靶向铁死亡防治重大疾病研究进展
Research Progress on Targeting Ferroptosis to Prevent and Treat Major Diseases
DOI: 10.12677/acm.2024.1441260, PDF, HTML, XML, 下载: 101  浏览: 169 
作者: 刘耀东:南华大学药学院,湖南 衡阳
关键词: 铁死亡脂质过氧化物重大疾病研究进展Ferroptosis Lipid Peroxide Major Diseases Research Progress
摘要: 铁死亡(Ferroptosis)是一种铁依赖的细胞死亡途径,其特征在于引起脂质过氧化物的积聚,同时过量Fe2 通过芬顿反应(Fenton reaction)氧化细胞膜上不饱和脂肪酸(polyunsaturated fatty acids, PUFAs),从而引发铁死亡。已经有报道铁死亡在包括肿瘤、心血管疾病、肝脏疾病等重大疾病中发挥重要的防治作用。本综述总结了铁死亡在肿瘤、心血管疾病、肝脏疾病以及其他疾病中的最新研究进展,并探讨了铁死亡在防治重大疾病中的前景,为防治重大疾病提供新的策略。
Abstract: Ferroptosis is an iron-dependent cell death mode, characterized by the accumulation of lipid peroxides and the oxidation of polyunsaturated fatty acids (PUFAs) on the cell membrane by excessive Fe2 through the Fenton reaction, leading to ferroptosis. It has been reported that ferroptosis plays an important role in the prevention and treatment of major diseases, including tumors, cardiovascular diseases, liver diseases and so on. This review summarizes the latest research progress of ferroptosis in tumors, cardiovascular diseases, liver diseases and other diseases, and discusses the prospect of ferroptosis in the prevention and treatment of major diseases, so as to provide new strategies for the prevention and treatment of major diseases.
文章引用:刘耀东. 靶向铁死亡防治重大疾病研究进展[J]. 临床医学进展, 2024, 14(4): 2037-2044. https://doi.org/10.12677/acm.2024.1441260

1. 铁死亡及其基本特征

铁死亡是一种铁依赖的新型细胞死亡方式,在2012年由Brent R. Stockwell等人研究发现并将这种细胞死亡命名为“铁死亡”,其形态学特征表现为细胞膜破裂,线粒体脊减少甚至消失,细胞核形态变化不明显 [1] [2] 。由于铁死亡调控机制较为复杂,目前相关通路主要从以下几方面开展研究:

1) System Xc是一种位于细胞膜表面的氨基酸反向转运蛋白,由溶质载体家族7成员11 (Solute Carrier Family 7 Member 11, SLC7A11)和溶质载体家族成员3成员2 (Solute Carrier Family 3 Member 2, SLC3A2)两个亚基组成的二聚体。它实现胱氨酸向细胞内和谷氨酸向细胞外等量的转运,并在细胞内将胱氨酸还原为半胱氨酸,参与谷胱甘肽(Glutathione, GSH)的合成 [3] 。GSH是一种重要的抗氧化剂,而谷胱甘肽过氧化物酶4 (Glutathione Peroxidase 4, GPX4)则是参与维持细胞内氧化应激平衡的关键酶之一。GPX4是一种硒蛋白,在细胞中起着重要作用,能将GSH转化为氧化型谷胱甘肽(Oxidized glutathione, GSSG),同时还原有毒脂质过氧化物为惰性的脂质醇。GSH耗竭可以导致脂质过氧化物的积累,引发铁死亡 [4] 。抑制System Xc的活性会影响胱氨酸吸收,减少GSH的合成,最终导致GPX4的活性降低,从而引发铁死亡 [5] [6] ;值得注意的是,System Xc/GSH/GPX4轴是目前铁死亡中最经典的一条通路。

2) 鸟苷三磷酸环水解酶1 (GTP cyclohydrolase 1,简称GCH1)是四氢生物蝶呤(Tetrahydrobiopterin, BH4)合成途径的关键酶。该酶调节细胞内BH4和二氢生物蝶呤(Dihydrobiopterin, BH2)的合成,进而引发脂质重塑过程,有助于防止多不饱和脂肪酰尾磷脂的耗尽,并抑制铁死亡 [7] 。

