水凝胶治疗骨关节炎的作用机制
The Mechanism of Hydrogels in the Treatment of Osteoarthritis
DOI: 10.12677/acm.2024.1441218, PDF, HTML, XML, 下载: 46  浏览: 99 
作者: 李 晓, 满振涛, 李 伟*:山东大学齐鲁医学院,山东 济南
关键词: 骨关节炎水凝胶软骨组织工程润滑抗炎Osteoarthritis Hydrogel Cartilage Tissue Engineering Lubricating Anti-Inflammatory
摘要: 骨关节炎是一种以关节软骨退化为主要特征,并常常伴有炎症的关节疾病。骨关节炎的发病率随着全球老龄化人口增多持续升高,造成患者生活质量下降。目前的治疗方法有药物、理疗或手术等,但在效果上仍有其不足。近些年来,一种创新生物材料——水凝胶,因其具有多种可调节特性在骨关节炎治疗领域备受关注。它不仅能够作为物理支撑,还能提供润滑效果、抗炎作用以及作为生物活性分子的递送载体,这些特性将为骨关节炎的治疗寻找到新的策略。本文将对水凝胶治疗骨关节炎的多种作用机制进行深入探讨。
Abstract: Osteoarthritis (OA) is a common joint disease, the core problem of which lies in the gradual degeneration of articular cartilage and the accompanying inflammatory response. With the trend of global population aging, the incidence of OA continues to rise, seriously threatening the quality of daily life of patients. Although current treatment strategies include pharmacotherapy, physical therapy, and surgical intervention, these methods still have shortcomings in effectiveness and adaptability. In recent years, hydrogels have shown their versatility as an innovative biomaterial in the field of OA treatment: not only can they serve as physical support, but they can also provide lubrication, anti-inflammatory effects and serve as delivery vehicles for bioactive molecules. These properties open up new avenues for the treatment of OA. This article will conduct an in-depth discussion of the multiple mechanisms of action of hydrogels in the treatment of OA.
文章引用:李晓, 满振涛, 李伟. 水凝胶治疗骨关节炎的作用机制[J]. 临床医学进展, 2024, 14(4): 1733-1740. https://doi.org/10.12677/acm.2024.1441218

1. 引言

骨关节炎是一种关节的慢性退行性病变,目前已影响全球超过5亿人,且其中患有膝关节骨性关节炎的超过2.6亿人 [1] 。人们之前通常认为关节炎是关节软骨的磨损所引起的,但是现在发现关节炎是一种慢性的全关节疾病 [2] 。如国际骨关节炎研究学会(Osteoarthritis Research Society International, OARSI)所提出的:关节炎是由最初始的组织代谢异常导致的生化分子紊乱,继而引起的以软骨损伤、软骨下骨改变、骨赘形成、软组织损伤为特征的关节结构改变和功能障碍 [3] 。慢性关节炎患者关节长期活动受限可能导致永久性功能丧失。

骨关节炎目前尚无根治方法,治疗主要目的是缓解疼痛和僵硬,改善关节功能,提高患者生活质量 [4] 。常见的治疗方法包括口服非甾体抗炎药(Nonsteroidal Anti-Inflammatory Drugs, NSAIDs),这是最方便的常规治疗方式。但由于软骨组织的无血管特性,全身给药难以达到关节腔内的有效药物浓度,可能导致需要增加剂量,从而增加胃出血等副作用的风险 [5] [6] [7] 。经皮给药虽然传统,但只能缓解浅表组织炎症,难以深入深层组织 [8] 。关节腔注射是直接给药的方法,能将药物直接输送到损伤部位,减少全身副作用,但药物会被滑膜毛细血管和淋巴系统快速代谢和清除,导致治疗效率低,难以维持长期有效浓度 [9] 。与口服药物相比,频繁的关节内注射不仅降低患者依从性,增加治疗费用,还可能增加关节感染风险 [7] [8] 。必要时行关节置换手术是治疗终末期骨关节炎最有效的医疗手段,但是仍然面临伤口愈合不良、炎症、感染和术后假体松动等手术并发症。因此,开发水凝胶、纳米颗粒和脂质体等具有缓释效果的新型药物载体成为当前的研究热点 [8] 。其中,水凝胶由于其特有的支架作用、润滑、抗炎及药物递送缓释效果而有望成为早期膝骨关节炎的有效治疗方法 [10] 。

