐他莫斯涂层支架,专门设计以改善导航能力,其较细的支架支柱和较低剂量的佐他莫斯使得在高出血风险患者的双抗血小板治疗可减少至30天 [40] [41] 。

尽管DES存在局限性,但即便是早期的系统,如Cypher (Cordis Corp)和Taxus (Boston Scientific),已成功地被超说明书使用于症状性ICAS治疗,且并发症率相对较低 [42] [43] 。新一代DES外形更易于导航,适应了曲折的血管结构。在过去几年中,几个病例系列报告了这些新一代DES拥有较低的30天并发症发生率 [44] 。中国人口最近的一项随机对照试验比较了西罗莫司涂层NOVA支架(SINOMED)与裸金属Apollo支架系统(MicroPort)用于治疗症状性ICAS。与Apollo组相比,NOVA组中ISR较低,为9.5%,而Apollo组为30.2% (P < 0.001) [45] 。NOVA组中再发缺血事件的发生率也显著较低(0.8%对6.9%;P = 0.03),而30天中风和死亡率在两组间相似(7.6%对5.3%;P = 0.46)。最近有关佐他莫斯涂层Resolute Onyx的超说明书使用的初步数据已经报道 [32] [46] 。在一项单中心回顾性比较中,与184名患者的Wingspan 支架相比,72小时内围术期并发症较低(1.7%对6.3%),6个月内症状性ISR的发生率也较低(1.7%对21.4%)。类似地,一项涵盖了8个卒中中心数据的132名患者的多中心研究表明,在与SAMMPRIS支架组的倾向性匹配比较中,30天卒中和死亡率较低(3.0%对15.6%)。值得注意的是,目前所有可用的DES在颅内血管中的使用都是超说明书的,因此需要长期和前瞻性的数据来验证这些新兴血管内技术的有效性和安全性。

2.4. 亚满意度血管成形术

尽管最近有关支架植入的经验表明,在ICAS患者中,术中并发症可以在更低风险的患者中降低(即出现卒中较长时间后接受治疗的患者),但对高危患者而言,建立一种更安全的血管内治疗策略的挑战仍然存在 [22] [26] 。因此,学界对仅使用球囊成形术以及特别是亚满意度球囊成形术(Submaximal Angioplasty, SMA)的兴趣再次高涨。在SMA技术中,球囊的大小是正常血管直径的50%至75%,限制了对血管内膜和穿支动脉闭塞的损伤。SMA旨在增加血流量而不是增加解剖性血管直径,这基于普瓦泽伊氏定律,即通过血管的血流量随着血管腔半径的小幅增加呈指数增长。因此,狭窄的轻微改善可以带来足够的血流量增加,以实现足够的再灌注,同时减轻了血管损伤和术中并发症的风险。

最近两项有关SMA在症状性ICAS中的荟萃分析显示了令人鼓舞的结果,术中事件发生率远低于SAMMPRIS和VISSIT试验中支架植入的情况。Stapleton等人 [47] 分析了共395名患者的9项研究,报告了总体术中卒中及死亡率为4.9% (95% CI, 3.2%~7.5%),随后长期领域中中风率为3.7%,再狭窄率为18.4%。Seyedsaadat等人 [48] 对19项研究中的777名患者进行了报告,其结果类似,术中卒中及死亡率为5% (95% CI, 3%~8%),再狭窄率为20%。根据这些结果,SMA似乎是一种特别有前景的治疗高危ICAS患者的血管内策略,尽管这些研究主要是回顾性的,没有中央评定。来自正在进行的研究数据,例如中国的BASIS试验(Balloon Angioplasty for Symptomatic Intracranial Artery Stenosis),将有助于了解此干预在症状性ICAS治疗中的作用 [49] 。

