一类新CZCPs的构造
The Construction of a New CZCPs
摘要: 空间调制(SM)是一种特殊的多输入多输出(MIMO)技术,在每个符号持续时间内仅激活一个发射天线。最近,二元互相关Z-互补序列对(CZCPs)作为一类新的序列对在频率选择性信道中被广泛应用于SM的导频设计中。CZCPs是指在特定的时延内具有零自相关和和零互相关和的序列对。本文是基于插入法和级联两种方法混合使用构造了一类长度为,宽度为的CZCP,它使得对于CZCP的选取更为灵活,具有一类新的长度。
Abstract: Space modulation (SM) is a special multi-input multi-output (MIMO) technique that activates only one transmitting antenna per symbol duration. Recently, binary correlated Z-complementary sequence pairs (CZCPs) have been widely used in the pilot design of SM as a new type of sequence pair in frequency selective channels. CZCPs refer to sequence pairs with zero autocorrelation and zero correlation within a specific time delay. This article constructs a class of CZCPs with length and width based on a combination of insertion and cascading methods, which makes the selection of CZCPs more flexible and has a new type of length.
文章引用:陈俊洁. 一类新CZCPs的构造[J]. 应用数学进展, 2024, 13(4): 1470-1476. https://doi.org/10.12677/aam.2024.134137

1. 引言

Z-互补对(ZCP)是对具有零相关区(ZCZ)自相关性质的格雷互补对(GCP)的扩展 [1] [2] 。ZCP中两个组成序列的自相关和在其ZCZ内为零。与二进制GCP不同,ZCP可以具有更灵活的长度。在2007年范等人 [2] 提出ZCP了这一概念以来,对具有不同长度的ZCP的构造已经做了大量研究 [3] - [11] 。每个GCP,ZCP都是利用序列对的非周期自相关和来定义的,但没有考虑序列之间的互相关性,这对设计频率选择性信道下的空间调制(SM)优化训练矩阵非常不利。由于传统多输入多输出(MIMO)的密集训练序列不适用于使用了SM技术的系统,刘子龙等人提出了一类新的序列对,称其为互相关Z-互补序列对(correlated Z-Complementary Sequence Pair,简记为CZCPs)。互相关Z-互补序列对是在某些特定的时延上具有非周期自相关和和互相关和为零的序列对。互相关Z-互补序列对 [12] 作为GCPs的替代方案,可以有效地用于SM优化训练的设计。CZCP可以是用作SM系统中的训练序列以减轻符号间干扰(ISI)和由多径传播引起的信道间干扰(ICI) [13] 。因此,对于研究一种新型的CZCP,是非常的重要。

在2020年,Liu等人 [12] 提出并证明了长度为 2 α + 1 10 β 26 γ ( α , β , γ 0 ) 2 m ( m 2 ) 的GCP是CZCP。同年,Fan,Adhikary等人 [14] 提出了长度为 10 β 26 γ 10 β 26 γ 的GCP也都是CZCP。并且它们也都是最优CZCP。为了寻找其他不存在的CZCP的长度时,Adhikary等人应用插入函数 [15] 提出了长度为 2 α + 1 10 β 26 γ + 2 ,零自相关区(ZACZ)和零互相关区(ZCCZ)宽度为 2 α 1 10 β 26 γ + 1 的二进制和四相CZCP,其中 α 1 β , γ 0 。以及提出了长度为形式 2 × 10 β + 2 2 × 26 γ + 2 2 × 10 β 26 γ + 2 的长度。同时使用二进制Barker序列构造了 ( 12 , 5 ) ( 24 , 11 ) 的最优-CZCP,从而得出 ( 12 N , 5 N ) ( 24 N , 11 N ) 的CZCP,其中N为GCP的长度。2021年,Huang等人 [16] 构造了长度为 2 m 1 + 2 v + 1 ,宽度为 2 π ( v + 1 ) 1 + 2 v 1 的CZCP。同年,Yang等人 [17] ,构造了长度为 4 N + 4 ,宽度为3N/2的CZCP。最近Fan等人 [18] 又构造得到了一种长度为MN,宽度为 ( M / 2 1 ) N + Z 的CZCP,其中 N = 2 α 10 β 26 γ Z 1 。并且得出了长度为 ( 96 N , 47 N ) ( 112 N , 55 N ) 的CZCPS。由此,为了进一步拓宽现有CZCPS的选取范围,本文在这些人研究的基础上,采用插入法和级联提出了一种新的构造方法,得到了一种长度为 4 N + 6 ,宽度为 N + 1 的CZCPS。与其现有的比较而言,具有选取参数更为灵活。

