慢性肾脏病血管钙化的相关研究进展
Progress of Research Related to Vascular Calcification in Chronic Kidney Disease
DOI: 10.12677/acm.2024.1441249, PDF, HTML, XML, 下载: 33  浏览: 48 
作者: 吴 静, 杨小娟*:延安大学附属医院肾内科,陕西 延安
关键词: 慢性肾脏病钙化心血管病综述Chronic Kidney Disease Calcification Cardiovascular Disease Review
摘要: 心血管疾病(CVD)和慢性肾脏病(CKD)关系密切,近年来随着死亡率的增加,引起全球广泛的关注。血管钙化(VC)在CKD患者中极为常见。血管钙化有两种不同的表型,分为血管内膜钙化和中膜钙化。动脉钙化是CKD患者发生心血管疾病的主要病理机制,可显著增加慢性肾脏病患者心脑血管不良事件的发生率和全因死亡率,慢性肾脏病患者血管钙化的发病机制尚不完全清楚。因此,在本文中,我们将讨论慢性肾脏病患者动脉钙化的发病机制,为临床更好地防治血管钙化的发生提供依据。
Abstract: Cardiovascular disease (CVD) is closely related to chronic kidney disease (CKD), and in recent years, they have attracted worldwide attention as mortality rates have risen. Vascular calcification (VC) is common in patients with CKD. There are two distinct phenotypes of vascular calcification, one is intimal calcification and the other is medial calcification. Arterial calcification is the main pathological mechanism of cardiovascular disease in CKD patients. It can significantly increase the incidence of adverse cardiovascular and cerebrovascular events and all-cause mortality in chronic kidney disease patients, at present, the pathogenesis of vascular calcification in CKD patients is still not completely elucidated. Therefore, this article reviews the pathogenesis of arterial calcification in CKD patients, and to provide the basis for improved clinical management of vascular calcification.
文章引用:吴静, 杨小娟. 慢性肾脏病血管钙化的相关研究进展[J]. 临床医学进展, 2024, 14(4): 1947-1952. https://doi.org/10.12677/acm.2024.1441249

1. 引言

慢性肾脏病(CKD)定义为持续超过3个月的肾脏结构或功能异常。慢性肾病是继心、脑血管疾病、癌症之后,又一威胁人类健康的常见慢性疾病。血管钙化(Vascular Calcification, VC)被定义为矿物质以钙–磷酸盐复合物的形式沉积在血管系统中,尽管VC被认为是正常衰老过程的一部分,但某些疾病过程,如糖尿病、高血压、慢性肾脏病(Chronic Kidney Disease, CKD)和罕见的遗传病,可引发这种情况 [1] 。VC是慢性肾脏病患者心血管疾病和全因死亡的独立危险因素 [2] ,并会增加慢性肾脏病患者的致死率 [3] 。根据数据显示,我国透析患者中,有77.4%的人出现了血管钙化的情况,其中,行血液透析的患者占比为80.8%,在这些患者中,冠状动脉钙化的患病率最高为68.3%,其次是腹主动脉和心脏瓣膜钙化 [4] ,因此,对于慢性肾病患者来说,早期预防血管钙化的发展在改善其预后方面具有不可忽视的临床价值 [5] 。但CKD患者发生VC的机制尚未完全明了。因此,本文探讨慢性肾脏病患者血管钙化的发病机制,为临床更好地预防和治疗血管钙化提供依据,以期为慢性肾脏病患者可能发生血管钙化、延缓心血管进展提供早期干预。

2. CKD患者血管钙化的发病机制

VC是一个高度受控的过程,主要由血管平滑肌细胞(VSMC)调控 [6] 。在生理条件下,VSMC具有收缩表型,并维持血管壁的结构和功能稳态。然而,在病理条件下,VSMC转化为成骨细胞样细胞并分泌胶原细胞外基质 [7] 。体外研究报道,CKD受试者的血清可诱导人主动脉平滑肌细胞钙化。VC在CKD患者中更常见,据报道,透析患者的患病率超过80% [8] [9] 。血管内皮细胞损伤、矿物质代谢紊乱、炎症及氧化应激、VC促进剂与抑制剂失衡等均为慢性肾脏病病人VC发生的诱因。

