非线性一阶半正周期边值问题正解的存在性
Existence of Positive Solutions forNonlinear First-Order Semi-PositivePeriodic Boundary Problems
DOI: 10.12677/PM.2024.144130, PDF, 下载: 34  浏览: 53  国家自然科学基金支持
作者: 王晶璇:西北师范大学数学与统计学院,甘肃 兰州
关键词: 正解半正周期边界条件上下解方法拓扑度理论Positive Solutions Semi-Positive Periodic Boundary Conditions Upper and Lower Solutions Topological Degree
摘要: 本文研究了一类半正周期边值问题正解的存在性,其中λ为正参数,ε是一个正数,a,b∈C(ℝ,[0,∞)) 是1-周期函数且∫01a(t)dt > 0,∫01b(t)dt > 0,f,g∈C([0,∞),[0,∞)),τ(t)是连续1-周期函数。运用上下解方法和拓扑度理论,得到存在常数λ∗ > 0,使得当λ∈(0,λ∗)时,问题(P)存在两个正解。
Abstract: We are concerned with the existence of positive solutions for a class of semi-positive periodic boundary problems where λ is a positive parameter, ε is a positive constant,a,b∈C(ℝ,[0,∞)) is a 1-periodic function, ∫01a(t)dt > 0,∫01b(t)dt > 0. f,g∈C([0,∞),[0,∞)),τ(t) is a continuous 1-periodic function. By using the method of upper and lower solutions and topological degree theory, we show that there exists a constant λ∗ > 0, such that the problem (P) has two positive solutions for λ∈(0,λ∗).
文章引用:王晶璇. 非线性一阶半正周期边值问题正解的存在性[J]. 理论数学, 2024, 14(4): 229-239. https://doi.org/10.12677/PM.2024.144130

参考文献

[1] Cheng, S.S. and Zhang, G. (2001) Existence of Positive Periodic Solutions for Non-Autonomous Functional Differential Equations. Electronic Journal of Differential Equations, 59, 1-8.
[2] Wang, H.Y. (2004) Positive Periodic Solutions of Functional Differential Equations. Journal of Differential Equations, 202, 354-366.
https://doi.org/10.1016/j.jde.2004.02.018
[3] Ma, R.Y., Chen, R.P. and Chen, T.L. (2011) Existence of Positive Periodic Solutions of Non- linear First-Order Delayed Differential Equations. Journal of Mathematical Analysis and Ap- plications, 384, 527-535.
https://doi.org/10.1016/j.jmaa.2011.06.003
[4] Tisdell, C.C. (2006) Existence of Solutions to First-Order Periodic Boundary Value Problems. Journal of Mathematical Analysis and Applications, 323, 1325-1332.
https://doi.org/10.1016/j.jmaa.2005.11.047
[5] Wang, H.Y. (1994) Multiple Positive Solutions of Some Boundary Value Problems. Journal of Mathematical Analysis and Applications, 184, 640-648.
https://doi.org/10.1006/jmaa.1994.1227
[6] Ma, R.Y., Xu, J. and Han, X.L. (2011) Global Bifurcation of Positive Solutions of a Second- Order Periodic Boundary Value Problem with Indefinite Weight. Nonlinear Analysis, 4, 3379- 3385.
https://doi.org/10.1016/j.na.2011.02.013
[7] Peng, S.G. (2004) Positive Solutions for First Order Periodic Boundary Value Problem. Applied Mathematics and Computation, 158, 345-351.
https://doi.org/10.1016/j.amc.2003.08.090
[8] Ma, R.Y., Gao, C.H. and Xu, J. (2011) Existence of Positive Solutions for First Order Discrete Periodic Boundary Value Problems with Delay. Nonlinear Analysis, 74, 4186-4191.
https://doi.org/10.1016/j.na.2011.03.053
[9] Graef, J.R. and Kong, L.J. (2011) Periodic Solutions of First Order Functional Differential Equation. Applied Mathematics Letters, 24, 1981-1985.
https://doi.org/10.1016/j.aml.2011.05.020
[10] Zhang, Z.X. and Wang, J.Y. (2003) On Existence and Multiplicity of Positive Solutions to Pe- riodic Boundary Value Problems for Singular Nonlinear Second-Order Differential Equations. Journal of Mathematical Analysis and Applications, 281, 99-107.
https://doi.org/10.1016/S0022-247X(02)00538-3
[11] Graef, J.R. and Kong, L.J. (2011) Existence of Multiple Periodic Solutions for First Or- der Functional Differential Equations. Mathematical and Computer Modelling, 54, 2962-2968.
https://doi.org/10.1016/j.mcm.2011.07.018
[12] Wang, H.Y. and Jin, Z.L. (2010) A Note on Positive Periodic Solutions of Delayed Differential Equations. Applied Mathematics Letters, 23, 581-584.
https://doi.org/10.1016/j.aml.2010.01.015
[13] Guo, D.J. and Lakshmikanthan, V. (1988) Nonlinear Problems in Abstract Cones. Academic Press, New York.
[14] Zhang, X. and Feng, M. (2019) Bifurcation Diagrams and Exact Multiplicity of Positive So- lutions of One-Dimensional Prescribed Mean Curvature Equation in Minkowski Space. Com- munications in Contemporary Mathematics, 21, Article 1850003.
https://doi.org/10.1142/S0219199718500037
[15] Whyburn, G.T. (1958) Topological Analysis. Princeton University Press, Princeton.