本文结构如下,在第2节,介绍了一些需要用到的符号,定义;第3节得出了本篇论文的定理结论即新的构造方法;第4节对本文进行了总结。

2. 预备知识

下列是一些符号的具体表示:

“+”和“−”分别表示+1和−1;“ d ”表示序列“ d ”的逆序; L M 表示长度为M的所有由L构成的向量;“ a | | b ”表示序列 a b 的水平级联。

定义1设 a = ( a 0 , a 1 , , a N 1 ) 是长度为N的一个序列,如果满足 a i { + 1 , 1 } i { 0 , 1 , , N 1 } ,则该序列被称为二元序列。

定义2对于一个长度为N的二元序列对 ( a , b ) ,定义非周期互相关函数(ACCF)

ρ a , b ( τ ) = i = 0 N 1 τ a i b i + τ ,0 τ N 1

a = b ρ a , b ( τ ) 被称之为非周期自相关函数(AACF),记为 ρ a ( τ )

定义3若序列对 ( a , b ) 满足

C 1 : ρ a ( τ ) + ρ b ( τ ) = 0 , τ Τ 1 Τ 2 ; C 2 : ρ a , b ( τ ) + ρ b , a ( τ ) = 0 , τ Τ 2 ,

其中 Τ 1 = { 1 , 2 , , Z } Τ 2 = { N Z , N Z + 1 , , N 1 } ,则称序列对 ( a , b ) ( N , Z ) -CZCP。

特别地,当 Z = N 2 时,称序列对 ( a , b ) 为完备CZCP。

引理1 [12] 序列对 ( N , Z ) -CZCP满足 Z N / 2 。当N为偶数且 Z = N / 2 时,CZCP称为完美或强化的GCP。否则,当 Z < N / 2 时,被称为非完美CZCP。

定义4 [15] ( N , Z ) -CZCP的互相关Z互补对比率(CZCR)被定义为

CZCR = Z Z max

其中Zmax表示可能达到的最大值给定序列长度N的ZCZ宽度。显然CZCR ≤ 1。当CZCR = 1时,则这样的CZCP被称为最优。

定义5 GCP ( c , d ) 被称为 GCP ( a , b ) 的互补配偶对,如果

ρ a , c ( τ ) + ρ b , d ( τ ) = 0 , 0 τ N 1 .

引理2若 ( a , b ) 是一个GCP,则 ( c , d ) = ( b , a ) ( a , b ) 的一个互补配偶对。

定义6(插入函数 [4] ) a = ( a 0 , a 1 , , a N 1 ) 是一个长度为N的序列,定义 Ι ( a , r , x ) ,这里 r { 0 , 1 , , N } ,通过插入元素x产生长度为 N + 1 的序列,定义如下:

Ι ( a , r , x ) = { ( x , a 0 , a 1 , , a N 1 ) , r = 0 ; ( a 0 , a 1 , , a N 1 , x ) , r = N 1 ; ( a 0 , a 1 , , a r 1 , x , a r + 1 , , a N 1 ) , .