2.1. 血管平滑肌的病变

血管平滑肌细胞(VSMCs)的成骨作用是慢性肾病血管钙化的病理生理基础。环境因素(如慢性肾脏病中矿物质代谢受损和尿毒症毒素积累)导致血管平滑肌细胞中成骨转录因子(如Runx2、Osterix、Msx2)的表达增加。基质蛋白(ALPs)、骨形态发生蛋白(BMPs)、富含胶原的ECM [10] 和收缩蛋白的表达和分泌减少,而碱性磷酸酶等成骨蛋白的表达和分泌增加,从而使表型从收缩型转变为成骨型 [11] [12] 。成骨血管内皮细胞分泌的基质囊泡和凋亡囊泡成为矿物质沉积和晶体成核的初始场所,形成钙质沉积 [13] 。CKD患者体内各种钙化因素的刺激会使VSMC受损,加速VSMC的凋亡和囊泡的产生,使血管中钙的沉积增加,导致CKD患者血管钙的形成 [7] 。血液透析能够通过触发VSMC细胞的凋亡过程,从而加快患者的VC进程 [14] 。VSMC和成骨细胞来源于骨髓间充质干细胞,在高磷或高钙刺激下,血管平滑肌细胞的表型从收缩型转变为成骨型 [15] ,CKD患者血管壁的高水平钙盐增加了成骨细胞相关转录因子的表达,降低了间充质干细胞转录因子的作用。VSMCs表型的成骨样转分化是慢性肾病VC的重要组成部分 [16] 。

2.2. 血管钙化促发因素与抑制因素

2.2.1. 血管钙化促进因子

促进血管钙化的因子包括碱性磷酸酶(ALP)、BMP-2、磷酸吲哚酚(IS)和成纤维细胞生长因子23 (FGF23)。ALP存在四种不同的ALP同工酶,当组织中的非特异性ALP (TNALP)在血管系统中过度表达时,可能会导致VC,这与BMP-2在阻断VSMC的CKD患者的心血管疾病表型有关。TNALP在血管钙化的发展、细胞凋亡和表型改变、促进血管钙化等方面起着重要作用。IS促进氧化应激,损害VSMC再生功能,引起内皮功能障碍,并通过减少内皮NO合成和持续内皮增殖促进高凝状态,导致CKD患者的血管损伤。FGF23是是一种骨源性激素,是维持血清磷水平的主要调节因子,其借助klotho蛋白的作用,它可以增强FGF-23和FGFR之间的亲和力,形成的复合物参与调节钙和磷的水平。有证据表明,klotho通过诱导磷尿来改善磷酸盐代谢,从而抑制VSMC钙化 [17] 。Klotho还能通过抑制氧化应激而减弱VC [18] 。此外,klotho蛋白通过与内皮细胞瞬时受体(TRPC1)通道1结合来保护内皮细胞,从而抑制钙内流,保护细胞完整性,并抑制VC [19] 。然而,血液透析治疗后,klotho水平显著降低 [20] 。因此,通过防止Klotho水平下降,Klotho替代可能是一种很有前途的治疗方法,可能会影响CKD患者的VC。

2.2.2. 钙化抑制因子

胎球蛋白-A和焦磷酸盐通过抑制磷酸钙在血管壁的形成和沉积来抑制血管钙化。胎球蛋白-A和焦磷酸盐通过抑制磷酸钙在血管壁的形成和沉积来抑制血管钙化。胎球蛋白-A是一种高分子量、带负电荷的蛋白质,在肝脏中合成并释放到血液中,它可作为矿物质收集器,与CPP中的CaP矿物质结合,抑制晶体生长和成熟,并在抑制软组织钙化和血管壁局部钙化方面发挥重要作用 [21] 。此外,胎球蛋白-A保护VSMC免受成骨细胞表型转换的影响,并抑制凋亡体和炎性细胞因子的释放 [22] [23] 。CKD患者血浆焦磷酸盐的含量与血管钙化的程度呈负相关 [24] ,PPi是羟基磷灰石形成的抑制剂。核苷酸焦磷酸酶、磷酸二酯酶1 (ENPP1)下调、NT5E49基因突变会导致焦磷酸盐代谢通路异常,从而增强钙化。MGP是一种维生素K依赖性基质Gla蛋白,在骨骼、心脏、血管和肾脏中表达 [25] [26] 。慢性肾脏病患者体内的维生素K水平降低时,钙化途径会通过抑制钙磷聚集(例如与磷酸钙颗粒形成复合物)而受到调节,MGP的活化也会受抑制 [27] 。在肾脏中表达的一种钙化抑制因子为成骨细胞,其在慢性肾脏病患者体内的水平会降低,从而促进VC。骨保护蛋白可抑制破骨细胞的形成和活化,它可作为肾病患者心血管疾病发病率和全因死亡率的指标 [28] 。