3) Ferroptosis suppressor protein1, FSP1-泛醌(CoQ10)途径中,FSP1作为一种烟酰胺腺嘌呤二核苷磷酸(NAD(P)H)依赖的氧化还原酶,能够将辅酶Q10 (Coenzyme Q10, CoQ10)还原为泛素醇(CoQ10H2)。同时,CoQ10H2具有清除脂质过氧自由基的作用,从而抑制了脂质过氧化和铁死亡的发生 [8] [9] [10] [11] 。

4) 脂质过氧化通路。铁死亡主要是由含有多不饱和脂肪酸磷脂(PUFA-PLs)的过氧化引起。PUFA-PLs形成的过程需要一个关键蛋白长链脂酰辅酶A合成酶4 (Acyl-CoA synthetase long-chain family member 4, ACSL4)。ACSL4是一种脂肪酸CoA合成酶,它催化游离PUFA与CoA连接,生成PUFA-CoA,随后在溶血卵磷脂酰基转移酶3 (Recombinant Lysophosphatidylcholine Acyltransferase 3, LPCAT3)催化下形成PUFA-PL。其中ACSL4的作用是促进多不饱和脂肪酸转化为磷脂,表明ACSL4具有激活铁死亡的能力 [12] [13] [14] [15] 。

综上所述,尽管铁死亡的确切机制上不清楚,但随着研究的深入,人们逐渐认识到铁死亡在重大疾病的发展中扮演着重要角色。本综述总结了铁死亡在各类重大疾病中最新的研究进展,旨在为重大疾病的预防和治疗提供新的见解。