2. 水凝胶在改善骨关节炎中的作用机制

2.1. 支架作用

软骨中的细胞外基质(Extracellular Matrix, ECM)在新生组织与原始组织间的信号传导和物质交换中起着至关重要的作用 [11] 。同样,水凝胶是一种含水量高的交联聚合物网络,与健康软骨一样具有粘弹性和高含水量,其3D网络结构由多种交联反应形成,能够模拟软骨组织的物理化学特性 [12] 。这种特性使得水凝胶成为细胞生长和生物活性分子传递的理想平台,为软骨再生研究提供了新的策略 [13] 。目前基于水凝胶的骨关节炎治疗有两个主要前沿方向:水凝胶既能够模拟软骨的微观环境,作为组织支架促进细胞增殖、迁移和分化——这属于组织工程的范畴;又可以作为药物递送系统,实现抗炎生物活性物质在关节腔的缓慢释放 [14] 。这些特性使得水凝胶在软骨损伤修复、骨关节炎治疗以及运动损伤恢复等领域具有巨大的科研空间及临床应用潜力。

2.1.1. 仿生软骨提供机械支撑

软骨作为一种重要的结缔组织,在膝关节中发挥着关键的支撑和缓冲作用 [15] [16] [17] 。然而,由于其自我修复能力有限,损伤后往往难以恢复。水凝胶作为一种具有高含水量、良好生物相容性和可调机械性能的生物材料,在组织工程领域,尤其是仿生软骨中扮演着重要角色 [18] 。在软骨仿生中,水凝胶的设计通常借鉴自然界中软骨的微观结构,如层状结构、梯度结构和纤维网络结构等 [19] 。这些结构不仅提供了优异的机械性能,还有助于细胞的黏附和增殖。

水凝胶仿生软骨提供机械支撑:

胶原蛋白(250~300 kDa)是软骨的主要结构成分,可提供强大的物理支撑并保持结构软骨的完整性。水凝胶的力学性能,如强度、韧性和抗疲劳性能,对于其在仿生软骨中的应用至关重要。Hailong Fan等通过引入双网络结构、纳米复合材料、交联密度调控等策略,显著提高了水凝胶的力学性能。其中,强键作为永久交联,赋予弹性,而弱键可逆地断裂并重新形成,耗散能量 [20] 。有序结构的引入增强了水凝胶的外部能量耗散能力,提高了其韧性和抗疲劳性能 [21] 。大多数水凝胶是脆性的,断裂能量约为10 J∙m−2,而软骨的断裂能量约为1000 J∙m−2。随着科学研究的不断探索,其机械性能得到突破性的增强,断裂能量已达到100~1000 J∙m−2 [22] 。如今,比天然软骨更坚韧的水凝胶已经被合成出来。Gong,J. P等提出了一种通过诱导聚丙烯酰胺甲基丙磺酸和聚丙烯酰胺的双网络结构来获得强水凝胶的一般方法。这些水凝胶表现出高达几到几十兆帕的断裂强度,并且表现出高耐磨性。这两点对于强凝胶至关重要,表明其可在机械支撑方面作为关节软骨或其他组织的替代品 [23] 。

2.1.2. 孔隙促进细胞迁移和分化

水凝胶支架的孔隙结构既为细胞提供了必要的生存空间,使细胞能在支架内部或表面迁移;且它的三维网络结构模仿了自然ECM,为细胞提供了类似于自然微环境的条件 [24] 。同时孔隙大小和分布对细胞迁移至关重要。适当的孔隙大小可以允许细胞通过伪足伸出和收缩来穿过孔隙,从而促进细胞的迁移和扩散 [25] [26] [27] 。此外,孔隙结构还可以影响细胞与支架的相互作用,进而影响细胞的粘附、生长和迁移行为 [28] [29] 。Yuxuan Zhang等发明了水凝胶–纳米羟基磷灰石(Gel-nHA)作为治疗骨关节炎的新型生物聚合物支架,发现该水凝胶可以维持软骨细胞的活力,促进软骨细胞的增殖和迁移,因此可以用作软骨细胞再生的无细胞基质支架,有望成为修复距骨软骨的有效方法之一 [29] 。Leisheng Zhang等人通过对软骨相关基因(COL2A1、AGG、SOX9)的定量分析证实透明质酸(HA)水凝胶促进了胚胎干细胞–间充质干细胞(hESC-MSCs)的体外软骨分化,同时对细胞活力的影响较小。展现了HA/hESC-MSCs复合材料用于骨关节炎中软骨重塑的优越性 [30] 。而孔隙中的微环境,包括孔隙内的压力、化学梯度和机械刺激,都可以作为信号,影响细胞的基因表达和分化路径。Ilona Uzieliene等总结了多种天然成分水凝胶支架在外部机械负荷下对软骨分化的作用,此时水凝胶除了承受机械负荷,也可同时将相关的信号传递给细胞,上调软骨相关基因的表达 [31] 。