2.5. 球囊的变化

与支架相比,再狭窄在球囊成形术中仍然是一个相对关注的问题。虽然需要注意的是,无论是否有额外的侧支循环来维持远端血流,解剖学上的再狭窄可能在临床上无关紧要,但新的和不断发展的球囊技术有潜力改善再狭窄率。抗增殖药物涂层球囊在这方面展示出了较好的结果。一项纳入了9项研究共224名接受药物涂层球囊血管成形治疗症状性ICAS的患者的荟萃分析报告了相对更低的再狭窄率(5.7%) [50] 。一项回顾性研究比较了42名患者接受药物涂层球囊血管成形(有无支架)与传统的血管成形/支架植入术,使用倾向性评分匹配,发现药物涂层球囊血管成形组的再狭窄率同样较低,为5.3%,明显低于非药物涂层球囊组的34.2% [51] 。然而,两组间症状性再狭窄率并无统计学差异。

3. 展望

新的血管内策略的应用最终取决于在对比研究中展示出的安全性和有效性。未来的随机对照试验检验干预策略也许将受益于考虑以下研究设计方面的因素。

3.1. 患者选择

血管内策略一致致力于提供受影响血管脑领域的再灌注。研究表明,使用各种成像工具被识别为存在血流动力学损害的ICAS患者具有较高的卒中风险 [52] 。如分水岭梗死这样的简单影像标志已被证实为预测前瞻性研究中中风风险的指标。迄今为止,大多数试验都专注于高度(>70%)的狭窄;尽管解剖性狭窄可以作为受影响血管中流动受损的替代指标,但考虑到侧支血供的影响和重要性,单纯的狭窄并不是远端组织中血流动力学损害的充足证据 [53] 。因此,基于血流动力学状态选择患者对于检查血管内和外科再灌注策略的成功至关重要。任何治疗的益处可能在未经选择的ICAS人群中掩盖,并且在使用经过验证的血流动力学损害生物标志筛选出的血流动力学受损患者中更有可能得到实际证明。

对于血管内干预,考虑到前循环与后循环ICAS或对于富含穿支的血管(如基底动脉和大脑中动脉)的干预风险的潜在差异在试验设计中至关重要。例如,基底动脉是一个富含穿支的血管,更容易受到支架引起的穿支梗死的术中并发症的影响 [54] 。因此,在高风险血管中可能更可行的是减轻穿支风险的策略,如SMA。

3.2. 干预时机

在设计用于评估血管内策略影响的试验时,考虑到干预时间相对于中风发作的时机尤为重要,因为急性期的斑块不稳定可能会增加血栓栓塞并发症的风险。尽管SAMMPRIS试验显示出结局事件发生后的时间与术中中风之间没有关系(距标志卒中事件 ≤ 7天和>7天的术中卒中率分别为15.7%和13.8%),但WEAVE (Wingspan Stent System Post Market Surveillance)单臂登记研究显示,标志卒中事件后平均22天进行ICAS治疗的患者术中并发症率为2.6%,提示延迟干预可能与较低的手术风险相关 [20] [26] 。同样,CASSISS试验仅招募了在最近的缺血性症状出现后 > 3周的患者,并且术中事件的风险明显低于之前的随机对照试验 [22] 。但同时需要注意,发病后的早期阶段也代表着中风复发的高风险期,因此,尽管早期血管内治疗可能会导致更高的术中并发症风险,但延迟干预可能无法提供最佳的益处。

3.3. 结局定义

在ICAS的大多数干预试验中,主要结果考虑了术后及术后30天的卒中/死亡率,以及在责任狭窄动脉供血区域随后1年中的卒中。重要的是要认识到,起初的围术期风险可能在30天时间点超过了未干预时疾病的自然进程,但在最终时间点仍然提供了整体益处。其他结果,包括血流动力学损害的逆转,可以作为成功的替代指标,并提供了血管再灌注的重要生理确认,特别是对早期阶段的试验而言尤为相关。然而,临床结果对于确认性试验仍然最为相关。功能和认知结果也提供了有关干预措施整体影响的额外见解,并且代表了结果评估的一个重要方面。在血管内试验中,再狭窄是一个额外的潜在结果,但重要的是要注意,如果远端血流得到有效维持,则解剖性再狭窄可能在临床上无关紧要。因此,仅为确定再狭窄而进行常规影像检查不应被视为强制性,因为临床结果最终才是最重要的。