2. 铁死亡与多种疾病的研究进展

2.1. 靶向铁死亡与肿瘤疾病

近年来,研究人员在癌细胞对铁死亡的敏感性研究中取得了一定的进展。其中抑制SystemXC或下调GPX4是诱导铁死亡的关键因素,已在多项研究中证明可有效杀死耐药癌细胞 [16] [17] [18] ,研究表明,肝癌患者肝脏内含铁量远高于正常人 [19] ;目前筛查发现部分小分子化合物可通过诱导铁死亡来杀伤肿瘤细胞,其代表药物有:索拉非尼(Sorafenib)、柳氮磺吡啶(Sulfasalazine)、他汀类(Statins)以及青蒿素(Artemisinin)等 [20] - [26] ;除传统药物外,纳米载体也是科学家们一直关注的热点话题,特别是构建以铁离子为核心的纳米平台(Nanoplatform)已经成为治疗肿瘤相关疾病的常见策略。纳米前药具有良好的药物选择性杀伤肿瘤细胞的能力,并且可对靶向药物释放起到关键作用,可以极大地提高抗肿瘤疗效。利用纳米生物载体,建立根据温度和PH值精准释放铁死亡诱导剂的方法,有助于增加药物可溶性、肿瘤内靶向释放和降低药物的毒副作用 [27] 。早期研究表明,将黑色素瘤治疗药物包裹于二氧化硅纳米颗粒中,制备铁死亡纳米颗粒抑制剂,可以吸附胞外环境中的铁离子,在肿瘤细胞内释放,提高胞内含铁量,可观察到GSH抑制,胞内活性氧自由基(Reactive oxyradical species, ROS)水平提高,从而使肿瘤细胞发生铁死亡 [28] 。二硫键修饰的纳米药物则可以有效避免药物过早释放对机体产生毒性 [29] ;研究人员利用纳米技术操纵二硫键、二茂铁等ROS响应性基团设计新的纳米递送系统,可以对Lipo-PpIX@Ferumoxytol特定部位药物释放发挥良好作用 [20] 。最近孙进、孙丙军团队使用单硫键、二硫键或三硫键作为连接,合成三种紫杉醇(Paclitaxel, PTX)二聚体前药,在已报道的三硫键可以提高阿霉素(Doxorubicin, Dox)自组装能力和GSH敏感性的基础上进行探索 [30] ,发现三硫键紫杉醇纳米前药(PTX-SSS-PTX)在纳米组装灵活性方面有明显优势,同时三硫键主导的纳米前药体系具有高效的药物释放能力、稳定性和体内循环能力,表现出较强的抗肿瘤活性,极大地抑制了肿瘤细胞的增殖。PTX-SSS-PTX在小鼠体内具有良好的耐受性,并且可以降低PTX对小鼠的全身毒副作用,该成果揭示了三硫键在纳米前药中的关键作用,并为氧化还原敏感型药物合成提供了新的思路 [31] 。于梦、喻志强团队设计了一种可降解的纳米复合物PtH@FeP,它包括载铁多巴胺核(Fe(III)-polydopamine, FeP)和顺铂交联透明质酸的外壳(HA-cross-linked CDDP, PtH),这种纳米载体利用顺铂(Cisplatin)和铁离子两种活性成分协同发挥作用,可有效杀死肿瘤细胞 [32] 。