|
[1]
|
Valiant, L.G. (1979) The Complexity of Computing the Permanent. Theoretical Computer
Science, 8, 189-201. [Google Scholar] [CrossRef]
|
|
[2]
|
van Dam, E.R. and Haemers, W. (2003) Which Graphs Are Determined by Their Spectrum?
Linear Algebra and Its Applications, 373, 241-272.[CrossRef]
|
|
[3]
|
Cvetkovic, D. (2005) Signless Laplacians and Line Graphs. Bulletin (Academie serbe des sci-
ences et des arts. Classe des sciences mathematiques et naturelles. Sciences mathematiques),
131, 85-92. [Google Scholar] [CrossRef]
|
|
[4]
|
Cvetkovic, D., Rowlinson, P. and Simic, S.K. (2007) Signless Laplacians of Finite Graphs.
Linear Algebra and Its Applications, 423, 155-171. [Google Scholar] [CrossRef]
|
|
[5]
|
Cvetkovic, D., Rowlinson, P. and Simic, S.K. (2004) Spectral Generalizations of Line Graphs.
On Graphs with Least Eigenvalue-2. Cambridge University Press, Cambridge. [Google Scholar] [CrossRef]
|
|
[6]
|
Haemers, W. and Spence, E. (2004) Enumeration of Cospectral Graphs. European Journal of
Combinatorics, 25, 199-211. [Google Scholar] [CrossRef]
|
|
[7]
|
Cash, G.G. and Gutman, I. (2004) The Laplacian Permanental Polynomial: Formulas and
Algorithms. MATCH Communications in Mathematical and in Computer Chemistry, 51, 129-
136.
|
|
[8]
|
Liu, S. (2019) On the (signless) Laplacian Permanental Polynomials of Graphs. Graphs and
Combinatorics, 35, 787-803. [Google Scholar] [CrossRef]
|
|
[9]
|
Brualdi, R.A. and Goldwasser, J.L. (1984) Permanent of the Laplacian Matrix of Trees and
Bipartite Graphs. Discrete Mathematics, 48, 1-21.[CrossRef]
|
|
[10]
|
Goldwasser, J.L. (1986) Permanental of the Laplacian Matrix of Trees with a Given Matching.
Discrete Mathematics, 61, 197-212. [Google Scholar] [CrossRef]
|
|
[11]
|
Wu, T. and So, W. (2021) Permanental Sums of Graphs of Extreme Sizes. Discrete Mathe-
matics, 344, Article 112353. [Google Scholar] [CrossRef]
|