2.3. 钙磷调节失衡

在CKD患者中,各种病理因素都会导致VC的发生和发展,但导致VC的重要因素是矿物质平衡紊乱和磷酸盐水平升高 [29] 。高磷酸盐血症是一种常见的离子紊乱,与慢性肾脏病患者骨矿物质异常的发生有关。CKD患者肾脏排泄功能降低,尿磷排泄量减少,血磷水平升高会与钙结合,在软组织中形成磷酸钙沉积,引起软组织异位钙化,导致血钙水平下降,抑制近端肾小管中的1,25-(OH)2D3 (骨化三醇),进而使甲状旁腺细胞分泌甲状旁腺激素(PTH),刺激成骨细胞和成骨细胞的活性增殖,增加骨转换。甲状旁腺激素水平高与心血管疾病风险和总死亡率有关,可能是心血管疾病的一个独立风险因素 [30] 。一项体外研究表明,高磷血症以剂量依赖性方式诱导VSMC钙化,依赖于钠依赖性磷酸共转运蛋白Pit-1和欠幅相关转录因子2 (RUNX2)、核心结合因子1 (Cbfa1)和osterix转录因子的上调 [11] 。血清钙水平升高(单独或与高磷酸盐水平联合使用)时可将血管钙化诱导为骨骼钙化,钙离子不仅会引起氧化应激,抑制MGP的表达,还会直接沉积在血管壁上,成为羟基磷灰石的主要成核物,从而加剧血管钙化的发生和发展。

2.4. 氧化应激和炎症

氧化应激是诱导成骨细胞和软骨细胞从血管内皮细胞转分化的重要介质。尿毒症毒素是慢性肾脏病患者体内氧化代谢物的主要来源,而且是一个高度异质性的群体。Huang人等 [31] 研究表明:在血清磷水平正常的早期CKD患者和CKD大鼠模型中,氧化应激与VC同时存在,在血清磷水平正常的CKD 2~3期患者在氧化应激作用下的血清会直接促进原发性VSMC的钙沉积,这表明氧化应激介导了CKD早期的VC。慢性肾脏病患者尿毒症会增加炎症因子的表达和对氧化应激的敏感性。在钙化部位激活的巨噬细胞会启动矿物质沉积。RANKL受体激动剂可增加巨噬细胞特异性细胞因子IL-6的分泌,IL-6又可刺激血管内皮细胞的表型变化 [32] ,有助于矿物质沉积,参与血管钙化。他们还发现,通过抑制DRAO的形成,可有效延缓钙沉积。Liu等人 [33] 发现:C反应蛋白水平升高的患者炎症标志物(TNF-α、MCP-1)的表达水平明显高于对照组,且VC水平更显著。Chang Hyun Byon等人 [34] 发现,氧自由基(OFR)会促进成骨细胞的表型变化和VC的积累。

2.5. 肠道生态与功能失调

血管钙化是心血管疾病和死亡的主要原因,与肠道微生物群密切相关。短链脂肪酸来源于肠道微生物群,也可以调节肠道微生物群的动态平衡。肠道微生态紊乱是影响人体健康的重要因素之一,许多研究表明,肠道微生物群失衡是慢性肾病患者罹患心血管疾病的一个危险因素 [35] 。尿毒症毒素进入肠道,改变肠道微环境,引起功能失衡和肠道菌群变化,导致胆碱、氨基酸等代谢功能紊乱,增加肠道内尿毒症毒素的产生;同时,肾功能下降,排泄功能受损,造成尿毒症毒素蓄积,导致肠道屏障恶化,形成恶性循环。加剧肠道屏障的恶化,形成恶性循环。肠道微生物群的失衡导致微生物产生的功能性维生素K减少,增加了心血管疾病和动脉粥样硬化的风险。多项临床试验表明,补充维生素K有助于预防慢性肾脏病患者的冠心病。许多临床试验表明,补充维生素K有助于预防CKD患者的VC [36] [37] 。短链脂肪酸不仅通过激活核因子E2相关因子2,还通过间接抗炎作用和抑制钙化,为血管内皮细胞提供有益的氧化还原状态。肠道微生物群失衡会导致微生物群代谢产物短链脂肪酸的合成减少。因此,了解肠道微生物群失调在心血管疾病中的作用可能有助于早期预防疾病进展和减轻疾病负担。