陈雨团队设计了声敏剂(Protoporphyrin IX, PpIX)和氧化铁纳米颗粒(Ferumoxytol)的脂质体纳米递送系统(Lipo-PpIX@Ferumoxytol),用于声动力治疗(Sonodynamic therapy, SDT)靶向协同促进铁死亡,在该体系中PpIX声敏剂在超声照射下可以有效的启动细胞凋亡声动力抗肿瘤治疗,并与氧化铁纳米颗粒产生协同作用,触发双重铁死亡/细胞凋亡途径来抑制肿瘤生长 [33] ;宋杨团队设计了(PLGA)修饰递送四氧化三铁(Ferroferric oxide, Fe3O4)和二氢卟吩(Chlorin, Ce6)的纳米递送系统(Fe3O4-PLGA-Ce6),该纳米系统可以在酸性肿瘤微环境中解离,释放Fe3+/Fe2+和Ce6,并发生芬顿反应,释放的Ce6在光照条件下可以产生ROS,并促进肿瘤细胞铁死亡 [34] ;宋国胜团队最近开发了一种DNA功能化Fe3O4自组装的催化纳米体系(CACN),该体系中包含了Dox分子,CACN在腺嘌呤核苷三磷酸(Adenosine triphosphate, ATP)的触发下进行组装,释放DNA可功能化Fe3O4纳米颗粒。游离的纳米颗粒通过ATP和微酸的共同催化下产生ROS,其引发的脂质体过氧化可以导致细胞铁死亡。该项研究可增强核磁信号(Magnetic Resonance Imaging, MRI)联合Dox荧光对铁死亡治疗过程进行实时、灵敏和准确检测的作用 [33] 。罗忠团队研究发现乳酸在肿瘤微环境中对铁死亡中具有调节作用,他们报道了乳酸通过激活AMPK-SREBP1-SCD1通路促进肝癌细胞的铁死亡抗性,还探索了HCAR1/MCT1介导的乳酸是否可以作为铁死亡肝癌治疗的治疗靶点,研究结果表明,HCAR1/MCT1-SREBP1-SCD1通路可以抑制肝癌细胞的铁死亡,揭示了乳酸受体HCAR1和转运体MCT1在维持氧化还原稳态中的作用,同时提出HCAR1可能是肝癌铁死亡的潜在治疗靶点 [35] 。这些最新的研究成果对于肿瘤中靶向铁死亡以及相关药物研发等领域提供了重要的参考依据。这些发现有助于我们更好地理解肿瘤微环境中乳酸和铁死亡之间的相互作用,并提供了潜在的治疗靶点。进一步研究可能有助于开发针对肿瘤的新型治疗策略,以促进铁死亡并提高治疗效果。

2.2. 靶向铁死亡与肝脏疾病

在肝脏疾病研究中,科学家们发现了肝脏有不同程度的铁代谢紊乱、脂质过氧化物积聚等特征,而调控铁死亡对于治疗肝脏疾病有新的帮助 [36] 。2017年王浩在《Hepatology》杂志发表封面高被引论文,利用血色病小鼠模型,发现了SLC7A11可以调控铁死亡和铁过载,并证明了SLC7A11可以抑制铁过载引发的肝脏细胞死亡 [37] 。最近方学贤、孟红恩等发现了苹果酸酶(Malic Enzyme 1, ME1)、HDAC3可以调控铁死亡引发的肝脏损伤 [38] [39] 。刘兴国团队利用诱导多能干细胞(iPSC)技术建立遗传性体外肝脏疾病模型,通过研究发现线粒体DNA缺失综合症(Mitochondrial DNA depletion sydrome, MDS)患者肝细胞对铁沉积导致的铁死亡敏感,并且筛选出N-乙酰半胱氨酸(N-Acetyl-L-cysteine, NAC)作为治疗药物,为MDS肝衰竭研究提供了新的治疗策略 [40] 。此外,张晶团队在研究中系统地解析了急性肝损伤过程中铁死亡关键蛋白转铁蛋白受体(Transferrin Receptor 1, Tfr1)的泛素化修饰调控,并发现了Huwe1作为肝脏缺血再灌注损(Ischemia/reperfusion, I/R)的保护因子,揭示了Huwe1介导的Tfr1泛素化和降解可显著抑制铁死亡,并为临床该领域的提供了新的治疗方案 [41] 。