2.2. 润滑作用

天然软骨表面的润滑机制是一个复杂的生理过程。需要滑膜、ECM与软骨细胞共同作用。首先,关节滑膜能分泌含有HA,蛋白质和电解质等生物分子的关节滑液。其中的HA靠它的粘弹性能覆盖在软骨表面,避免软骨之间的直接接触与摩擦,具有保护软骨、持续润滑的作用 [32] 。软骨细胞也能分泌滑液中的润滑成分,同时ECM的网络结构既使软骨具有弹性可以缓冲压力,也能够维持关节滑液的粘稠度,增强润滑效果 [33] 。它们共同作用使软骨在关节运动时保持低摩擦状态,减少磨损。

水凝胶也具有粘弹性,特别是含有HA的水凝胶降解后同时为滑液补充HA,可以用来模拟天然滑液 [34] 。既可以减轻软骨摩擦产生的疼痛,又可以防止摩擦产生的软骨细胞进行性损伤,延缓骨关节炎的进展。水凝胶具备可调节的生物力学性能,使其能模拟软骨的弹性,在承受机械负荷时产生缓冲作用,进一步增强其润滑效果。受天然关节软骨优异机械力学性能和表面水合润滑机制的启发,Weiyi Zhao团队开发出一种力学承载与润滑功能复合的仿生软骨润滑材料(Composite-LP),底部的弹性体支架–水凝胶复合相起机械承载功能,上层的聚电解质刷–弹性体–水凝胶复合相提供有效的水润滑特性。将支架缓冲和界面润滑策略相结合,降低了凝胶相的机械形变,并且使Composite-LP在动态剪切过程中具有润滑功能和耐磨性。这种新的材料设计理念有望在仿生润滑领域得到应用 [35] [36] 。水凝胶中还可以携带其他具有润滑效应的分子,在受到挤压或摩擦时进行释放。Ronit Goldberg和Jacob Klein等人合作,设计了具有低浓度脂质(磷脂酰胆碱)的水凝胶,当水凝胶在对偶表面滑动时,水凝胶内部的脂质囊泡会在凝胶表面释放出脂质层,这种脂质层的头部基团水含量很高,大大降低了水凝胶表面的摩擦系数形成自润滑层,与无脂质水凝胶相比,摩擦和磨损降低了80%至99.3%,实现了对人体关节软骨润滑机制的模仿与改良,即使凝胶干燥后重新补充水分,这种润滑效果仍然存在 [37] 。Ying Han等受软骨的超润滑性能启发,成功开发了具有增强润滑功能的注射型水凝胶微球,通过微流控技术制备的光交联甲基丙烯酸明胶水凝胶微球(Gelatin Methacryloyl, GelMA)表面涂覆自粘性聚合物(DMA-MPC,通过自由基共聚合成),并封装抗炎药物双氯芬酸钠,实现了润滑抗炎双重功能。GelMA微球本身由于高效的弹性和滚动性能有助于提高承载和润滑能力。此外,GelMA@DMA-MPC通过对共聚物中两性离子磷酸胆碱基团的水化润滑进一步协同降低摩擦系数。进一步的动物体内实验也证实这种水凝胶微球材料具有治疗早期骨关节炎的潜力 [38] [39] 。

2.3. 抗炎作用

2.3.1. 骨关节炎中的炎症反应

炎症反应在骨关节炎中起着关键的作用,炎症反应中的细胞因子和趋化因子可以激活软骨细胞,导致软骨基质的降解。这些因子如IL-1、IL-6和TNF-α能够刺激软骨细胞产生基质金属蛋白酶(MMPs),分解软骨中的胶原蛋白和蛋白聚糖,从而导致软骨结构的破坏 [40] 。关节滑膜也可能会出现炎症反应,包括滑膜细胞的增生、巨噬细胞和淋巴细胞的浸润,以及新血管的形成。滑膜炎症会加剧关节疼痛和肿胀,影响关节的润滑和运动 [41] 。软骨下骨受炎症介质的影响产生代谢紊乱,造成骨吸收和骨形成的失衡,导致骨赘的形成和关节结构的改变,进一步加剧关节的疼痛和功能障碍。炎症反应中的前列腺素和其他介质会增强疼痛感受,同时,炎症细胞的积聚和关节液的增加也会导致关节肿胀。长期的慢性炎症状态会使关节组织的持续损伤,加速骨关节炎的进展 [42] 。