2.6. 传统因素

慢性肾脏病(CKD)患者风险因素包括高血糖、高血压、高脂血症、吸烟、高龄、透析龄、肥胖、营养不良等,这些因素都会增加血管钙化的风险。

3. 总结

血管钙化(VC)在慢性肾脏病(CKD)患者中很常见,并且会造成严重的不良后果。目前血管钙化发生时没有有效的治疗方法,因此必须及早发现和预防,而能够在早期预测血管钙化的指标是一个重要的研究课题,需要进一步探索其机制,以便发现其他治疗手段,来改善CKD患者的不良预后。

NOTES

*通讯作者。

参考文献

[1] Leopold, J.A. (2013) Vascular Calcification: An Age-Old Problem of Old Age. Circulation, 127, 2380-2382.
https://doi.org/10.1161/CIRCULATIONAHA.113.003341
[2] Rong, S., Qiu, X., Jin, X., et al. (2018) Risk Factors for Heart Valve Calcification in Chronic Kidney Disease. Medicine, 97, e9804.
https://doi.org/10.1097/MD.0000000000009804
[3] Gourgas, O., Marulanda, J., Zhang, P., et al. (2018) Multidisciplinary Approach to Understand Medial Arterial Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, 363-372.
https://doi.org/10.1161/ATVBAHA.117.309808
[4] Liu, Z.H., Yu, X.Q., Yang, J.W., et al. (2018) Prevalence and Risk Factors for Vascular Calcification in Chinese Patients Receiving Dialysis: Baseline Results from a Prospective Cohort Study. Current Medical Research and Opinion, 34, 1491-1500.
https://doi.org/10.1080/03007995.2018.1467886
[5] Cano-Megias, M., Guisado-Vasco, P., Bouarich, H., et al. (2019) Coronary Calcification as a Predictor of Cardiovascular Mortality in Advanced Chronic Kidney Disease: A Prospective Long-Term Follow-Up Study. BMC Nephrology, 20, Article No. 188.
https://doi.org/10.1186/s12882-019-1367-1
[6] Metz, R.P., Patterson, J.L. and Wilson, E. (2012) Vascular Smooth Muscle Cells: Isolation, Culture, and Characterization. In: Peng, X. and Antonyak, M., Eds., Cardiovascular Development. Methods in Molecular Biology, Vol. 843, Humana Press, Totowa, 169-176.
https://doi.org/10.1007/978-1-61779-523-7_16
[7] Durham, A.L., Speer, M.Y., Scatena, M., et al. (2018) Role of Smooth Muscle Cells in Vascular Calcification: Implications in Atherosclerosis and Arterial Stiffness. Cardiovascular Research, 114, 590-600.
https://doi.org/10.1093/cvr/cvy010
[8] Goodman, W.G., Goldin, J., Kuizon, B.D., et al. (2000) Coronary-Artery Calcification in Young Adults with End-Stage Renal Disease Who Are Undergoing Dialysis. The New England Journal of Medicine, 342, 1478-1483.
https://doi.org/10.1056/NEJM200005183422003
[9] Oh, J., Wunsch, R., Turzer, M., et al. (2002) Advanced Coronary and Carotid Arteriopathy in Young Adults with Childhood-Onset Chronic Renal Failure. Circulation, 106, 100-105.
https://doi.org/10.1161/01.CIR.0000020222.63035.C0
[10] Proudfoot, D., Skepper, J.N., Hegyi, L., et al. (2000) Apoptosis Regulates Human Vascular Calcification in Vitro: Evidence for Initiation of Vascular Calcification by Apoptotic Bodies. Circulation Research, 87, 1055-1062.
https://doi.org/10.1161/01.RES.87.11.1055
[11] Jono, S., McKee, M.D., Murry, C.E., et al. (2000) Phosphate Regulation of Vascular Smooth Muscle Cell Calcification. Circulation Research, 87, e10-e17.
https://doi.org/10.1161/01.RES.87.7.e10
[12] Chen, N.X., O’Neill, K.D., Duan, D., et al. (2002) Phosphorus and Uremic Serum Up-Regulate Osteopontin Expression in Vascular Smooth Muscle Cells. Kidney International, 62, 1724-1731.
https://doi.org/10.1046/j.1523-1755.2002.00625.x