2.3. 靶向铁死亡与心脏疾病

研究表明铁死亡同样在心脏疾病发生中具有关键作用,方学贤在研究中发现,阿霉素处理过后的心肌细胞表现出铁死亡特征,使用铁死亡抑制Fer-1可以显著降低阿霉素引发的心肌病,研究同时发现在DOX处理的小鼠心脏中血红素加氧酶1 (Heme oxygenase-1, Hmox-1)显著上调,Homx-1抑制剂可以对DOX引发的心肌病有保护作用,线粒体抗氧化剂MitoTEMPO能有效抑制了阿霉素引起的心肌细胞铁死亡,另一项研究表明Fer-1和其它铁螯合剂也可以改善小鼠的急性和慢性I/R引起的心力衰竭,该项研究揭示了利用铁死亡抑制剂预防阿霉素引起的心脏及其他损伤引发的心肌病提供了新思路 [42] 。另外,陈佺等研究发现FUNDC2蛋白在调控阿霉素引起的铁死亡和心肌病中发挥重要作用,研究揭示了FUNDC2-SLC25A11轴通过调节线粒体内的GSH含量参与铁死亡的分子机制 [43] 。研究人员总结了Fer-1、祛铁胺(Deferoxamine, DFO)、Hmox-1抑制剂和低铁饮食等策略均能有效防治铁死亡介导的心脏损伤 [44] [45] 。Jonghan Kim教授团队在《blood》期刊上揭示了镰刀性贫血(Sickle Cell Diease, SCD)由于溶血会产生大量的血红素(Heme),研究表明SCD小鼠的心肌病与心脏的Hmox-1上调有关,抑制或者诱导Hmox-1分别会改善或者加重心脏损伤;同时研究者在SCD小鼠体内使用了铁死亡抑制剂或诱导剂,结果发现铁死亡抑制剂可以保护铁死亡介导的心脏损伤,而铁死亡诱导剂则会加剧心脏铁死亡;该研究为SCD相关的心脏疾病的铁死亡发生机制提供理论依据,为治疗SCD相关的心脏疾病提供治疗策略 [46] 。

2.4. 靶向铁死亡与其它疾病

与此同时,国内外的科学家们也在其它疾病领域进行探索,谢黎玮团队报道了Tfr1和铁稳态代谢对棕色/米色脂肪细胞的生热能力和发育分化起着调节作用,并揭示了缺氧诱导因子HIFα通过转录调控Trf1促进白色脂肪米色化的新机制 [47] 。杨磊等构建了金诺芬(Auranofin Tabelets)药物模型,发现该药物虽能激活铁调素(Hepcidin, Hepc)从而有效减轻铁过载,然而高剂量金诺芬会抑制硫氧还蛋白还原酶(Thioredoxin reductase, TXNRD)活性,导致细胞膜脂质过氧化累积诱导铁死亡 [48] 。Andreas Linkermann团队最新一项成果发现地塞米松和其它糖皮质激素可以通过糖皮质激素受体(Glucocorticoid recepto, GR) 依赖性方式降低GSH水平进而引发铁死亡,研究首先表明地塞米松和糖皮质激素对Erastin诱导的铁死亡具有敏感性,同时地塞米松可降低HT1080细胞中的GSH值,敲除DPEP1可逆转地塞米松对Erastin诱导铁死亡的敏感性,在新鲜分离的肾小管中使用Fer-1、DPEP1抑制剂西司他丁能够逆转地塞米松诱导的肾小管坏死,研究数据表明地塞米松可以通过GR介导DPEP1表达增加和GSH耗竭使铁死亡变得敏感,研究定义了一个新的糖皮质激素介导的对铁死亡敏感机制,该机制具有临床和治疗意义 [49] 。罗承良团队系统阐述了脑外伤(Traumatic brain injury, TBI)后铁死亡相关蛋白表达的变化规律;首次在相关动物模型上揭示了褪黑素可以作为一种铁死亡抑制剂,通过抑制神经元铁蛋白H (Ferritin H, FTH)介导的铁死亡,在小鼠TBI模型中产生脑保护作用,该成果为治疗脑外伤提供新的药物选择 [50] 。鞠振宇团队首次报道了干细胞的铁死亡,发现GPX4和维生素E (Vitamin E)共同保护造血干祖细胞,抑制脂质过氧化,防止铁死亡发生,并维持造血系统稳定 [51] 。何蓉蓉团队研究发现GPX4的缺失会导致磷脂过氧化物的积累,并导致肌萎缩侧索硬化症(Amyotrophic lateral sclerosis, ALS)小鼠脊髓中运动神经元的丢失,提出GPX4作为关键的磷脂过氧化清除蛋白,在SOD1G93A突变诱导ALS模型小鼠神经元丢失的病理过程中发挥重要作用,同时强调GPX4在维持脊髓磷脂化还原稳态中的重要性,将GPX4作为治疗ALS的新靶点 [52] 。综上所述,靶向抑制铁死亡可能成为防治其他重大疾病的有效治疗策略,因为铁死亡及其相关通路可能在其他重大疾病的发病过程中发挥作用。