2.3.2. 水凝胶的抗炎作用

1) 水凝胶自身的抗炎组分

首先是水凝胶自身组分具有抗炎作用。HA、明胶与壳聚糖等天然物质因具有生物相容性、可降解性、无毒性、生物活性、抗炎作用和抗菌活性等而被认为是水凝胶的理想材料。已有研究表明,壳聚糖具有软骨保护功能,在体外骨关节炎模型中,添加壳聚糖后可增强软骨细胞增殖及软骨基质成分的基因表达水平,并抑制炎症和分解代谢产生的介质,抑制软骨降解和滑膜炎症 [43] 。Donggang Mou等设计了N-羧乙基壳聚糖(N-壳聚糖)、己二酸二酰肼(Adipodihydrazide, ADH)和醛基透明质酸(HA-ALD)原位交联合成了一种可注射的自愈合水凝胶,这种新型水凝胶可以通过在关节内注射后抑制关节滑液和软骨中的炎症细胞因子(如TNF-α、IL-1β、IL-6和IL-17)来显着缓解膝关节的局部炎症微环境。这种水凝胶通过交联结构,延长了HA与壳聚糖在关节内的保留时间,在治疗骨关节炎方面具备潜力 [44] 。

2) 利用水凝胶递送抗炎分子

水凝胶可以通过其三维网络结构携带并缓释抗炎成分,如NSAIDs、糖皮质激素、miRNA、质粒、外泌体和干细胞细胞。进行关节内注射给药时,这种缓释机制可以减少一次性给药的剂量,降低系统性副作用,同时延长药物在关节局部的作用时间,提高治疗效果 [45] [46] 。Qi-Shan Wang等以壳聚糖–甘油–硼砂为载体,开发了一种新型地塞米松负载热敏水凝胶(Dexamethasone-loaded thermo-sensitive hydrogel, DLTH),热响应水凝胶DLTH在室温下保持液态,但在37℃下约20分钟后变成凝胶。骨关节炎模型组MMP-9、MMP-13和ADAMTS-5的表达高度上调,而DLTH抑制了小鼠软骨分解代谢标志物基因的表达。模型组IL-1β、IL-6、IL-17、TNF-α、COX-2、EP1、EP2、EP3、EP4mRNA表达升高;然而,DLTH抑制了上述炎症介质的分泌,并可以缓解疼痛。这代表水凝胶可以作为治疗骨关节炎的一种可持续药物递送系统 [47] 。JINJIN ZHU等研究者开发了一种可注射的生物活性自组装肽纳米纤维水凝胶,通过结合干细胞归巢肽SKPPGTSS来同时递送与衰老相关的miRNA miR-29b-5p,其上调可以抑制基质金属蛋白酶和衰老相关基因的表达,在大鼠模型中,SKP@miR水凝胶的持续进行miR-29b-5p递送和滑膜干细胞的招募导致了软骨修复和软骨细胞年轻化。这种策略使得基于miRNA的治疗成为手术治疗的一个可行替代方案 [48] 。近年来,外泌体作为一种新型生物活性物质,因其在细胞间通讯中的作用而受到关注。外泌体携带多种生物分子,如蛋白质、脂质和核酸,能够调节细胞功能和组织修复。干细胞具有自我更新和多向分化的能力,能够分化为软骨细胞,从而参与软骨的修复和再生。间充质干细胞(Mesenchymal Stem Cells, MSCs)是治疗骨关节炎的常用干细胞来源,它们能够分泌多种生物活性因子,如生长因子和细胞因子,促进软骨修复和抑制炎症反应。水凝胶利用其支架结构,携带并保护外泌体或干细胞免受机械损伤,同时利用缓释效果延长其在关节内的作用时间,三维网络结构则有利于细胞黏附和生长,为外泌体或干细胞提供了一个有利于软骨分化和修复的微环境。通过物理交联或化学修饰,这些水凝胶可以被设计成具有特定的孔隙结构和机械性能,以适应外泌体或干细胞的携带和释放 [49] 。Zhengang Ding等3D打印的ECM支架水凝胶为载体,将干细胞产生的凋亡外泌体(Apoptotic Extracellular Vesicles, ApoEVs)传递到关节腔内,建立软骨再生系统。ECM支架提供了机械支持,并创造了有利于软骨再生的微环境,而ApoEVs进一步增强了内源性干细胞的再生能力和改善了关节腔内的免疫调节微环境,显著促进软骨修复,为利用干细胞衍生的外泌体进行关节炎的软骨修复提供了新的策略 [50] 。近年来,水凝胶的可调控释放特性备受关注,对于提高治疗效果、减少副作用以及实现精准医疗具有重要意义。通过调整水凝胶的交联密度、孔隙大小和网络结构,可以控制分子的扩散速率;在水凝胶中引入可降解的化学键或刺激响应性基团,如ROS响应 [51] [52] 、pH敏感 [53] 、温度敏感 [47] 或光敏感基团 [54] ,可以实现对关节炎微环境变化的响应性释放;利用软骨与水凝胶的机械作用,可以实现对挤压或摩擦的响应,从而调控释放过程 [38] 。