[13] Kapustin, A.N., Chatrou, M.L., Drozdov, I., et al. (2015) Vascular Smooth Muscle Cell Calcification Is Mediated by Regulated Exosome Secretion. Circulation Research, 116, 1312-1323.
https://doi.org/10.1161/CIRCRESAHA.116.305012
[14] Bobryshev, Y.V., Killingsworth, M.C., Huynh, T.G., et al. (2007) Are Calcifying Matrix Vesicles in Atherosclerotic Lesions of Cellular Origin? Basic Research in Cardiology, 102, 133-143.
https://doi.org/10.1007/s00395-006-0637-9
[15] Ciceri, P., Elli, F., Brenna, I., et al. (2013) Lanthanum Prevents High Phosphate-Induced Vascular Calcification by Preserving Vascular Smooth Muscle Lineage Markers. Calcified Tissue International, 92, 521-530.
https://doi.org/10.1007/s00223-013-9709-7
[16] Lai, J., Akindavyi, G., Fu, Q., et al. (2018) Research Progress on the Relationship between Coronary Artery Calcification and Chronic Renal Failure. Chinese Medical Journal, 131, 608-614.
https://doi.org/10.4103/0366-6999.226066
[17] Hu, M.C., Shi, M., Zhang, J., et al. (2011) Klotho Deficiency Causes Vascular Calcification in Chronic Kidney Disease. Journal of the American Society of Nephrology, 22, 124-136.
https://doi.org/10.1681/ASN.2009121311
[18] Nakamura, K., Miura, D., Saito, Y., et al. (2017) Eicosapentaenoic Acid Prevents Arterial Calcification in Klotho Mutant Mice. PLOS ONE, 12, e181009.
https://doi.org/10.1371/journal.pone.0181009
[19] Kusaba, T., Okigaki, M., Matui, A., et al. (2010) Klotho Is Associated with VEGF Receptor-2 and the Transient Receptor Potential Canonical-1 Ca2 Channel to Maintain Endothelial Integrity. Proceedings of the National Academy of Sciences, 107, 19308-19313.
https://doi.org/10.1073/pnas.1008544107
[20] Zheng, S., Zheng, Y., Jin, L., et al. (2018) Relationship between Serum Soluble Klotho Protein and Coronary Artery Calcification and Prognosis in Patients on Maintenance Hemodialysis. Iranian Journal of Public Health, 47, 510-518.
[21] Heiss, A., Pipich, V., Jahnen-Dechent, W., et al. (2010) Fetuin-A Is a Mineral Carrier Protein: Small Angle Neutron Scattering Provides New Insight on Fetuin-A Controlled Calcification Inhibition. Biophysical Journal, 99, 3986-3995.
https://doi.org/10.1016/j.bpj.2010.10.030
[22] Roumeliotis, S., Roumeliotis, A., Dounousi, E., et al. (2020) Biomarkers of Vascular Calcification in Serum. Advances in Clinical Chemistry, 98, 91-147.
https://doi.org/10.1016/bs.acc.2020.02.004
[23] Reynolds, J.L., Skepper, J.N., McNair, R., et al. (2005) Multifunctional Roles for Serum Protein Fetuin-A in Inhibition of Human Vascular Smooth Muscle Cell Calcification. Journal of the American Society of Nephrology, 16, 2920-2930.
https://doi.org/10.1681/ASN.2004100895
[24] Azpiazu, D., Gonzalo, S., Gonzalez-Parra, E., et al. (2018) Role of Pyrophosphate in Vascular Calcification in Chronic Kidney Disease. Nefrología (English Edition), 38, 250-257.
https://doi.org/10.1016/j.nefroe.2018.03.003
[25] Bjorklund, G., Svanberg, E., Dadar, M., et al. (2020) The Role of Matrix Gla Protein (MGP) in Vascular Calcification. Current Medicinal Chemistry, 27, 1647-1660.
https://doi.org/10.2174/0929867325666180716104159