参考文献

[1] White, H., Boden-Albala, B., Wang, C., et al. (2005) Ischemic Stroke Subtype Incidence among Whites, Blacks, and Hispanics. Circulation, 111, 1327-1331.
https://doi.org/10.1161/01.CIR.0000157736.19739.D0
[2] Wong, L.K.S. (2006) Global Burden of Intracranial Atherosclerosis. International Journal of Stroke, 1, 158-159.
https://doi.org/10.1111/j.1747-4949.2006.00045.x
[3] Wang, Y., Zhao, X., Liu, L., et al. (2014) Prevalence and Outcomes of Symptomatic Intracranial Large Artery Stenoses and Occlusions in China: The Chinese Intracranial Atherosclerosis (CICAS) Study. Stroke, 45, 663-669.
https://doi.org/10.1161/STROKEAHA.113.003508
[4] Sangha, R.S., Naidech, A.M., Corado, C., et al. (2017) Challenges in the Medical Management of Symptomatic Intracranial Stenosis in an Urban Setting. Stroke, 48, 2158-2163.
https://doi.org/10.1161/STROKEAHA.116.016254
[5] Song, X., Li, S., Du, H., et al. (2022) Association of Plaque Morphology with Stroke Mechanism in Patients with Symptomatic Posterior Circulation ICAD. Neurology, 99, e2708-e2717.
https://doi.org/10.1212/WNL.0000000000201299
[6] Dubow, J.S., Salamon, E., Greenberg, E., et al. (2014) Mechanism of Acute Ischemic Stroke in Patients with Severe Middle Cerebral Artery Atherosclerotic Disease. Journal of Stroke and Cerebrovascular Diseases, 23, 1191-1194.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.10.015
[7] Wabnitz, A.M., Derdeyn, C.P., Fiorella, D.J., et al. (2019) Hemodynamic Markers in the Anterior Circulation as Predictors of Recurrent Stroke in Patients with Intracranial Stenosis. Stroke, 50, 143-147.
https://doi.org/10.1161/STROKEAHA.118.020840
[8] Prabhakaran, S., Liebeskind, D.S., Cotsonis, G., et al. (2021) Predictors of Early Infarct Recurrence in Patients with Symptomatic Intracranial Atherosclerotic Disease. Stroke, 52, 1961-1966.
https://doi.org/10.1161/STROKEAHA.120.032676
[9] Amin-Hanjani, S., Pandey, D.K., Rose-Finnell, L., et al. (2016) Effect of Hemodynamics on Stroke Risk in Symptomatic Atherosclerotic Vertebrobasilar Occlusive Disease. JAMA Neurology, 73, 178-185.
https://doi.org/10.1001/jamaneurol.2015.3772
[10] Alexander, M.J. and Yu, W. (2023) Intracranial Atherosclerosis Update for Neurointerventionalists. Journal of NeuroInterventional Surgery, 16, 522-528.
https://doi.org/10.1136/jnis-2022-019628
[11] Prabhakaran, S., Wells, K.R., Jhaveri, M.D., et al. (2011) Hemodynamic Changes Following Wingspan Stent Placement—A Quantitative Magnetic Resonance Angiography Study. Journal of Neuroimaging, 21, e109-e113.
https://doi.org/10.1111/j.1552-6569.2009.00425.x
[12] Guppy, K.H., Charbel, F.T., Corsten, L.A., et al. (2002) Hemodynamic Evaluation of Basilar and Vertebral Artery Angioplasty. Neurosurgery, 51, 327-334.
https://doi.org/10.1097/00006123-200208000-00006
[13] Sundt, T.M., Smith, H.C., Campbell, J.K., et al. (1980) Transluminal Angioplasty for Basilar Artery Stenosis. Mayo Clinic Proceedings, 55, 673-680.
[14] Clark, W.M., Barnwell, S.L., Nesbit, G., et al. (1995) Safety and Efficacy of Percutaneous Transluminal Angioplasty for Intracranial Atherosclerotic Stenosis. Stroke, 26, 1200-1204.
https://doi.org/10.1161/01.STR.26.7.1200