3. 总结

仿生软骨的水凝胶支架不仅具有机械承载功能,而且其孔隙可调节干细胞和软骨细胞的增殖分化;模仿天然滑液设计的水凝胶同样具有优良的润滑效果;同时,水凝胶通过自身组分或递送其他生物分子产生抗炎作用,利用自身降解速率进行有效治疗成分的缓释或者响应性释放。综上所述,水凝胶在治疗骨关节炎时可以从生物支架、增强润滑和递送抗炎生物分子等方面协同作用。目前实验研究已表现出水凝胶治疗骨关节炎具有良好的效果,但其临床应用仍需等待进一步的验证 [55] 。未来将如何实现水凝胶与软骨的结合,使其在关节腔长期稳定存在进行生物活性分子的释放需要我们不断探索。我们甚至可以针对不同患者的不同需求,结合3D打印技术,提供个性化的治疗方案 [56] 。总之,作为一种新型的多功能生物材料,水凝胶在治疗骨关节炎方面具有广阔的研究、发展和应用前景,并通过我们的努力为骨关节炎的治疗带来新的突破,为患者带来更好的生活质量。

NOTES

*通讯作者。

参考文献

[1] Mahmoudian, A., Lohmander, L.S., Mobasheri, A., et al. (2021) Early-Stage Symptomatic Osteoarthritis of the Knee—Time for Action. Nature Reviews Rheumatology, 17, 621-632.
https://doi.org/10.1038/s41584-021-00673-4
[2] Yao, Q., Wu, X., Tao, C., et al. (2023) Osteoarthritis: Pathogenic Signaling Pathways and Therapeutic Targets. Signal Transduction and Targeted Therapy, 8, Article No. 56.
https://doi.org/10.1038/s41392-023-01330-w
[3] Katz, J.N., Arant, K.R. and Loeser, R.F. (2021) Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review. JAMA, 325, 568-578.
https://doi.org/10.1001/jama.2020.22171
[4] Saeedi, T., Alotaibi, H.F. and Prokopovich, P. (2020) Polymer Colloids as Drug Delivery Systems for the Treatment of Arthritis. Advances in Colloid and Interface Science, 285, Article ID: 102273.
https://doi.org/10.1016/j.cis.2020.102273
[5] Than, A., Liu, C., Chang, H., et al. (2018) Self-Implantable Double-Layered Micro-Drug-Reservoirs for Efficient and Controlled Ocular Drug Delivery. Nature Communications, 9, Article No. 4433.
https://doi.org/10.1038/s41467-018-06981-w
[6] Rosser, J., Bachmann, B., Jordan, C., et al. (2019) Microfluidic Nutrient Gradient-Based Three-Dimensional Chondrocyte Culture-on-a-Chip as an in Vitro Equine Arthritis Model. Materials Today Bio, 4, Article ID: 100023.
https://doi.org/10.1016/j.mtbio.2019.100023
[7] Bruno, M.C., Cristiano, M.C., Celia, C., et al. (2022) Injectable Drug Delivery Systems for Osteoarthritis and Rheumatoid Arthritis. ACS Nano, 16, 19665-19690.
https://doi.org/10.1021/acsnano.2c06393
[8] Song, P., Cui, Z. and Hu, L. (2022) Applications and Prospects of Intra-Articular Drug Delivery System in Arthritis Therapeutics. Journal of Controlled Release, 352, 946-960.
https://doi.org/10.1016/j.jconrel.2022.11.018
[9] Rahimi, M., Charmi, G., Matyjaszewski, K., et al. (2021) Recent Developments in Natural and Synthetic Polymeric Drug Delivery Systems Used for the Treatment of Osteoarthritis. Acta Biomaterialia, 123, 31-50.
https://doi.org/10.1016/j.actbio.2021.01.003
[10] Wang, S., Qiu, Y., Qu, L., et al. (2022) Hydrogels for Treatment of Different Degrees of Osteoarthritis. Frontiers in Bioengineering and Biotechnology, 10, Article 858656.
https://doi.org/10.3389/fbioe.2022.858656
[11] Shang, F., Yu, Y., Liu, S., et al. (2021) Advancing Application of Mesenchymal Stem Cell-Based Bone Tissue Regeneration. Bioactive materials, 6, 666-683.
https://doi.org/10.1016/j.bioactmat.2020.08.014
[12] Chiang, C.W., Hsiao, Y.C., Jheng, P.R., et al. (2021) Strontium Ranelate-Laden near-Infrared Photothermal-Inspired Methylcellulose Hydrogel for Arthritis Treatment. Materials Science and Engineering: C, 123, Article ID: 111980.
https://doi.org/10.1016/j.msec.2021.111980
[13] Cui, Z.K., Kim, S., Baljon, J.J., et al. (2019) Microporous Methacrylated Glycol Chitosan-Montmorillonite Nanocomposite Hydrogel for Bone Tissue Engineering. Nature Communications, 10, 3523.