3. 构造

构造方法:

第一步: ( x , y ) 是一个长度为 2 α 10 β 26 γ (且为整数)的GCP序列对, a = x | | y b = x | | y

第二步:让 ( c , d ) = ( b , a ) ( c , d ) ( a , b ) 的一个互补配偶对,即 c = y | | x d = y | | x

第三步:产生的 a , b , c , d 序列中,通过插入函数,分别在 r = ( r 1 , r 2 , r 3 ) = ( 0 , N 2 , N 1 ) 插入元素 g = ( g 1 , g 2 , g 3 ) = ( 1 , 1 , 1 ) h = ( h 1 , h 2 , h 3 ) = ( 1 , 1 , 1 ) e = ( e 1 , e 2 , e 3 ) = ( 1 , 1 , 1 ) f = ( f 1 , f 2 , f 3 ) = ( 1 , 1 , 1 ) ,得到

p = a | | c = g 1 | | x | | g 2 | | y | | g 3 | | h 1 | | y | | h 2 | | x | | h 3 q = b | | d = e 1 | | x | | e 2 | | y | | e 3 | | f 1 | | y | | f 2 | | x | | f 3

定理1:通过上述构造方法,则 ( p , q ) 是一个 ( 4 N + 6 , N + 1 ) 的CZCPS

证明:设 v 1 = x , v 2 = y , v 3 = y , v 4 = x , w 1 = x , w 2 = y , w 3 = y , w 4 = x

一方面考虑自相关性,

情况1:当 τ = 1 时,

ρ p ( 1 ) = g 1 a 0 + ρ v 1 ( 1 ) + g 2 a N 1 + g 2 a N + ρ v 2 ( 1 ) + g 3 a 2 N 1 + 2 g 3 h 1 + h 1 c 0 + ρ v 3 ( 1 ) + h 2 c N + h 2 c N 1 + ρ v 4 ( 1 ) + h 3 c 2 N 1 = a 0 + ρ v 1 ( 1 ) a N 1 a N + ρ v 2 ( 1 ) a 2 N 1 + 2 c 0 + ρ v 3 ( 1 ) c N c N 1 + ρ v 4 ( 1 ) + c 2 N 1

ρ q ( 1 ) = e 1 b 0 + ρ w 1 ( 1 ) + e 2 b N 1 + e 2 b N + ρ w 2 ( 1 ) + e 3 b 2 N 1 + 2 e 3 f 1 + f 1 d 0 + ρ w 3 ( 1 ) + f 2 d N + f 2 d N 1 + ρ w 4 ( 1 ) + f 3 d 2 N 1 = b 0 + ρ w 1 ( 1 ) + b N 1 + b N + ρ w 2 ( 1 ) b 2 N 1 2 + d 0 + ρ w 3 ( 1 ) d N d N 1 + ρ w 4 ( 1 ) d 2 N 1

所以,

ρ p ( τ ) + ρ q ( τ ) = a 0 a N c N 1 + c 2 N 1 b 0 + b N d N 1 d 2 N 1 = 0

其中,由于 ( x , y ) 是一对GCP,因此,根据格莱对的性质,有 ρ v 1 ( 1 ) + ρ v 2 ( 1 ) = 0 ρ w 3 ( 1 ) + ρ w 4 ( 1 ) = 0 ρ v 3 ( 1 ) + ρ v 4 ( 1 ) + ρ w 1 ( 1 ) + ρ w 2 ( 1 ) = 0 。同时, c N 1 = a N c 2 N 1 = a 0 d N 1 = b 0 d 2 N 1 = b N

情况2:当在 2 τ N 时,由自相关性质有,

ρ p ( τ ) = g 1 a τ 1 + ρ v 1 ( τ ) + g 2 a N τ + g 2 a N + τ 1 + ρ v 2 ( τ ) + g 3 a 2 N τ + g 3 c τ 2 + a 2 N + 1 τ h 1 + h 1 c τ 1 + ρ v 3 ( τ ) + h 2 c N 1 + τ + h 2 c N τ + ρ v 4 ( τ ) + h 3 c 2 N τ = a τ 1 + ρ v 1 ( τ ) a N τ a N + τ 1 + ρ v 2 ( τ ) a 2 N τ c τ 2 a 2 N + 1 τ c τ 1 + ρ v 3 ( τ ) c N 1 + τ c N τ + ρ v 4 ( τ ) + c 2 N τ