3. 展望

未来,靶向铁死亡以防治重大疾病的研究将面临着许多挑战和机遇。首先,我们需要进一步深入了解铁死亡在各种疾病中的确切作用机制以及与其他病理过程的关联。这将需要跨学科的合作和全面的研究方法,包括分子生物学、细胞生物学、生物化学和临床医学等领域的整合。

其次,研究人员需要开发更具选择性和效力的靶向铁死亡的药物。这将涉及到对铁代谢通路的深入了解,以便寻找合适的靶点,并设计具有良好药代动力学和毒性特性的药物分子。此外,针对不同疾病的特定治疗策略可能需要个性化设计,因此需要更多的临床试验来验证其安全性和有效性。

另外,随着对铁死亡机制的深入理解,我们还可以探索铁死亡在其他疾病领域的潜在应用。例如,在神经退行性疾病、肿瘤和心血管疾病等领域,铁死亡可能作为新的治疗靶点,为开发创新的治疗策略提供新的思路。

总的来说,靶向铁死亡防治重大疾病的研究展望广阔,但也面临着挑战。通过不懈的努力和持续的研究,我们有望开发出更有效、更安全的治疗方法,为改善人类健康做出更大的贡献。

利益冲突

所有作者均声明不存在利益冲突。

参考文献

[1] Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072.
https://doi.org/10.1016/j.cell.2012.03.042
[2] Zheng, J. and Conrad, M. (2020) The Metabolic Underpinnings of Ferroptosis. Cell Metabolism, 32, 920-937.
https://doi.org/10.1016/j.cmet.2020.10.011
[3] Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., et al. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285.
https://doi.org/10.1016/j.cell.2017.09.021
[4] Yang, W.S., SriRamaratnam, R., Welsch, M.E., et al. (2014) Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell, 156, 317-331.
https://doi.org/10.1016/j.cell.2013.12.010
[5] Yang, W.S. and Stockwell, B.R. (2016) Ferroptosis: Death by Lipid Peroxidation. Trends in Cell Biology, 26, 165-176.
https://doi.org/10.1016/j.tcb.2015.10.014
[6] Xie, Y., Kang, R., Klionsky, D.J., et al. (2023) GPX4 in Cell Death, Autophagy, and Disease. Autophagy, 19, 2621-2638.
https://doi.org/10.1080/15548627.2023.2218764
[7] Kraft, V.A.N., Bezjian, C.T., Pfeiffer, S., et al. (2020) GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis Through Lipid Remodeling. ACS Central Science, 6, 41-53.
https://doi.org/10.1021/acscentsci.9b01063
[8] Doll, S., Freitas, F.P., Shah, R., et al. (2019) FSP1 Is a Glutathione-Independent Ferroptosis Suppressor. Nature, 575, 693-698.
https://doi.org/10.1038/s41586-019-1707-0
[9] Yang, M., Tsui, M.G., Tsang, J.K.W., et al. (2022) Involvement of FSP1-CoQ-NADH and GSH-GPx-4 Pathways in Retinal Pigment Epithelium Ferroptosis. Cell Death & Disease, 13, Article No. 468.
https://doi.org/10.1038/s41419-022-04924-4
[10] Bersuker, K., Hendricks, J.M., Li, Z., et al. (2019) The CoQ Oxidoreductase FSP1 Acts Parallel to GPX4 to Inhibit Ferroptosis. Nature, 575, 688-692.
https://doi.org/10.1038/s41586-019-1705-2
[11] Li, W., Liang, L., Liu, S., et al. (2023) FSP1: A Key Regulator of Ferroptosis. Trends in Molecular Medicine, 29, 753-764.
https://doi.org/10.1016/j.molmed.2023.05.013
[12] Doll, S., Proneth, B., Tyurina, Y.Y., et al. (2017) ACSL4 Dictates Ferroptosis Sensitivity by Shaping Cellular Lipid Composition. Nature Chemical Biology, 13, 91-98.
https://doi.org/10.1038/nchembio.2239
[13] Bai, Y., Meng, L., Han, L., et al. (2019) Lipid Storage and Lipophagy Regulates Ferroptosis. Biochemical and Biophysical Research Communications, 508, 997-1003.
https://doi.org/10.1016/j.bbrc.2018.12.039
[14] Kagan, V.E., Mao, G., Qu, F., et al. (2017) Oxidized Arachidonic and Adrenic PEs Navigate Cells to Ferroptosis. Nature Chemical Biology, 13, 81-90.
https://doi.org/10.1038/nchembio.2238
[15] Wenzel, S.E., Tyurina, Y.Y., Zhao, J., et al. (2017) PEBP1 Wardens Ferroptosis by Enabling Lipoxygenase Generation of Lipid Death Signals. Cell, 171, 628-641.E26.
https://doi.org/10.1016/j.cell.2017.09.044
[16] Hangauer, M.J., Viswanathan, V.S., Ryan, M.J., et al. (2017) Drug-Tolerant Persister Cancer Cells Are Vulnerable to GPX4 Inhibition. Nature, 551, 247-250.
https://doi.org/10.1038/nature24297
[17] Hassannia, B., Vandenabeele, P., Vanden Berghe, T. et al. (2019) Targeting Ferroptosis to Iron out Cancer. Cancer Cell, 35, 830-849.
https://doi.org/10.1016/j.ccell.2019.04.002
[18] Hu, K., Li, K., Lv, J., et al. (2020) Suppression of the SLC7A11/Glutathione Axis Causes Synthetic Lethality in KRAS-Mutant Lung Adenocarcinoma. Journal of Clinical Investigation, 130, 1752-1766.
https://doi.org/10.1172/JCI124049
[19] Chen, X., Kang, R., Kroemer, G. and Tang. D. (2021) Broadening Horizons: The Role of Ferroptosis in Cancer. Nature Reviews Clinical Oncology, 18, 280-296.