[26] Price, P.A., Urist, M.R. and Otawara, Y. (1983) Matrix Gla Protein, a New Gamma-Carboxyglutamic Acid-Containing Protein Which Is Associated with the Organic Matrix of Bone. Biochemical and Biophysical Research Communications, 117, 765-771.
https://doi.org/10.1016/0006-291X(83)91663-7
[27] Haushofer, M., Abusabha, Y., Amerini, A.L., et al. (2013) Oxygenated Shunting from Right to Left: A Feasibility Study of Minimized Atrio-Atrial Extracorporeal Membrane Oxygenation for Mid-Term Lung Assistance in an Acute Ovine Model. Interactive CardioVascular and Thoracic Surgery, 17, 44-48.
https://doi.org/10.1093/icvts/ivt074
[28] Elsaeed, A.M., Ibrahiem, A.H. and Ali, A.A. (2017) Matrix Metalloproteinase 2 and Osteoprotegrin as New Markers of Increased Atherosclerotic Risk in Egyptian Patients with Chronic Kidney Disease. Egyptian Journal of Immunology, 24, 153-164.
[29] Paloian, N.J. and Giachelli, C.M. (2014) A Current Understanding of Vascular Calcification in CKD. American Journal of Physiology-Renal Physiology, 307, F891-F900.
https://doi.org/10.1152/ajprenal.00163.2014
[30] Zhao, F.L., Zhang, Y.Z., Tai, G.X., et al. (2014) Serum Parathyroid Hormone as a Potential Novel Biomarker of Coronary Heart Disease. Genetic Testing and Molecular Biomarkers, 18, 670-674.
https://doi.org/10.1089/gtmb.2014.0074
[31] Huang, M., Zheng, L., Xu, H., et al. (2020) Oxidative Stress Contributes to Vascular Calcification in Patients with Chronic Kidney Disease. Journal of Molecular and Cellular Cardiology, 138, 256-268.
https://doi.org/10.1016/j.yjmcc.2019.12.006
[32] Callegari, A., Coons, M.L., Ricks, J.L., et al. (2014) Increased Calcification in Osteoprotegerin-Deficient Smooth Muscle Cells: Dependence on Receptor Activator of NF-κB Ligand and Interleukin 6. Journal of Vascular Research, 51, 118-131.
https://doi.org/10.1159/000358920
[33] Liu, J., Zhu, W., Jiang, C.M., et al. (2019) Activation of the MTORC1 Pathway by Inflammation Contributes to Vascular Calcification in Patients with End-Stage Renal Disease. Journal of Nephrology, 32, 101-110.
https://doi.org/10.1007/s40620-018-0486-2
[34] Byon, C.H., Javed, A., Dai, Q., et al. (2008) Oxidative Stress Induces Vascular Calcification through Modulation of the Osteogenic Transcription Factor Runx2 by AKT Signaling. Journal of Biological Chemistry, 283, 15319-15327.
https://doi.org/10.1074/jbc.M800021200
[35] Filipska, I., Winiarska, A., Knysak, M., et al. (2021) Contribution of Gut Microbiota-Derived Uremic Toxins to the Cardiovascular System Mineralization. Toxins, 13, Article 274.
https://doi.org/10.3390/toxins13040274
[36] Jaminon, A., Dai, L., Qureshi, A.R., et al. (2020) Matrix Gla Protein Is an Independent Predictor of both Intimal and Medial Vascular Calcification in Chronic Kidney Disease. Scientific Reports, 10, Article No. 6586.
https://doi.org/10.1038/s41598-020-63013-8
[37] Fusaro, M., Gallieni, M., Aghi, A., et al. (2019) Osteocalcin (Bone GLA Protein) Levels, Vascular Calcifications, Vertebral Fractures and Mortality in Hemodialysis Patients with Diabetes Mellitus. Journal of Nephrology, 32, 635-643.
https://doi.org/10.1007/s40620-019-00595-1