[15] Mori, T., Mori, K., Fukuoka, M., et al. (1997) Percutaneous Transluminal Cerebral Angioplasty: Serial Angiographic Follow-Up after Successful Dilatation. Neuroradiology, 39, 111-116.
https://doi.org/10.1007/s002340050376
[16] Serruys, P.W., De Jaegere, P., Kiemeneij, F., et al. (1994) A Comparison of Balloon-Expandable-Stent Implantation with Balloon Angioplasty in Patients with Coronary Artery Disease. The New England Journal of Medicine, 331, 489-495.
https://doi.org/10.1056/NEJM199408253310801
[17] Fiorella, D. and Woo, H.H. (2007) Emerging Endovascular Therapies for Symptomatic Intracranial Atherosclerotic Disease. Stroke, 38, 2391-2396.
https://doi.org/10.1161/STROKEAHA.107.482752
[18] Derdeyn, C.P., Chimowitz, M.I., Lynn, M.J., et al. (2014) Aggressive Medical Treatment with or without Stenting in High-Risk Patients with Intracranial Artery Stenosis (SAMMPRIS): the Final Results of a Randomised Trial. Lancet, 383, 333-341.
[19] Zaidat, O.O., Fitzsimmons, B.F., Woodward, B.K., et al. (2015) Effect of A Balloon-Expandable Intracranial Stent vs Medical Therapy on Risk of Stroke in Patients with Symptomatic Intracranial Stenosis: The VISSIT Randomized Clinical Trial. JAMA, 313, 1240-1248.
https://doi.org/10.1001/jama.2015.1693
[20] Fiorella, D., Derdeyn, C.P., Lynn, M.J., et al. (2012) Detailed Analysis of Periprocedural Strokes in Patients Undergoing Intracranial Stenting in Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis (SAMMPRIS). Stroke, 43, 2682-2688.
https://doi.org/10.1161/STROKEAHA.112.661173
[21] Miao, Z., Jiang, L., Wu, H., et al. (2012) Randomized Controlled Trial of Symptomatic Middle Cerebral Artery Stenosis: Endovascular versus Medical Therapy in A Chinese Population. Stroke, 43, 3284-3290.
https://doi.org/10.1161/STROKEAHA.112.662270
[22] Gao, P., Wang, T., Wang, D., et al. (2022) Effect of Stenting Plus Medical Therapy vs Medical Therapy Alone on Risk of Stroke and Death in Patients with Symptomatic Intracranial Stenosis: The CASSISS Randomized Clinical Trial. JAMA, 328, 534-542.
https://doi.org/10.1001/jama.2022.12000
[23] Zaidat, O.O., Klucznik, R., Alexander, M.J., et al. (2008) The NIH Registry on Use of the Wingspan Stent for Symptomatic 70-99% Intracranial Arterial Stenosis. Neurology, 70, 1518-1524.
https://doi.org/10.1212/01.wnl.0000306308.08229.a3
[24] Fiorella, D., Levy, E.I., Turk, A.S., et al. (2007) US Multicenter Experience with the Wingspan Stent System for the Treatment of Intracranial Atheromatous Disease: Periprocedural Results. Stroke, 38, 881-887.
https://doi.org/10.1161/01.STR.0000257963.65728.e8
[25] Chimowitz, M.I., Lynn, M.J., Derdeyn, C.P., et al. (2011) Stenting versus Aggressive Medical Therapy for Intracranial Arterial Stenosis. The New England Journal of Medicine, 365, 993-1003.
https://doi.org/10.1056/NEJMc1111906
[26] Alexander, M.J., Zauner, A., Chaloupka, J.C., et al. (2019) WEAVE Trial: Final Results in 152 On-Label Patients. Stroke, 50, 889-894.
https://doi.org/10.1161/STROKEAHA.118.023996
[27] Jiang, W.J., Xu, X.T., Jin, M., et al. (2007) Apollo Stent for Symptomatic Atherosclerotic Intracranial Stenosis: Study Results. American Journal of Neuroradiology, 28, 830-834.
[28] The SSYLVIA Study Investigators (2004) Stenting of Symptomatic Atherosclerotic Lesions in the Vertebral or Intracranial Arteries (SSYLVIA): Study Results. Stroke, 35, 1388-1392.