https://doi.org/10.1038/s41571-020-00462-0
[20] Garwood, E.R., Kumar, A.S., Baehner, F.L., et al. (2010) Fluvastatin Reduces Proliferation and Increases Apoptosis in Women with High Grade Breast Cancer. Breast Cancer Research and Treatment, 119, 137-144.
https://doi.org/10.1007/s10549-009-0507-x
[21] Gout, P.W., Buckley, A.R., Simms, C.R. and Bruchovsky, N. (2001) Sulfasalazine, A Potent Suppressor of Lymphoma Growth by Inhibition of the XC- Cystine Transporter: A New Action for an Old Drug. Leukemia, 15, 1633-1640.
https://doi.org/10.1038/sj.leu.2402238
[22] Graf, H., Jüngst, C., Straub, G., et al. (2008) Chemoembolization Combined with Pravastatin Improves Survival in Patients with Hepatocellular Carcinoma. Digestion, 78, 34-38.
https://doi.org/10.1159/000156702
[23] Hus, M., Grzasko, N., Szostek, M., et al. (2011) Thalidomide, Dexamethasone and Lovastatin with Autologous Stem Cell Transplantation as a Salvage Immunomodulatory Therapy in Patients with Relapsed and Refractory Multiple Myeloma. Annals of Hematology, 90, 1161-1166.
https://doi.org/10.1007/s00277-011-1276-2
[24] Li, J. and Zhou, B. (2010) Biological Actions of Artemisinin: Insights from Medicinal Chemistry Studies. Molecules, 15, 1378-1397.
https://doi.org/10.3390/molecules15031378
[25] Louandre, C., Ezzoukhry, Z., Godin, C., et al. (2013) Iron-Dependent Cell Death of Hepatocellular Carcinoma Cells Exposed to Sorafenib. International Journal of Cancer, 133, 1732-1742.
https://doi.org/10.1002/ijc.28159
[26] Stockwin, L.H., Han, B., Yu, S.X., et al. (2009) Artemisinin Dimer Anticancer Activity Correlates with Heme-Catalyzed Reactive Oxygen Species Generation and Endoplasmic Reticulum Stress Induction. International Journal of Cancer, 125, 1266-1275.
https://doi.org/10.1002/ijc.24496
[27] Zhang, Y., Tan, H., Daniels, J.D., et al. (2019) Imidazole Ketone Erastin Induces Ferroptosis and Slows Tumor Growth in a Mouse Lymphoma Model. Cell Chemical Biology, 26, 623-633.E9.
https://doi.org/10.1016/j.chembiol.2019.01.008
[28] Kim, S.E., Zhang, L., Ma, K., et al. (2016) Ultrasmall Nanoparticles Induce Ferroptosis in Nutrient-Deprived Cancer Cells and Suppress Tumour Growth. Nature Nanotechnology, 11, 977-985.
https://doi.org/10.1038/nnano.2016.164
[29] Bjarnadottir, O., Romero, Q., Bendahl, P.O., et al. (2013) Targeting HMG-CoA Reductase with Statins in a Window-of-Opportunity Breast Cancer Trial. Breast Cancer Research and Treatment, 138, 499-508.
https://doi.org/10.1007/s10549-013-2473-6
[30] Yang, Y., Sun, B., Zuo, S., et al. (2020) Trisulfide Bond-Mediated Doxorubicin Dimeric Prodrug Nanoassemblies with High Drug Loading, High Self-Assembly Stability, and High Tumor Selectivity. Science Advances, 6, eabc1725.
https://doi.org/10.1126/sciadv.abc1725
[31] Yang, Y.X., Zuo, S., Zhang, J.X., et al. (2022) Prodrug Nanoassemblies Bridged by Mono-/Di-/Tri-Sulfide Bonds: Exploration Is for Going Further. Nano Today, 44, Article ID: 101480.
https://doi.org/10.1016/j.nantod.2022.101480
[32] Chen, G., Yang, Y., Xu, Q., et al. (2020) Self-Amplification of Tumor Oxidative Stress with Degradable Metallic Complexes for Synergistic Cascade Tumor Therapy. Nano Letters, 20, 8141-8150.
https://doi.org/10.1021/acs.nanolett.0c03127
[33] Zhou, L. and Dong, C. (2021) Targeting Ferroptosis Synergistically Sensitizes Apoptotic Sonodynamic Anti-Tumor Nanotherapy. Nano Today, 39, Article ID: 101212.
https://doi.org/10.1016/j.nantod.2021.101212
[34] Chen, Q., Ma, X., Xie, L., et al. (2021) Iron-Based Nanoparticles for MR Imaging-Guided Ferroptosis in Combination with Photodynamic Therapy to Enhance Cancer Treatment. Nanoscale, 13, 4855-4870.
https://doi.org/10.1039/D0NR08757B
[35] Zhao, Y., Li, M., Yao, X., et al. (2020) HCAR1/MCT1 Regulates Tumor Ferroptosis through the Lactate-Mediated AMPK-SCD1 Activity and Its Therapeutic Implications. Cell Reports, 33, Article ID: 108487.