ρ q ( τ ) = e 1 b τ 1 + ρ w 1 ( τ ) + e 2 b N τ + e 2 b N + τ 1 + ρ w 2 ( τ ) + e 3 b 2 N τ + e 3 d τ 2 + b 2 N + 1 τ f 1 + f 1 d τ 1 + ρ w 3 ( τ ) + f 2 d N 1 + τ + f 2 d N τ + ρ w 4 ( τ ) + f 3 d 2 N τ = b τ 1 + ρ w 1 ( τ ) + b N τ + b N + τ 1 + ρ w 2 ( τ ) b 2 N τ d τ 2 + b 2 N + 1 τ + d τ 1 + ρ w 3 ( τ ) d N 1 + τ d N τ + ρ w 4 ( τ ) d 2 N τ

所以,

ρ p ( τ ) + ρ q ( τ ) = a τ 1 a N + τ 1 a 2 N τ c τ 2 c N τ + c 2 N τ b τ 1 + b N + τ 1 a 2 N τ d τ 2 d N τ d 2 N τ = 0

其中,由于 ( x , y ) 是一对GCP,因此,根据格莱对的性质,有 ρ v 1 ( τ ) + ρ v 2 ( τ ) = 0 ρ w 3 ( τ ) + ρ w 4 ( τ ) = 0 ρ v 3 ( τ ) + ρ v 4 ( τ ) + ρ w 1 ( τ ) + ρ w 2 ( τ ) = 0 。同时, c N τ = a N + τ 1 c τ 2 = a 2 N τ c 2 N τ = a τ 1 d N τ = b τ 1 d 2 N τ = b N + τ 1 , d τ 2 = a 2 N τ

情况3:当 3 N + 5 τ 4 N + 4

ρ p ( τ ) = g 1 c τ 2 N 5 + ρ v 1 , v 4 ( τ ) + h 3 a 4 N + 4 τ

ρ q ( τ ) = e 1 d τ 2 N 5 + ρ w 1 , w 4 ( τ ) + f 3 b 4 N + 4 τ

ρ p ( τ ) + ρ q ( τ ) = g 1 c τ 2 N 5 + ρ v 1 , v 4 ( τ ) + h 3 a 4 N + 4 τ + e 1 d τ 2 N 5 + ρ w 1 , w 4 ( τ ) + f 3 b 4 N + 4 τ = 0

其中, c τ 2 N 5 = d τ 2 N 5 a 4 N + 4 τ = b 4 N + 4 τ

情况4:当 τ = 4 N + 5

ρ p ( τ ) = g 1 h 3

ρ q ( τ ) = e 1 f 3

显然, ρ p ( τ ) + ρ q ( τ ) = 0

另一方面,考虑互相关性

情况1:当 3 N + 5 τ 4 N + 4

ρ p , q ( τ ) = g 1 a 4 N + 4 τ + ρ v 1 , w 4 ( τ ) + h 3 c τ 2 N 5

ρ q , p ( τ ) = e 1 b 4 N + 4 τ + ρ w 1 , v 4 ( τ ) + f 3 d τ 2 N 5

ρ p , q ( τ ) + ρ q , p ( τ ) = g 1 a 4 N + 4 τ + ρ v 1 , w 4 ( τ ) + h 3 c τ 2 N 5 + e 1 b 4 N + 4 τ + ρ w 1 , v 4 ( τ ) + f 3 d τ 2 N 5 = 0

其中, c τ 2 N 5 = d τ 2 N 5 a 4 N + 4 τ = b 4 N + 4 τ ρ v 1 , w 4 ( τ ) + ρ w 1 , v 4 ( τ ) = 0