https://doi.org/10.1038/s41467-019-11511-3
[14] Duan, W.L., Zhang, L.N., Bohara, R., et al. (2023) Adhesive Hydrogels in Osteoarthritis: From Design to Application. Military Medical Research, 10, Article No. 4.
https://doi.org/10.1186/s40779-022-00439-3
[15] Kawanishi, Y., Nakasa, T., Shoji, T., et al. (2014) Intra-Articular Injection of Synthetic Microrna-210 Accelerates Avascular Meniscal Healing in Rat Medial Meniscal Injured Model. Arthritis Research & Therapy, 16, Article No. 488.
https://doi.org/10.1186/s13075-014-0488-y
[16] Teichtahl, A.J., Wulidasari, E., Brady, S.R., et al. (2015) A Large Infrapatellar Fat Pad Protects against Knee Pain and Lateral Tibial Cartilage Volume Loss. Arthritis Research & Therapy, 17, Article No. 318.
https://doi.org/10.1186/s13075-015-0831-y
[17] Li, H., Wu, C., Yu, X., et al. (2023) Recent Advances of Pva-Based Hydrogels in Cartilage Repair Application. Journal of Materials Research and Technology, 24, 2279-2298.
https://doi.org/10.1016/j.jmrt.2023.03.130
[18] 侯钰熙, 张然, 武秀萍, 等. 仿生水凝胶在软骨组织工程应用中的优势与潜力[J]. 中国组织工程研究, 2022, 26(34): 5569-5576.
[19] Fan, H. and Gong, J.P. (2020) Fabrication of Bioinspired Hydrogels: Challenges and Opportunities. Macromolecules, 53, 2769-2782.
https://doi.org/10.1021/acs.macromol.0c00238
[20] Sun, T.L., Kurokawa, T., Kuroda, S., et al. (2013) Physical Hydrogels Composed of Polyampholytes Demonstrate High Toughness and Viscoelasticity. Nature Materials, 12, 932-937.
https://doi.org/10.1038/nmat3713
[21] Chen, Q., Zhang, X., Chen, K., et al. (2022) Bilayer Hydrogels with Low Friction and High Load-Bearing Capacity by Mimicking the Oriented Hierarchical Structure of Cartilage. ACS Applied Materials & Interfaces, 14, 52347-52358.
https://doi.org/10.1021/acsami.2c13641
[22] Sun, J.Y., Zhao, X., Illeperuma, W.R., et al. (2012) Highly Stretchable and Tough Hydrogels. Nature, 489, 133-136.
https://doi.org/10.1038/nature11409
[23] Gong, J.P., Katsuyama, Y., Kurokawa, T., et al. (2003) Double-Network Hydrogels with Extremely High Mechanical Strength. Advanced materials, 15, 1155-1158.
https://doi.org/10.1002/adma.200304907
[24] Rosales, A.M. and Anseth, K.S. (2016) The Design of Reversible Hydrogels to Capture Extracellular Matrix Dynamics. Nature Reviews Materials, 1, Article No. 15012.
https://doi.org/10.1038/natrevmats.2015.12
[25] Szustakiewicz, K., Włodarczyk, M., Gazińska, M., et al. (2021) The Effect of Pore Size Distribution and L-Lysine Modified Apatite Whiskers (Hap) on Osteoblasts Response in Plla/Hap Foam Scaffolds Obtained in the Thermally Induced Phase Separation Process. International Journal of Molecular Sciences, 22, Article 3607.
https://doi.org/10.3390/ijms22073607
[26] Zhou, L., Fan, L., Zhang, F.M., et al. (2021) Hybrid Gelatin/Oxidized Chondroitin Sulfate Hydrogels Incorporating Bioactive Glass Nanoparticles with Enhanced Mechanical Properties, Mineralization, and Osteogenic Differentiation. Bioactive Materials, 6, 890-904.
https://doi.org/10.1016/j.bioactmat.2020.09.012
[27] Zhou, T., Chen, S., Ding, X., et al. (2021) Fabrication and Characterization of Collagen/PVA Dual-Layer Membranes for Periodontal Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 9, Article 630977.
https://doi.org/10.3389/fbioe.2021.630977