https://doi.org/10.1016/j.celrep.2020.108487
[36] Chen, J., Li, X., Ge, C., Min, J. and Wang, F. (2022) The Multifaceted Role of Ferroptosis in Liver Disease. Cell Death & Differentiation, 29, 467-480.
https://doi.org/10.1038/s41418-022-00941-0
[37] Wang, H., An, P., Xie, E., et al. (2017) Characterization of Ferroptosis in Murine Models of Hemochromatosis. Hepatology, 66, 449-465.
https://doi.org/10.1002/hep.29117
[38] Fang, X., Zhang, J., Li, Y., et al. (2023) Malic Enzyme 1 as a Novel Anti-Ferroptotic Regulator in Hepatic Ischemia/Reperfusion Injury. Advanced Science, 10, e2205436.
https://doi.org/10.1002/advs.202205436
[39] Meng, H., Yu, Y., Xie, E., et al. (2023) Hepatic HDAC3 Regulates Systemic Iron Homeostasis and Ferroptosis via the Hippo Signaling Pathway. Research, 6, Article 0281.
https://doi.org/10.34133/research.0281
[40] Guo, J., Duan, L., He, X., et al. (2021) A Combined Model of Human IPSC-Derived Liver Organoids and Hepatocytes Reveals Ferroptosis in DGUOK Mutant MtDNA Depletion Syndrome. Advanced Science, 8, Article ID: 2004680.
https://doi.org/10.1002/advs.202004680
[41] Wu, Y., Jiao, H., Yue, Y., et al. 2022) Ubiquitin Ligase E3 HUWE1/MULE Targets Transferrin Receptor for Degradation and Suppresses Ferroptosis in Acute Liver Injury. Cell Death & Differentiation, 29, 1705-1718.
[42] Fang, X., Wang, H., Han, D., et al. (2022) Ferroptosis as a Target for Protection against Cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 116, 2672-2680.
https://doi.org/10.1073/pnas.1821022116
[43] Ta, N., Qu, C., Wu, H., et al. (2022) Mitochondrial Outer Membrane Protein FUNDC2 Promotes Ferroptosis and Contributes to Doxorubicin-Induced Cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 119, e2117396119.
https://doi.org/10.1073/pnas.2117396119
[44] Gao, M., Monian, P., Quadri, N., et al. (2015) Glutaminolysis and Transferrin Regulate Ferroptosis. Molecular Cell, 59, 298-308.
https://doi.org/10.1016/j.molcel.2015.06.011
[45] Stamenkovic, A., Pierce, G.N. and Ravandi, A. (2019) Phospholipid Oxidation Products in Ferroptotic Myocardial Cell Death. American Journal of Physiology-Heart and Circulatory Physiology, 317, H156-H163.
https://doi.org/10.1152/ajpheart.00076.2019
[46] Menon, A.V., Liu, J., Tsai, H.P., et al. (2022) Excess Heme Upregulates Heme Oxygenase 1 and Promotes Cardiac Ferroptosis in Mice with Sickle Cell Disease. Blood, 139, 936-941.
https://doi.org/10.1182/blood.2020008455
[47] Li, J., Pan, X., Pan, G., et al. (2020) Transferrin Receptor 1 Regulates Thermogenic Capacity and Cell Fate in Brown/ Beige Adipocytes. Advanced Science, 7, Article ID: 1903366.
https://doi.org/10.1002/advs.202070066
[48] Yang, L., Wang, H., Yang, X., et al. (2020) Auranofin Mitigates Systemic Iron Overload and Induces Ferroptosis via Distinct Mechanisms. Signal Transduction and Targeted Therapy, 5, Article No. 138.
https://doi.org/10.1038/s41392-020-00253-0
[49] Von Mässenhausen, A., Zamora Gonzalez, N., Maremonti, F., et al. (2022) Dexamethasone Sensitizes to Ferroptosis by Glucocorticoid Receptor-Induced Dipeptidase-1 Expression and Glutathione Depletion. Science Advances, 8, eabl8920.
https://doi.org/10.1126/sciadv.abl8920
[50] Rui, T., Wang, H., Li, Q., et al. (2021) Deletion of Ferritin H in Neurons Counteracts the Protective Effect of Melatonin against Traumatic Brain Injury-Induced Ferroptosis. Journal of Pineal Research, 70, e12704.
https://doi.org/10.1111/jpi.12704
[51] Hu, Q., Zhang, Y., Lou, H., et al. (2021) GPX4 and Vitamin E Cooperatively Protect Hematopoietic Stem and Progenitor Cells from Lipid Peroxidation and Ferroptosis. Cell Death & Disease, 12, Article No. 706.
https://doi.org/10.1038/s41419-021-04008-9
[52] Tu, L.F., Zhang, T.Z., Zhou, Y.F., et al. (2023) GPX4 Deficiency-Dependent Phospholipid Peroxidation Drives Motor Deficits of ALS. Journal of Advanced Research, 43, 205-218.
https://doi.org/10.1016/j.jare.2022.02.016