https://doi.org/10.1161/01.STR.0000128708.86762.d6
[29] Von Schoenfeldt, P., Krützelmann, A., Bußmeyer, M., et al. (2015) Elective Treatment of Intracranial Stenosis with the Balloon-Expandable Pharos Vitesse Stent: 30-Day Stroke Rate and Complications. Journal of Neurointerventional Surgery, 7, 188-193.
https://doi.org/10.1136/neurintsurg-2013-011019
[30] Möhlenbruch, M.A., Pfaff, J., Herweh, C., et al. (2016) One-Pass Endovascular Treatment of Intracranial Atherosclerotic Stenosis with a Novel PTA Balloon and Self-Expanding Microstent. Neuroradiology, 58, 893-899.
https://doi.org/10.1007/s00234-016-1716-8
[31] Hassan, A.E., Khalil, M., Desai, S., et al. (2023) Resolute Onyx Stent More Effective than Wingspan Stent at Preventing Procedural Complications and Long-Term Restenosis. Interventional Neuroradiology, 29, 691-695.
https://doi.org/10.1177/15910199221104633
[32] White, T.G., Shah Koul, K.A., et al. (2024) The Resolute Onyx Drug Eluting Stent for Neurointervention: A Technical Series. Interventional Neuroradiology, 30, 14-21.
https://doi.org/10.1177/15910199221084398
[33] Htay, T. and Liu, M.W. (2005) Drug-Eluting Stent: A Review and Update. Vascular Health and Risk Management, 1, 263-276.
https://doi.org/10.2147/vhrm.2005.1.4.263
[34] Derdeyn, C.P., Fiorella, D., Lynn, M.J., et al. (2017) Nonprocedural Symptomatic Infarction and In-Stent Restenosis after Intracranial Angioplasty and Stenting in the SAMMPRIS Trial (Stenting and Aggressive Medical Management for the Prevention of Recurrent Stroke in Intracranial Stenosis). Stroke, 48, 1501-1506.
https://doi.org/10.1161/STROKEAHA.116.014537
[35] Aoki, J. and Tanabe, K. (2021) Mechanisms of Drug-Eluting Stent Restenosis. Cardiovascular Intervention and Therapeutics, 36, 23-29.
https://doi.org/10.1007/s12928-020-00734-7
[36] Wessely, R. (2010) New Drug-Eluting Stent Concepts. Nature Reviews Cardiology, 7, 194-203.
https://doi.org/10.1038/nrcardio.2010.14
[37] McFadden, E.P., Stabile, E., Regar, E., et al. (2004) Late Thrombosis in Drug-Eluting Coronary Stents after Discontinuation of Antiplatelet Therapy. Lancet, 364, 1519-1521.
https://doi.org/10.1016/S0140-6736(04)17275-9
[38] Chen, Y.W., Smith, M.L., Sheets, M., et al. (2007) Zotarolimus, A Novel Sirolimus Analogue with Potent Anti-Proliferative Activity on Coronary Smooth Muscle Cells and Reduced Potential for Systemic Immunosuppression. Journal of Cardiovascular Pharmacology, 49, 228-235.
https://doi.org/10.1097/FJC.0b013e3180325b0a
[39] Garcia-Touchard, A., Burke, S.E., Toner, J.L., et al. (2006) Zotarolimus-Eluting Stents Reduce Experimental Coronary Artery Neointimal Hyperplasia after 4 Weeks. European Heart Journal, 27, 988-993.
https://doi.org/10.1093/eurheartj/ehi752
[40] Iqbal, J., Gunn, J. and Serruys, P.W. (2013) Coronary Stents: Historical Development, Current Status and Future Directions. British Medical Bulletin, 106: 193-211.
https://doi.org/10.1093/bmb/ldt009
[41] Windecker, S., Latib, A., Kedhi, E., et al. (2020) Polymer-Based or Polymer-Free Stents in Patients at High Bleeding Risk. The New England Journal of Medicine, 382, 1208-1218.
https://doi.org/10.1056/NEJMoa1910021