情况2:当 τ = 4 N + 5

ρ p , q ( τ ) = g 1 f 3

ρ q , p ( τ ) = e 1 h 3

显然, ρ p , q ( τ ) + ρ q , p ( τ ) = 0

综上所述,零相关区为 Z = N + 1

例1 让 ( x , y ) 为长度为 N = 10 的GCP,其中 x = ( + + + + + + ) y = ( + + + + + + + ) ,通过上述构造方法,得到 p , q

p = ( + + + + + + + + + + + + + + + + + + + + + + + )

q = ( + + + + + + + + + + + + + + + + + + )

其自相关和和为

( | ρ p ( τ ) + ρ q ( τ ) | 0 45 ) = ( 92 , 0 11 , 0 , 4 , 9 , 0 , 0 , 8 , 4 , 0 , 8 , 0 , 0 , 0 , 0 , 0 , 0 11 )

互相关和为

( | ρ p , q ( τ ) + ρ q , p ( τ ) | 0 45 ) = ( 0 , 0 , 4 3 , 12 , 4 , 12 3 , 4 2 , 0 2 , 4 , 8 , 4 , 16 , 4 , 0 , 4 , 8 2 , 0 , 4 , 8 , 12 , 0 , 12 , 0 , 4 , 8 , 4 , 0 , 4 , 0 11 )

所以该序列是一个长度为46,宽度为 Z = 11 的CZCP。

例2让 ( x , y ) 为长度为 N = 8 的GCP,其中 x = ( + + + + + + ) y = ( + + + + ) ,通过上述构造方法,得到 p , q

p = ( + + + + + + + + + + + + + + + + + + + + + )

q = ( + + + + + + + + + + + + + + + + + + )

其自相关和和为

( | ρ p ( τ ) + ρ q ( τ ) | 0 37 ) = ( 76 , 0 9 , 8 , 4 7 , 0 , 0 , 8 4 , 0 , 0 , 0 , 0 , 0 , 0 9 )

互相关和为

( | ρ p , q ( τ ) + ρ q , p ( τ ) | 0 45 ) = ( 0 , 0 , 4 3 , 12 , 4 , 12 2 , 4 , 0 2 , 4 , 8 , 4 , 0 , 12 , 8 2 , 0 , 4 , 8 , 12 , 0 , 4 , 8 , 4 , 0 , 4 , 0 9 )

所以该序列是一个长度为38,宽度为 Z = 9 的CZCP。

表1中,总结了现有存在的CZCP并与本文得出的结果进行了比较。

Table 1. Existing CZCP

表1. 现有存在的CZCP

4. 总结

本文最后先是总结了近年来通过不同的构造方法产生的CZCP,其次本文是在 N = 2 α 10 β 26 γ 的GCP的基础上,通过插入元素和级联构造产生了一种新的长度为 4 N + 6 ,宽度为 N + 1 ,互相关Z互补对比率(CZCR)为1/2的CZCP,与现有存在的CZCP相比具有一类新的长度,为后续SM中CZCP的选择提供了更大的选择。