[28] Daraeinejad, Z. and Shabani, I. (2021) Enhancing Cellular Infiltration on Fluffy Polyaniline-Based Electrospun Nanofibers. Frontiers in Bioengineering and Biotechnology, 9, Article 641371.
https://doi.org/10.3389/fbioe.2021.641371
[29] Lu, Q., Diao, J., Wang, Y., et al. (2023) 3d Printed Pore Morphology Mediates Bone Marrow Stem Cell Behaviors via Rhoa/Rock2 Signaling Pathway for Accelerating Bone Regeneration. Bioactive Materials, 26, 413-424.
https://doi.org/10.1016/j.bioactmat.2023.02.025
[30] Zhang, L., Wei, Y., Chi, Y., et al. (2021) Two-Step Generation of Mesenchymal Stem/Stromal Cells from Human Pluripotent Stem Cells with Reinforced Efficacy Upon Osteoarthritis Rabbits by Ha Hydrogel. Cell & Bioscience, 11, Article No. 6.
https://doi.org/10.1186/s13578-020-00516-x
[31] Uzieliene, I., Bironaite, D., Bernotas, P., et al. (2021) Mechanotransducive Biomimetic Systems for Chondrogenic Differentiation in Vitro. International Journal of Molecular Sciences, 22, Article 9690.
https://doi.org/10.3390/ijms22189690
[32] Lei, Y., Wang, X., Liao, J., et al. (2022) Shear-Responsive Boundary-Lubricated Hydrogels Attenuate Osteoarthritis. Bioactive Materials, 16, 472-484.
https://doi.org/10.1016/j.bioactmat.2022.02.016
[33] Yuan, H., Mears, L.L., Wang, Y., et al. (2023) Lubricants for Osteoarthritis Treatment: From Natural to Bioinspired and Alternative Strategies. Advances in Colloid and Interface Science, 311, Article ID: 102814.
https://doi.org/10.1016/j.cis.2022.102814
[34] Lin, W. AND Klein, J. (2022) Hydration Lubrication in Biomedical Applications: From Cartilage to Hydrogels. Accounts of Materials Research, 3, 213-223.
https://doi.org/10.1021/accountsmr.1c00219
[35] Zhao, W., Zhang, Y., Zhao, X., et al. (2022) Bioinspired Design of a Cartilage-Like Lubricated Composite with Mechanical Robustness. ACS Applied Materials & Interfaces, 14, 9899-9908.
https://doi.org/10.1021/acsami.1c24439
[36] 新型. 兰州化物所仿生润滑研究取得进展[J]. 化工新型材料, 2022, 50(8): 95.
[37] Lin, W., Kluzek, M., Iuster, N., et al. (2020) Cartilage-Inspired, Lipid-Based Boundary-Lubricated Hydrogels. Science, 370, 335-338.
https://doi.org/10.1126/science.aay8276
[38] Han, Y., Yang, J., Zhao, W., et al. (2021) Biomimetic Injectable Hydrogel Microspheres with Enhanced Lubrication and Controllable Drug Release for the Treatment of Osteoarthritis. Bioactive Materials, 6, 3596-3607.
https://doi.org/10.1016/j.bioactmat.2021.03.022
[39] 易佳锋, 刘宇博, 李超, 等. 关节软骨润滑机制理论及仿生软骨材料的摩擦学应用[J]. 中国组织工程研究, 2023, 27(25): 4075-4084.
[40] Chow, Y.Y. and Chin, K.Y. (2020) The Role of Inflammation in the Pathogenesis of Osteoarthritis. Mediators of Inflammation, 2020, Article ID: 8293921.
https://doi.org/10.1155/2020/8293921
[41] Sanchez-Lopez, E., Coras, R., Torres, A., et al. (2022) Synovial Inflammation in Osteoarthritis Progression. Nature Reviews Rheumatology, 18, 258-275.
https://doi.org/10.1038/s41584-022-00749-9
[42] Ansari, M.Y., Ahmad, N. and Haqqi, T.M. (2020) Oxidative Stress and Inflammation in Osteoarthritis Pathogenesis: Role of Polyphenols. Biomedicine & Pharmacotherapy, 129, Article ID: 110452.
https://doi.org/10.1016/j.biopha.2020.110452
[43] Comblain, F., Rocasalbas, G., Gauthier, S., et al. (2017) Chitosan: A Promising Polymer for Cartilage Repair and Viscosupplementation. Bio-Medical Materials and Engineering, 28, S209-S215.
https://doi.org/10.3233/BME-171643