[42] Qureshi, A.I., Kirmani, J.F., Hussein, H.M., et al. (2006) Early and Intermediate-Term Outcomes with Drug-Eluting Stents in High-Risk Patients with Symptomatic Intracranial Stenosis. Neurosurgery, 59, 1044-1051.
https://doi.org/10.1227/01.NEU.0000245593.54204.99
[43] Abou-Chebl, A., Bashir, Q. and Yadav, J.S. (2005) Drug-Eluting Stents for the Treatment of Intracranial Atherosclerosis: Initial Experience and Midterm Angiographic Follow-Up. Stroke, 36, e165-e168.
https://doi.org/10.1161/01.STR.0000190893.74268.fd
[44] Ye, G., Yin, X., Yang, X., et al. (2019) Efficacy and Safety of Drug-Eluting Stent for the Intracranial Atherosclerotic Disease: A Systematic Review and Meta-Analysis. Journal of Clinical Neuroscience, 59, 112-118.
https://doi.org/10.1016/j.jocn.2018.10.118
[45] Jia, B., Zhang, X., Ma, N., et al. (2022) Comparison of Drug-Eluting Stent with Bare-Metal Stent in Patients with Symptomatic High-Grade Intracranial Atherosclerotic Stenosis: A Randomized Clinical Trial. JAMA Neurology, 79, 176-184.
https://doi.org/10.1001/jamaneurol.2021.4804
[46] Hassan, A.E., Mohammaden, M.H., Rabah, R.R., et al. (2020) Initial Experience with the Next-Generation Resolute Onyx Zotarolimus-Eluting Stent in Symptomatic Intracranial Atherosclerotic Disease. Frontiers in Neurology, 11, Article 570100.
https://doi.org/10.3389/fneur.2020.570100
[47] Stapleton, C.J., Chen, Y.F., Shallwani, H., et al. (2020) Submaximal Angioplasty for Symptomatic Intracranial Atherosclerotic Disease: A Meta-Analysis of Peri-Procedural and Long-Term Risk. Neurosurgery, 86, 755-762.
https://doi.org/10.1093/neuros/nyz337
[48] Seyedsaadat, S.M., Yolcu, Y.U., Neuhaus, A., et al. (2020) Submaximal Angioplasty in the Treatment of Patients with Symptomatic ICAD: A Systematic Review and Meta-Analysis. Journal of Neurointerventional Surgery, 12, 380-385.
https://doi.org/10.1136/neurintsurg-2019-015451
[49] Sun, X., Yang, M., Sun, D., et al. (2024) Balloon Angioplasty for Symptomatic Intracranial Artery Stenosis (BASIS): Protocol of a Prospective, Multicentre, Randomised, Controlled Trial. Stroke and Vascular Neurology, 9, 66-74.
[50] Li, G., Qiao, H., Lin, H., et al. (2022) Application of Drug-Coated Balloons for Intracranial Atherosclerosis Disease: A Systematic Review. Clinical Neurology and Neurosurgery, 213, Article ID: 107065.
https://doi.org/10.1016/j.clineuro.2021.107065
[51] Zhang, J., Zhang, X., Zhang, J., et al. (2020) Drug-Coated Balloon Dilation Compared with Conventional Stenting Angioplasty for Intracranial Atherosclerotic Disease. Neurosurgery, 87, 992-998.
https://doi.org/10.1093/neuros/nyaa191
[52] Liebeskind, D.S., Cotsonis, G.A., Saver, J.L., et al. (2011) Collaterals Dramatically Alter Stroke Risk in Intracranial Atherosclerosis. Annals of Neurology, 69, 963-974.
https://doi.org/10.1002/ana.22354
[53] Amin-Hanjani, S., Du, X., Rose-Finnell, L., et al. (2015) Hemodynamic Features of Symptomatic Vertebrobasilar Disease. Stroke, 46, 1850-1856.
https://doi.org/10.1161/STROKEAHA.115.009215
[54] Derdeyn, C.P., Fiorella, D., Lynn, M.J., et al. (2013) Mechanisms of Stroke after Intracranial Angioplasty and Stenting in the SAMMPRIS Trial. Neurosurgery, 72, 777-795.
https://doi.org/10.1227/NEU.0b013e318286fdc8