参考文献

[1] Golay, M. (1961) Complementary Series, Transactions of the I. R. E. Professional Group on Information Theory, 7, 82-87.
https://doi.org/10.1109/TIT.1961.1057620
[2] Fan, P., Yuan, W. and Tu, Y. (2007) Z-Complementary Binary Sequences. IEEE Signal Processing Letters, 14, 509-512.
https://doi.org/10.1109/LSP.2007.891834
[3] Liu, Z., Parampalli, U. and Guan, Y.L. (2014) On Even-Period Binary Z-Complementary Pairs with Large ZCZs. IEEE Signal Processing Letters, 21, 284-287.
https://doi.org/10.1109/LSP.2014.2300163
[4] Liu, Z., Parampalli, U. and Guan, Y.L. (2014) Optimal Odd-Length Binary Z-Complementary Pairs. IEEE Transactions on Information Theory, 60, 5768-5781.
https://doi.org/10.1109/TIT.2014.2335731
[5] Chen, C.Y. (2017) A Novel Construction of Z-Complementary Pairs Based on Generalized Boolean Functions. IEEE Signal Processing Letters, 24, 987-990.
https://doi.org/10.1109/LSP.2017.2701834
[6] Adhikary, A.R., Majhi, S., Liu, Z. and Guan, Y.L. (2017) New Optimal Binary Z-Complementary Pairs of Odd Lengths. 2017 Eighth International Workshop on Signal Design and Its Applications in Communications (IWSDA), Sapporo, Japan, 24-28 September 2017, 14-18.
https://doi.org/10.1109/IWSDA.2017.8095727
[7] Wu, S.W. and Chen, C.Y. (2018) Optimal Z-Complementary Sequence Sets with Goodpeak-to-Average Power-Ratio Property. IEEE Signal Processing Letters, 25, 1500-1504.
https://doi.org/10.1109/LSP.2018.2864705
[8] Adhikary, A.R., Majhi, S., Liu, Z. and Guan, Y.L. (2018) New Sets of Even-Length Binary Z-Complementary Pairs with Asymptotic ZCZ Ratio of 3/4. IEEE Signal Processing Letters, 25, 970-973.
https://doi.org/10.1109/LSP.2018.2834143
[9] Xie, C. and Sun, Y. (2018) Constructions of Even-Period Binary Z-Complementary Pairs with Large ZCZs. IEEE Signal Processing Letters, 25, 1141-1145.
https://doi.org/10.1109/LSP.2018.2848102
[10] Adhikary, A.R., Sarkar, P. and Majhi, S. (2020) A Direct Construction of Q-Ary Even Length Z-Complementary Pairs Using Generalized Boolean Functions. IEEE Signal Processing Letters, 27, 146-150.
https://doi.org/10.1109/LSP.2019.2961210
[11] Pai, C.Y., Wu, S.W. and Chen, C.Y. (2020) Z-Complementary Pairs with Flexible Lengths from Generalized Boolean Functions. IEEE Wireless Communications Letters, 24, 1183-1187.
https://doi.org/10.1109/LCOMM.2020.2981023
[12] Liu, Z., Yang, P., Guan, Y.L. and Xiao, P. (2020) Cross Z-Complementary Pairs (CZCPs) for Optimal Training in Spatial Modulation over Frequency Selective Channels. IEEE Transactions on Signal Processing, 68, 1529-1543.
https://doi.org/10.1109/TSP.2020.2973114
[13] Fragouli, C., Al-Dhahir, N. and Turin, W. (2003) Training-Based Channel Estimation for Multiple-Antenna Broadband Transmissions. IEEE Transactions on Signal Processing, 2, 384-391.
https://doi.org/10.1109/TWC.2003.809454
[14] Fan, C., Zhang, D. and Adhikary, A.R. (2020) New Sets of Binary Cross Z-Complementary Sequence Pairs. IEEE Wireless Communications Letters, 24, 1616-1620.
https://doi.org/10.1109/LCOMM.2020.2990969
[15] Adhikary, A.R., Zhou, Z., Yang, Y. and Fan, P. (2020) Constructions of Cross Z-Complementary Pairs with New Lengths. IEEE Transactions on Signal Processing, 68, 4700-4712.
https://doi.org/10.1109/TSP.2020.3014613
[16] Huang, Z.M., Pai, C.Y. and Chen, C.Y. (2021) Binary cross Z-Complementary Pairs with Flexible Lengths from Boolean Functions. IEEE Communications Letters, 25, 1057-1061.
https://doi.org/10.1109/LCOMM.2020.3045727
[17] Yang, M., Tian, S., Li, N. and Adhikary, A.R. (2021) New Sets of Quadriphase cross Z-Complementary Pairs for Preamble Design in Spatial Modulation. IEEE Signal Processing Letters, 28, 1240-1244.
https://doi.org/10.1109/LSP.2021.3082426
[18] Zhang, H., Fan, C. and Yang, Y. (2023) New Binary cross Z-Complementary Pairs with Large CZC Rati. IEEE Transactions on Information Theory, 69, 1328-1336.
https://doi.org/10.1109/TIT.2022.3214532