[44] Mou, D., Yu, Q., Zhang, J., et al. (2021) Intra-Articular Injection of Chitosan-Based Supramolecular Hydrogel for Osteoarthritis Treatment. Tissue Engineering and Regenerative Medicine, 18, 113-125.
https://doi.org/10.1007/s13770-020-00322-z
[45] Ma, J.C., Luo, T., Feng, B., et al. (2023) Exploring the Translational Potential of Plga Nanoparticles for Intra-Articular Rapamycin Delivery in Osteoarthritis Therapy. Journal of Nanobiotechnology, 21, Article No. 361.
https://doi.org/10.1186/s12951-023-02118-4
[46] He, Z., Wang, B., Hu, C., et al. (2017) An Overview of Hydrogel-Based Intra-Articular Drug Delivery for the Treatment of Osteoarthritis. Colloids and Surfaces B: Biointerfaces, 154, 33-39.
https://doi.org/10.1016/j.colsurfb.2017.03.003
[47] Wang, Q.S., Xu, B.X., Fan, K.J., et al. (2021) Dexamethasone-Loaded Thermo-Sensitive Hydrogel Attenuates Osteoarthritis by Protecting Cartilage and Providing Effective Pain Relief. Annals of Translational Medicine, 9, Article 1120.
https://doi.org/10.21037/atm-21-684
[48] Zhu, J., Yang, S., Qi, Y., et al. (2022) Stem Cell-Homing Hydrogel-Based Mir-29b-5p Delivery Promotes Cartilage Regeneration by Suppressing Senescence in an Osteoarthritis Rat Model. Science Advances, 8, eabk0011.
https://doi.org/10.1126/sciadv.abk0011
[49] Sun, Y., Zhao, J., Wu, Q., et al. (2022) Chondrogenic Primed Extracellular Vesicles Activate Mir-455/Sox11/Foxo Axis for Cartilage Regeneration and Osteoarthritis Treatment. NPJ Regenerative Medicine, 7, Article No. 53.
https://doi.org/10.1038/s41536-022-00250-7
[50] Ding, Z., Yan, Z., Yuan, X., et al. (2024) Apoptotic Extracellular Vesicles Derived from Hypoxia-Preconditioned Mesenchymal Stem Cells within a Modified Gelatine Hydrogel Promote Osteochondral Regeneration by Enhancing Stem Cell Activity and Regulating Immunity. Journal of Nanobiotechnology, 22, Article No. 74.
https://doi.org/10.1186/s12951-024-02333-7
[51] Lei, L., Cong, R., Ni, Y., et al. (2023) Dual-Functional Injectable Hydrogel for Osteoarthritis Treatments. Advanced Healthcare Materials, 13, Article ID: 2302551.
https://doi.org/10.1002/adhm.202302551
[52] Lin, F., Wang, Z., Xiang, L., et al. (2021) Charge-Guided Micro/Nano-Hydrogel Microsphere for Penetrating Cartilage Matrix. Advanced Functional Materials, 31, Article ID: 2107678.
https://doi.org/10.1002/adfm.202107678
[53] De Moor, C.P., Doh, L. and Siegel, R.A. (1991) Long-Term Structural Changes in Ph-Sensitive Hydrogels. Biomaterials, 12, 836-840.
https://doi.org/10.1016/0142-9612(91)90071-H
[54] Chen, P., Xia, C., Mei, S., et al. (2016) Intra-Articular Delivery of Sinomenium Encapsulated by Chitosan Microspheres and Photo-Crosslinked Gelma Hydrogel Ameliorates Osteoarthritis by Effectively Regulating Autophagy. Biomaterials, 81, 1-13.
https://doi.org/10.1016/j.biomaterials.2015.12.006
[55] Manferdini, C., Gabusi, E., Saleh, Y., et al. (2022) Mesenchymal Stromal Cells Laden in Hydrogels for Osteoarthritis Cartilage Regeneration: A Systematic Review from in Vitro Studies to Clinical Applications. Cells, 11, Article 3969.
https://doi.org/10.3390/cells11243969
[56] Li, P., Fu, L., Liao, Z., et al. (2021) Chitosan Hydrogel/3d-Printed Poly (Ε-Caprolactone) Hybrid Scaffold Containing Synovial Mesenchymal Stem Cells for Cartilage Regeneration Based on Tetrahedral Framework Nucleic Acid Recruitment. Biomaterials, 278, Article ID: 121131.
https://doi.org/10.1016/j.biomaterials.2021.121131